Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 620(7972): 97-103, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37532816

RESUMO

Earth system models and various climate proxy sources indicate global warming is unprecedented during at least the Common Era1. However, tree-ring proxies often estimate temperatures during the Medieval Climate Anomaly (950-1250 CE) that are similar to, or exceed, those recorded for the past century2,3, in contrast to simulation experiments at regional scales4. This not only calls into question the reliability of models and proxies but also contributes to uncertainty in future climate projections5. Here we show that the current climate of the Fennoscandian Peninsula is substantially warmer than that of the medieval period. This highlights the dominant role of anthropogenic forcing in climate warming even at the regional scale, thereby reconciling inconsistencies between reconstructions and model simulations. We used an annually resolved 1,170-year-long tree-ring record that relies exclusively on tracheid anatomical measurements from Pinus sylvestris trees, providing high-fidelity measurements of instrumental temperature variability during the warm season. We therefore call for the construction of more such millennia-long records to further improve our understanding and reduce uncertainties around historical and future climate change at inter-regional and eventually global scales.


Assuntos
Mudança Climática , Pinus , Temperatura , Árvores , Mudança Climática/história , Mudança Climática/estatística & dados numéricos , Aquecimento Global/história , Aquecimento Global/estatística & dados numéricos , Reprodutibilidade dos Testes , Árvores/anatomia & histologia , Árvores/crescimento & desenvolvimento , História Medieval , História do Século XXI , Modelos Climáticos , Incerteza , Pinus/anatomia & histologia , Pinus/crescimento & desenvolvimento , Internacionalidade
2.
New Phytol ; 243(2): 591-606, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38785184

RESUMO

Investigating plant responses to climate change is key to develop suitable adaptation strategies. However, whether changes in land management can alleviate increasing drought threats to crops in the future is still unclear. We conducted a management × drought experiment with winter wheat (Triticum aestivum L.) to study plant water and vegetative traits in response to drought and management (conventional vs organic farming, with intensive vs conservation tillage). Water traits (root water uptake pattern, stem metaxylem area, leaf water potential, stomatal conductance) and vegetative traits (plant height, leaf area, leaf Chl content) were considered simultaneously to characterise the variability of multiple traits in a trait space, using principal component analysis. Management could not alleviate the drought impacts on plant water traits as it mainly affected vegetative traits, with yields ultimately being affected by both management and drought. Trait spaces were clearly separated between organic and conventional management as well as between drought and control conditions. Moreover, changes in trait space triggered by management and drought were independent from each other. Neither organic management nor conservation tillage eased drought impacts on winter wheat. Thus, our study raised concerns about the effectiveness of these management options as adaptation strategies to climate change.


Assuntos
Secas , Característica Quantitativa Herdável , Estações do Ano , Triticum , Água , Triticum/fisiologia , Triticum/crescimento & desenvolvimento , Análise de Componente Principal , Folhas de Planta/fisiologia , Agricultura/métodos , Raízes de Plantas/fisiologia , Raízes de Plantas/crescimento & desenvolvimento
3.
New Phytol ; 239(2): 533-546, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37235688

RESUMO

Trees remain sufficiently hydrated during drought by closing stomata and reducing canopy conductance (Gc ) in response to variations in atmospheric water demand and soil water availability. Thresholds that control the reduction of Gc are proposed to optimize hydraulic safety against carbon assimilation efficiency. However, the link between Gc and the ability of stem tissues to rehydrate at night remains unclear. We investigated whether species-specific Gc responses aim to prevent branch embolisms, or enable night-time stem rehydration, which is critical for turgor-dependent growth. For this, we used a unique combination of concurrent dendrometer, sap flow and leaf water potential measurements and collected branch-vulnerability curves of six common European tree species. Species-specific Gc reduction was weakly related to the water potentials at which 50% of branch xylem conductivity is lost (P50 ). Instead, we found a stronger relationship with stem rehydration. Species with a stronger Gc control were less effective at refilling stem-water storage as the soil dries, which appeared related to their xylem architecture. Our findings highlight the importance of stem rehydration for water-use regulation in mature trees, which likely relates to the maintenance of adequate stem turgor. We thus conclude that stem rehydration must complement the widely accepted safety-efficiency stomatal control paradigm.


