Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 288
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Pancreatology ; 24(2): 279-288, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38272717

RESUMO

BACKGROUND: FOLFIRINOX and gemcitabine-nabpaclitaxel (GnP) are standard first-line treatment regimens for advanced pancreatic ductal adenocarcinoma (PDAC). However, currently, there is a lack of predictive biomarkers to aid in the treatment selection. We aimed to explore the prognostic and predictive value of class III ß-Tubulin (TUBB3) and human equilibrative nucleoside transporter 1 (hENT1) expression, which have previously been shown to be associated with taxane and gemcitabine resistance in advanced PDAC. METHODS: We conducted a retrospective analysis of 106 patients with advanced PDAC treated with GnP and/or FOLFIRINOX at our institution. TUBB3 and hENT1 immunohistochemical staining was performed on tumor specimens and subsequently evaluated based on the intensity and percentage of expression. RESULTS: In patients who received the GnP regimen, a high combined score (TUBB3low/hENT1high) was associated with a higher DCR and longer PFS compared to those with intermediate (TUBB3high/hENT1high or TUBB3low/hENT1low) and low score (TUBB3high/hENT1low). In the multivariate analysis, a high combined score was an independent predictor of higher DCR (OR:11.96; 95 % CI:2.61-54.82; p = 0.001) and longer PFS (HR:0.33; 95%CI:0.18-0.60; p < 0.001). However, there was no difference in response rates or PFS based on TUBB3 and hENT1 expression among patients receiving the FOLFIRINOX regimen. CONCLUSION: Our findings indicate that tumor TUBB3 and hENT1 expression may predict the efficacy of the GnP regimen, and low TUBB3 and high hENT1 expression (TUBB3low/hENT1high) are associated with a higher DCR and longer PFS in patients treated with GnP. Evaluating TUBB3 and hENT1 jointly can identify the patients most (as well as least) likely to benefit from GnP chemotherapy.


Assuntos
Adenocarcinoma , Neoplasias Pancreáticas , Humanos , Adenocarcinoma/tratamento farmacológico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Desoxicitidina/uso terapêutico , Transportador Equilibrativo 1 de Nucleosídeo/genética , Transportador Equilibrativo 1 de Nucleosídeo/análise , Gencitabina , Neoplasias Pancreáticas/patologia , Prognóstico , Estudos Retrospectivos , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo , Tubulina (Proteína)/uso terapêutico
2.
Phytopathology ; : PHYTO08230285R, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-37942861

RESUMO

Colletotrichum fructicola is the major pathogen of anthracnose in tea-oil trees in China. Control of anthracnose in tea-oil trees mainly depends on the application of chemical fungicides such as carbendazim. However, the current sensitivity of C. fructicola isolates in tea-oil trees to carbendazim has not been reported. Here, we tested the sensitivity of 121 C. fructicola isolates collected from Guangdong, Guangxi, Guizhou, Hainan, Hunan, Jiangsu, and Jiangxi provinces in China to carbendazim. One hundred and ten isolates were sensitive to carbendazim, and 11 isolates were highly resistant to carbendazim. The growth rates, morphology, and pathogenicity of three resistant isolates were identical to those of three sensitive isolates, which indicates that these resistant isolates could form a resistant population under carbendazim application. These results suggest that carbendazim should not be the sole fungicide in control of anthracnose in tea-oil trees; other fungicides with different mechanisms of action or mixtures of fungicides could be considered. In addition, bioinformatics analysis identified two ß-tubulin isotypes in C. fructicola: Cfß1tub and Cfß2tub. E198A mutation was discovered in the Cfß2tub of three carbendazim-resistant isolates. We also investigated the functional roles of two ß-tubulin isotypes. CfΔß1tub exhibited slightly increased sensitivity to carbendazim and normal phenotypes. Surprisingly, CfΔß2tub was highly resistant to carbendazim and showed a seriously decreased growth rate, conidial production, pathogenicity, and abnormal hyphae morphology. Promoter replacement mutant CfΔß2-2×ß1 showed partly restored phenotypes, but it was still highly resistant to carbendazim, which suggests that Cfß1tub and Cfß2tub are functionally interchangeable to a certain degree.