Assuntos
Folhas de Planta , Árvores , Árvores/fisiologia , Folhas de Planta/fisiologia , Xilema/fisiologia , Água/fisiologia , Secas , Hidratação
4.
New Phytol ; 234(1): 50-63, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34981534

RESUMO

Tropical forests are important to the regulation of climate and the maintenance of biodiversity on Earth. However, these ecosystems are threatened by climate change, as temperatures rise and droughts' frequency and duration increase. Xylem anatomical traits are an essential component in understanding and predicting forest responses to changes in water availability. We calculated the community-weighted means and variances of xylem anatomical traits of hydraulic and structural importance (plot-level trait values weighted by species abundance) to assess their linkages to local adaptation and community assembly in response to varying soil water conditions in an environmentally diverse Brazilian Atlantic Forest habitat. Scaling approaches revealed community-level tradeoffs in xylem traits not observed at the species level. Towards drier sites, xylem structural reinforcement and integration balanced against hydraulic efficiency and capacitance xylem traits, leading to changes in plant community diversity. We show how general community assembly rules are reflected in persistent fiber-parenchyma and xylem hydraulic tradeoffs. Trait variation across a moisture gradient is larger between species than within species and is realized mainly through changes in species composition and abundance, suggesting habitat specialization. Modeling efforts to predict tropical forest diversity and drought sensitivity may benefit from adding hydraulic architecture traits into the analysis.


Assuntos
Secas , Árvores , Ecossistema , Florestas , Folhas de Planta , Árvores/fisiologia , Clima Tropical , Água , Xilema/fisiologia
5.
Plant Cell Environ ; 45(1): 55-68, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34783044

RESUMO

Xylem conductive capacity is a key determinant of plant hydraulic function and intimately linked to photosynthesis and productivity, but can be impeded by temporary or permanent conduit dysfunctions. Here we show that persistent xylem dysfunctions in unstressed plants are frequent in Alpine dwarf shrubs and occur in various but species-specific cross-sectional patterns. Combined synchrotron micro-computed tomography (micro-CT) imaging, xylem staining, and flow measurements in saturated samples of six widespread Ericaceae species evidence a high proportion (19%-50%) of hydraulically nonfunctional xylem areas in the absence of drought stress, with regular distribution of dysfunctions between or within growth rings. Dysfunctions were only partly reversible and reduced the specific hydraulic conductivity to 1.38 to 3.57 ×10-4 m2 s-1 MPa-1 . Decommission of inner growth rings was clearly related to stem age and a higher vulnerability to cavitation of older rings, while the high proportion of nonfunctional conduits in each annual ring needs further investigations. The lower the xylem fraction contributing to the transport function, the higher was the hydraulic efficiency of conducting xylem areas. Improved understanding of the functional lifespan of xylem elements and the prevalence and nature of dysfunctions is critical to correctly assess structure-function relationships and whole-plant hydraulic strategies.


Assuntos
Ericaceae/fisiologia , Xilema/fisiologia , Áustria , Ericaceae/anatomia & histologia , Ericaceae/citologia , Região dos Alpes Europeus , Caules de Planta/anatomia & histologia , Caules de Planta/citologia , Especificidade da Espécie , Síncrotrons , Fatores de Tempo , Microtomografia por Raio-X , Xilema/anatomia & histologia , Xilema/citologia
6.
New Phytol ; 227(4): 1081-1096, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32259280

RESUMO

Tree responses to altered water availability range from immediate (e.g. stomatal regulation) to delayed (e.g. crown size adjustment). The interplay of the different response times and processes, and their effects on long-term whole-tree performance, however, is hardly understood. Here we investigated legacy effects on structures and functions of mature Scots pine in a dry inner-Alpine Swiss valley after stopping an 11-yr lasting irrigation treatment. Measured ecophysiological time series were analysed and interpreted with a system-analytic tree model. We found that the irrigation stop led to a cascade of downregulations of physiological and morphological processes with different response times. Biophysical processes responded within days, whereas needle and shoot lengths, crown transparency, and radial stem growth reached control levels after up to 4 yr only. Modelling suggested that organ and carbon reserve turnover rates play a key role for a tree's responsiveness to environmental changes. Needle turnover rate was found to be most important to accurately model stem growth dynamics. We conclude that leaf area and its adjustment time to new conditions is the main determinant for radial stem growth of pine trees as the transpiring area needs to be supported by a proportional amount of sapwood, despite the growth-inhibiting environmental conditions.


Assuntos
Pinus sylvestris , Pinus , Secas , Folhas de Planta , Água
7.
Plant Cell Environ ; 42(4): 1222-1232, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30326549

RESUMO

Conifer trees possess a typical anatomical tree-ring structure characterized by a transition from large and thin-walled earlywood tracheids to narrow and thick-walled latewood tracheids. However, little is known on how this characteristic structure is maintained across contrasting environmental conditions, due to its crucial role to ensure sap ascent and mechanical support. In this study, we monitored weekly wood cell formation for up to 7 years in two temperate conifer species (i.e., Picea abies (L.) Karst and Larix decidua Mill.) across an 8°C thermal gradient from 800 to 2,200 m a.s.l. in central Europe to investigate the impact of air temperature on rate and duration of wood cell formation. Results indicated that towards colder sites, forming tracheids compensate a decreased rate of differentiation (cell enlarging and wall thickening) by an extended duration, except for the last cells of the latewood in the wall-thickening phase. This compensation allows conifer trees to mitigate the influence of air temperature on the final tree-ring structure, with important implications for the functioning and resilience of the xylem to varying environmental conditions. The disappearing compensation in the thickening latewood cells might also explain the higher climatic sensitivity usually found in maximum latewood density.


Assuntos
Diferenciação Celular , Larix/anatomia & histologia , Picea/anatomia & histologia , Madeira/anatomia & histologia , Diferenciação Celular/fisiologia , Cinética , Larix/crescimento & desenvolvimento , Larix/fisiologia , Picea/crescimento & desenvolvimento , Picea/fisiologia , Temperatura , Madeira/citologia , Madeira/crescimento & desenvolvimento , Xilema/crescimento & desenvolvimento
8.
Plant Cell Environ ; 42(5): 1674-1689, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30536787

RESUMO

Conifers growing at high elevations need to optimize their stomatal conductance (gs ) for maximizing photosynthetic yield while minimizing water loss under less favourable thermal conditions. Yet the ability of high-elevation conifers to adjust their gs sensitivity to environmental drivers remains largely unexplored. We used 4 years of sap flow measurements to elucidate intraspecific and interspecific variability of gs in Larix decidua Mill. and Picea abies (L.) Karst along an elevational gradient and contrasting soil moisture conditions. Site- and species-specific gs response to main environmental drivers were examined, including vapour pressure deficit, air temperature, solar irradiance, and soil water potential. Our results indicate that maximum gs of L. decidua is >2 times higher, shows a more plastic response to temperature, and down-regulates gs stronger during atmospheric drought compared to P. abies. These differences allow L. decidua to exert more efficient water use, adjust to site-specific thermal conditions, and reduce water loss during drought episodes. The stronger plasticity of gs sensitivity to temperature and higher conductance of L. decidua compared to P. abies provide new insights into species-specific water use strategies, which affect species' performance and should be considered when predicting terrestrial water dynamics under future climatic change.