3.
Parasitol Res ; 123(1): 104, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38240890

RESUMO

Tetrahymenosis is caused by the ciliated protozoan Tetrahymena and is responsible for serious economic losses to the aquaculture industry worldwide. However, information regarding the molecular mechanism leading to tetrahymenosis is limited. In previous transcriptome sequencing work, it was found that one of the two ß-tubulin genes in T. pyriformis was significantly expressed in infected fish, we speculated that ß-tubulin is involved in T. pyriformis infecting fish. Herein, the potential biological function of the ß-tubulin gene in Tetrahymena species when establishing infection in guppies was investigated by cloning the full-length cDNA of this T. pyriformis ß-tubulin (BTU1) gene. The full-length cDNA of T. pyriformis BTU1 gene was 1873 bp, and the ORF occupied 1134 bp, whereas 5' UTR 434 bp, and 3' UTR 305 bp whose poly (A) tail contained 12 bases. The predicted protein encoded by T. pyriformis BTU1 gene had a calculated molecular weight of 42.26 kDa and pI of 4.48. Moreover, secondary structure analysis and tertiary structure prediction of BTU1 protein were also conducted. In addition, morphology, infraciliature, phylogeny, and histopathology of T. pyriformis isolated from guppies from a fish market in Harbin were also investigated. Furthermore, qRT-PCR analysis and experimental infection assays indicated that the expression of BTU1 gene resulted in efficient cell proliferation during infection. Collectively, our data revealed that BTU1 is a key gene involved in T. pyriformis infection in guppies, and the findings discussed herein provide valuable insights for future studies on tetrahymenosis.


Assuntos
Poecilia , Tetrahymena pyriformis , Tetrahymena , Animais , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo , Tetrahymena/genética , Poecilia/genética , DNA Complementar/metabolismo , Tetrahymena pyriformis/genética , Tetrahymena pyriformis/metabolismo , RNA Mensageiro/metabolismo
4.
Ann Diagn Pathol ; 72: 152332, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38776734

RESUMO

Tubulin ß-3 staining pattern and staining intensity of 5-hydroxymethyl cytosine (5-hmC) are potential diagnostic and prognostic markers in melanocytic lesions that need further evaluation. Melanocytic nevi and primary cutaneous melanomas were immunohistochemically stained for tubulin-ß-3 and 5-hmC. Immunoreactivity and staining patterns were correlated with Breslow-thickness, clinical and pathological characteristics, and progression-free survival. Melanocytes showed positive tubulin ß-3 staining. However, in most nevi, tubulin ß-3 staining appeared as a gradient with intense cytoplasmic staining in cells of the superficial part of the lesion that faded to weak staining in the deep dermal part, while no gradient was found in deep penetrating nevi and melanomas. In 53 % of the melanomas, areas with loss of tubulin ß-3 staining were found. 5-hmC staining intensity was significantly higher in melanocytic nevi compared to melanomas. Breslow thickness in combination with low 5-hmC score and loss of tubulin-ß-3 staining was predictive for poor prognosis. As single markers, tubulin-ß-3 and 5-hmC can be useful to distinguish between melanocytic nevi and melanoma, but staining variability limits the use of 5-hmC. In melanomas measuring >1.5 mm, combination of low 5-hmC score and loss of tubulin-ß-3 staining may have prognostic value.


Assuntos
5-Metilcitosina , Biomarcadores Tumorais , Melanoma , Neoplasias Cutâneas , Tubulina (Proteína) , Humanos , Melanoma/diagnóstico , Melanoma/metabolismo , Melanoma/patologia , Biomarcadores Tumorais/metabolismo , Biomarcadores Tumorais/análise , Prognóstico , Masculino , Feminino , Tubulina (Proteína)/metabolismo , Tubulina (Proteína)/análise , Neoplasias Cutâneas/diagnóstico , Neoplasias Cutâneas/patologia , Neoplasias Cutâneas/metabolismo , Pessoa de Meia-Idade , 5-Metilcitosina/análogos & derivados , 5-Metilcitosina/metabolismo , 5-Metilcitosina/análise , Idoso , Adulto , Imuno-Histoquímica/métodos , Nevo Pigmentado/diagnóstico , Nevo Pigmentado/patologia , Nevo Pigmentado/metabolismo , Melanoma Maligno Cutâneo , Idoso de 80 Anos ou mais , Melanócitos/patologia , Melanócitos/metabolismo
5.
Int J Mol Sci ; 25(13)2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-39000515

RESUMO

Advanced glycation end-products (AGEs) form through non-enzymatic glycation of various proteins. Optic nerve degeneration is a frequent complication of diabetes, and retinal AGE accumulation is strongly linked to the development of diabetic retinopathy. Type 2 diabetes mellitus is a major risk factor for Alzheimer's disease (AD), with patients often exhibiting optic axon degeneration in the nerve fiber layer. Notably, a gap exists in our understanding of how AGEs contribute to neuronal degeneration in the optic nerve within