Assuntos
Estômatos de Plantas/fisiologia , Transpiração Vegetal/fisiologia , Traqueófitas , Adaptação Fisiológica , Secas , Larix/fisiologia , Pinus/fisiologia , Solo , Temperatura , Traqueófitas/fisiologia , Água/fisiologia
9.
New Phytol ; 218(4): 1383-1392, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29655212

RESUMO

Trees scale leaf (AL ) and xylem (AX ) areas to couple leaf transpiration and carbon gain with xylem water transport. Some species are known to acclimate in AL  : AX balance in response to climate conditions, but whether trees of different species acclimate in AL  : AX in similar ways over their entire (continental) distributions is unknown. We analyzed the species and climate effects on the scaling of AL vs AX in branches of conifers (Pinus sylvestris, Picea abies) and broadleaved (Betula pendula, Populus tremula) sampled across a continental wide transect in Europe. Along the branch axis, AL and AX change in equal proportion (isometric scaling: b Ëœ 1) as for trees. Branches of similar length converged in the scaling of AL vs AX with an exponent of b = 0.58 across European climates irrespective of species. Branches of slow-growing trees from Northern and Southern regions preferentially allocated into new leaf rather than xylem area, with older xylem rings contributing to maintaining total xylem conductivity. In conclusion, trees in contrasting climates adjust their functional balance between water transport and leaf transpiration by maintaining biomass allocation to leaves, and adjusting their growth rate and xylem production to maintain xylem conductance.


Assuntos
Folhas de Planta/anatomia & histologia , Árvores/crescimento & desenvolvimento , Madeira/anatomia & histologia , Europa (Continente) , Geografia , Modelos Estatísticos , Especificidade da Espécie , Árvores/anatomia & histologia , Xilema/anatomia & histologia
10.
Ann Bot ; 122(3): 461-472, 2018 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-29800073

RESUMO

Background and Aims: Trees adjust the configuration of their conductive system in response to changes in water availability, maximizing efficiency in wet environments and increasing safety in dry habitats. However, evidence of this general trend is not conclusive. Generalist species growing across broad climatic gradients provide an ideal framework to assess intra-specific xylem adjustments under contrasting environmental conditions. Our aims were to compare the response of xylem traits to variations in precipitation of two co-occurring generalist tree species, and to assess climate control on xylem trait variability and co-ordination. Methods: We evaluated xylem traits of Embothrium coccineum (Proteaceae, evergreen) and Nothofagus antarctica (Nothofagaceae, deciduous) in three areas across an abrupt precipitation gradient, from 500 to 2500 mm, in southern Chile. We measured wood density, vessel lumen area and density, percentage of conductive area and vessel grouping, and estimated the hydraulic function from anatomical measurements in 60 individuals per species. Key Results: Both species shared a common pattern of response along the precipitation gradient, with an increase in vessel density with dryness, but without changes in estimated hydraulic conductivity. Xylem traits in E. coccineum were more variable and more responsive to the climate gradient, decreasing vessel lumen area and increasing wood density, whereas vessel grouping showed contrasting patterns between species. Additionally, the analysis of trait co-ordination at the individual level revealed a tighter co-ordination among xylem traits in E. coccineum. Conclusions: Estimated xylem efficiency was maintained in combination with different levels of expected xylem safety within species. Reduction in vessel lumen area was compensated through large increases in vessel density, thus breaking the trade-off between xylem efficiency and safety. Otherwise, the existence of alternative internal adjustments in coexisting species to face similar climatic constraints might increase resilience of temperate forests against unpredictable changes in climatic conditions.


Assuntos
Fagales/fisiologia , Transpiração Vegetal/fisiologia , Proteaceae/fisiologia , Xilema/fisiologia , Ecossistema , Fagales/anatomia & histologia , Florestas , Fenótipo , Proteaceae/anatomia & histologia , Chuva , Árvores , Água/fisiologia , Madeira , Xilema/anatomia & histologia
11.
New Phytol ; 216(3): 728-740, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28636081

RESUMO

Interannual variability of wood density - an important plant functional trait and environmental proxy - in conifers is poorly understood. We therefore explored the anatomical basis of density. We hypothesized that earlywood density is determined by tracheid size and latewood density by wall dimensions, reflecting their different functional tasks. To determine general patterns of variability, density parameters from 27 species and 349 sites across the Northern Hemisphere were correlated to tree-ring width parameters and local climate. We performed the same analyses with density and width derived from anatomical data comprising two species and eight sites. The contributions of tracheid size and wall dimensions to density were disentangled with sensitivity analyses. Notably, correlations between density and width shifted from negative to positive moving from earlywood to latewood. Temperature responses of density varied intraseasonally in strength and sign. The sensitivity analyses revealed tracheid size as the main determinant of earlywood density, while wall dimensions become more influential for latewood density. Our novel approach of integrating detailed anatomical data with large-scale tree-ring data allowed us to contribute to an improved understanding of interannual variations of conifer growth and to illustrate how conifers balance investments in the competing xylem functions of hydraulics and mechanical support.


Assuntos
Parede Celular , Traqueófitas/citologia , Madeira/citologia , Tamanho Celular , Clima , Europa (Continente) , Células Vegetais , Temperatura , Madeira/anatomia & histologia
12.
Ann Bot ; 119(6): 1011-1020, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28130220

RESUMO

Background and Aims: During the growing season, the cambium of conifer trees produces successive rows of xylem cells, the tracheids, that sequentially pass through the phases of enlargement and secondary wall thickening before dying and becoming functional. Climate variability can strongly influence the kinetics of morphogenetic processes, eventually affecting tracheid shape and size. This study investigates xylem anatomical structure in the stem of Picea abies to retrospectively infer how, in the long term, climate affects the processes of cell enlargement and wall thickening. Methods: Tracheid anatomical traits related to the phases of enlargement (diameter) and wall thickening (wall thickness) were innovatively inspected at the intra-ring level on 87-year-long tree-ring series in Picea abies trees along a 900 m elevation gradient in the Italian Alps. Anatomical traits in ten successive tree-ring sectors were related to daily temperature and precipitation data using running correlations. Key Results: Close to the altitudinal tree limit, low early-summer temperature negatively affected cell enlargement. At lower elevation, water availability in early summer was positively related to cell diameter. The timing of these relationships shifted forward by about 20 (high elevation) to 40 (low elevation) d from the first to the last tracheids in the ring. Cell wall thickening was affected by climate in a different period in the season. In particular, wall thickness of late-formed tracheids was strongly positively related to August-September temperature at high elevation. Conclusions: Morphogenesis of tracheids sequentially formed in the growing season is influenced by climate conditions in successive periods. The distinct climate impacts on cell enlargement and wall thickening indicate that different morphogenetic mechanisms are responsible for different tracheid traits. Our approach of long-term and high-resolution analysis of xylem anatomy can support and extend short-term xylogenesis observations, and increase our understanding of climate control of tree growth and functioning under different environmental conditions.


Assuntos
Clima , Picea/anatomia & histologia , Xilema/anatomia & histologia , Itália , Morfogênese , Picea/crescimento & desenvolvimento , Estações do Ano , Xilema/crescimento & desenvolvimento
13.
Sci Total Environ ; 919: 170726, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38331275

RESUMO

The fraction of photosynthetically assimilated carbon that trees allocate to long-lasting woody biomass pools (biomass production efficiency - BPE), is a key metric of the forest carbon balance. Its apparent simplicity belies the complex interplay between underlying processes of photosynthesis, respiration, litter and fruit production, and tree growth that respond differently to climate variability. Whereas the magnitude of BPE has been routinely quantified in ecological studies, its temporal dynamics and responses to extreme events such as drought remain less well understood. Here, we combine long-term records of aboveground carbon increment (ACI) obtained from tree rings with stand-level gross primary productivity (GPP) from eddy covariance (EC) records to empirically quantify aboveground BPE (= ACI/GPP) and its interannual variability in two European beech forests (Hainich, DE-Hai, Germany; Sorø, DK-Sor, Denmark). We found significant negative correlations between BPE and a daily-resolved drought index at both sites, indicating that woody growth is de-prioritized under water limitation. During identified extreme years, early-season drought reduced same-year BPE by 29 % (Hainich, 2011), 31 % (Sorø, 2006), and 14 % (Sorø, 2013). By contrast, the 2003 late-summer drought resulted in a 17 % reduction of post-drought year BPE at Hainich. Across the entire EC period, the daily-to-seasonal drought response of BPE resembled that of ACI, rather than that of GPP. This indicates that BPE follows sink dynamics more closely than source dynamics, which appear to be decoupled given the distinctive climate response patterns of GPP and ACI. Based on our observations, we caution against estimating the magnitude and variability of the carbon sink in European beech (and likely other temperate forests) based on carbon fluxes alone. We also encourage comparable studies at other long-term EC measurement sites from different ecosystems to further constrain the BPE response to rare climatic events.


Assuntos
Ecossistema , Fagus , Biomassa , Fagus/fisiologia , Secas , Florestas , Carbono , Mudança Climática
14.
Sci Total Environ ; 916: 169896, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38185160

RESUMO

Widespread shrubification across the Arctic has been generally attributed to increasing air temperatures, but responses vary across species and sites. Wood structures related to the plant hydraulic architecture may respond to local environmental conditions and potentially impact shrub growth, but these relationships remain understudied. Using methods of dendroanatomy, we analysed shrub ring width (RW) and xylem anatomical traits of 80 individuals of Salix glauca L. and Betula nana L. at a snow manipulation experiment in Western Greenland. We assessed how their responses differed between treatments (increased versus ambient snow depth) and soil moisture regimes (wet and dry). Despite an increase in snow depth due to snow fences (28-39 %), neither RW nor anatomical traits in either species showed significant responses to this increase. In contrast, irrespective of the snow treatment, the xylem specific hydraulic conductivity (Ks) and earlywood vessel size (LA95) for the study period were larger in S. glauca (p < 0.1, p < 0.01) and B. nana (p < 0.01, p < 0.001) at the wet than the dry site, while both species had larger vessel groups at the dry than the wet site (p < 0.01). RW of B. nana was higher at the wet site (p < 0.01), but no differences were observed for S. glauca. Additionally, B. nana Ks and LA95 showed different trends over the study period, with decreases observed at the dry site (p < 0.001), while for other responses no difference was observed. Our results indicate that, taking into account ontogenetic and allometric trends, hydraulic related xylem traits of both species, along with B. nana growth, were influenced by soil moisture. These findings suggest that soil moisture regime, but not snow cover, may determine xylem responses to future climate change and thus add to the heterogeneity of Arctic shrub dynamics, though more long-term species- and site- specific studies are needed.


Assuntos
Neve , Solo , Humanos , Groenlândia , Regiões Árticas , Xilema/fisiologia
15.
New Phytol ; 198(2): 486-495, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23316689

RESUMO

Tree-ring anatomy reflects the year-by-year impact of environmental factors on tree growth. Up to now, research in this field has mainly focused on the hydraulic architecture, with ray parenchyma neglected despite the growing recognition of its relevance for xylem function. Our aim was to address this gap by exploring the potential of the annual patterns of xylem parenchyma as a climate proxy. We constructed ring-width and ray-parenchyma chronologies from 1965 to 2004 for 20 Juniperus thurifera trees growing in a Mediterranean continental climate. Chronologies were related to climate records by means of correlation, multiple regression and partial correlation analyses. Ray parenchyma responded to climatic conditions at critical stages during the xylogenetic process; namely, at the end of the previous year's xylogenesis (October) and at the onset of earlywood (May) and latewood formation (August). Ray parenchyma-based chronologies have potential to complement ring-width chronologies as a tool for climate reconstructions. Furthermore, medium- and low-frequency signals in the variation of ray parenchyma may improve our understanding of how trees respond to environmental fluctuations and to global change.


Assuntos
Clima , Juniperus/anatomia & histologia , Juniperus/crescimento & desenvolvimento , Árvores/anatomia & histologia , Árvores/crescimento & desenvolvimento , Xilema/anatomia & histologia , Xilema/crescimento & desenvolvimento , Geografia , Região do Mediterrâneo , Análise de Regressão , Fatores de Tempo
16.
Environ Monit Assess ; 185(6): 4483-9, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22915222

RESUMO

Quality control of long-term monitoring data of thousands and millions of individual records as present in meteorological data is cumbersome. In such data series, sensor drifts, stalled values, and scale shifts may occur and potentially result in flawed conclusions if not noticed and handled properly. However, there is no established standard procedure to perform quality control of high-frequency meteorological data. In this paper, we outline a procedure to remove sensor drift in high-frequency data series using the example of 15-year-long sets of hourly relative humidity (RH) data from 28 stations subdivided into 202 individual sensor operation periods. The procedure involves basic quality control, relative homogeneity testing, and drift removal. Significant sensor drifts were observed in 40.6 % of all sensor operation periods. The drifts varied between data series and depended in a complex, usually inconsistent way on absolute RH values; within single series for instance, a drift could be negative in the lower RH range and positive in the upper RH range. Detrending changed RH values by, on average, 1.96 %. For one fifth of the detrended data, adjustments were 2.75 % and more of the measured value, and in one tenth 4.75 % and more. Overall, drifts were strongest for RH values close to 100 %. The detrending procedure proved to effectively remove sensor drifts. The principles of the procedure also apply to other meteorological parameters and more generally to any time series of data for which comparable reference data are available.


Assuntos
Monitoramento Ambiental/métodos , Tempo (Meteorologia) , Umidade , Meteorologia , Estações do Ano
17.
Sci Total Environ ; 855: 158605, 2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36116650

RESUMO

Tree rings form the backbone of high-resolution palaeoclimatology and represent one of the most frequently used proxy to reconstruct climate variability of the Common Era. In the European Alps, reconstructions were often based on tree-ring width (TRW) and maximum latewood density (MXD) series, with a focus on European larch. By contrast, only a very limited number of dendroclimatic studies exists for long-lived, multi-centennial Pinus cembra, despite the widespread occurrence of the species at treeline sites across the European Alps. This lack of reconstructions can be ascribed to the difficulties encountered in past studies in extracting a robust climate signal from TRW and MXD chronologies. In this study, we tested various wood anatomical parameters from P. cembra as proxies for the reconstruction of past air temperatures. To this end, we measured anatomical cell parameters and TRW of old-growth trees from the God da Tamangur forest stand, known for being the highest pure, and continuous P. cembra forest in Europe. We demonstrate that several wood anatomical parameters allow robust reconstruction of past temperature variability at annual to multidecadal timescales. Best results are obtained with maximum latewood radial cell wall thickness (CWTrad) measured at 40 µm radial band width. Over the 1920-2017 period, the CWTrad chronology explains 62 % and >80 % of interannual and decadal variability of air temperatures during a time window corresponding roughly with the growing season. These values exceed those found in past work on P. cembra and even exceed the values reported for MXD chronologies built with L. decidua and hitherto considered the gold standard for dendroclimatic reconstructions in the European Alps. The wood anatomical analysis of P. cembra records therefore unveils a dormant potential and opens new avenues for a species that has been considered unsuitable for climate reconstructions so far.


Assuntos
Larix , Pinus , Clima , Madeira/anatomia & histologia , Florestas
18.
Front Plant Sci ; 14: 1213814, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38034580

RESUMO

Introduction: Forests are threatened by increasingly severe and more frequent drought events worldwide. Mono-specific forests, developed as a consequence of widespread management practices established early last century, seem particularly susceptible to global warming and drought compared with mixed-species forests. Although, in several contexts, mixed-species forests display higher species diversity, higher productivity, and higher resilience, previous studies highlighted contrasting findings, with not only many positive but also neutral or negative effects on tree performance that could be related to tree species diversity. Processes underlying this relationship need to be investigated. Wood anatomical traits are informative proxies of tree functioning, and they can potentially provide novel long-term insights in this regard. However, wood anatomical traits are critically understudied in such a context. Here, we assess the role of tree admixture on Pinus sylvestris L. xylem traits such as mean hydraulic diameter, cell wall thickness, and anatomical wood density, and we test the variability of these traits in response to climatic parameters such as temperature, precipitation, and drought event frequency and intensity. Methods: Three monocultural plots of P. sylvestris and three mixed-stand plots of P. sylvestris and Quercus sp. were identified in Poland and Spain, representing Continental and Mediterranean climate types, respectively. In each plot, we analyzed xylem traits from three P. sylvestris trees, for a total of nine trees in monocultures and nine in mixed stands per study location. Results: The results highlighted that anatomical wood density was one of the most sensitive traits to detect tree responses to climatic conditions and drought under different climate and forest types. Inter-specific facilitation mechanisms were detected in the admixture between P. sylvestris and Quercus sp., especially during the early growing season and during stressful events such as spring droughts, although they had negligible effects in the late growing season. Discussion: Our findings suggest that the admixture between P. sylvestris and Quercus sp. increases the resilience of P. sylvestris to extreme droughts. In a global warming scenario, this admixture could represent a useful adaptive management option.

19.
Sci Total Environ ; 872: 162167, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-36775147

RESUMO

Forests account for nearly 90 % of the world's terrestrial biomass in the form of carbon and they support 80 % of the global biodiversity. To understand the underlying forest dynamics, we need a long-term but also relatively high-frequency, networked monitoring system, as traditionally used in meteorology or hydrology. While there are numerous existing forest monitoring sites, particularly in temperate regions, the resulting data streams are rarely connected and do not provide information promptly, which hampers real-time assessments of forest responses to extreme climate events. The technology to build a better global forest monitoring network now exists. This white paper addresses the key structural components needed to achieve a novel meta-network. We propose to complement - rather than replace or unify - the existing heterogeneous infrastructure with standardized, quality-assured linking methods and interacting data processing centers to create an integrated forest monitoring network. These automated (research topic-dependent) linking methods in atmosphere, biosphere, and pedosphere play a key role in scaling site-specific results and processing them in a timely manner. To ensure broad participation from existing monitoring sites and to establish new sites, these linking methods must be as informative, reliable, affordable, and maintainable as possible, and should be supplemented by near real-time remote sensing data. The proposed novel meta-network will enable the detection of emergent patterns that would not be visible from isolated analyses of individual sites. In addition, the near real-time availability of data will facilitate predictions of current forest conditions (nowcasts), which are urgently needed for research and decision making in the face of rapid climate change. We call for international and interdisciplinary efforts in this direction.

20.
Ann Bot ; 109(6): 1091-100, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22396436

RESUMO

BACKGROUND AND AIMS: Plasticity in structural and functional traits related to water balance may determine plant performance and survival in ecosystems characterized by water limitation or high levels of rainfall variability, particularly in perennial herbaceous species with long generation cycles. This paper addresses whether and the extent to which several such seasonal to long-term traits respond to changes in moisture availability. METHODS: Using a novel approach that integrates ecology, physiology and anatomy, a comparison was made of lifetime functional traits in the root xylem of a long-lived perennial herb (Potentilla diversifolia, Rosaceae) growing in dry habitats with those of nearby individuals growing where soil moisture had been supplemented for 14 years. Traditional parameters such as specific leaf area (SLA) and above-ground growth were also assessed. KEY RESULTS: Individuals from the site receiving supplemental moisture consistently showed significant responses in all considered traits related to water balance: SLA was greater by 24 %; roots developed 19 % less starch storing tissue, an indicator for drought-stress tolerance; and vessel size distributions shifted towards wider elements that collectively conducted water 54 % more efficiently - but only during the years for which moisture was supplemented. In contrast, above-ground growth parameters showed insignificant or inconsistent responses. CONCLUSIONS: The phenotypic changes documented represent consistent, dynamic responses to increased moisture availability that should increase plant competitive ability. The functional plasticity of xylem anatomy quantified in this study constitutes a mechanistic basis for anticipating the differential success of plant species in response to climate variability and change, particularly where water limitation occurs.


Assuntos
Componentes Aéreos da Planta/crescimento & desenvolvimento , Raízes de Plantas/fisiologia , Transpiração Vegetal/fisiologia , Potentilla/fisiologia , Água/metabolismo , Xilema/anatomia & histologia , Xilema/fisiologia , Adaptação Fisiológica/fisiologia , Colorado , Secas , Meio Ambiente , Fenótipo , Chuva , Estações do Ano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA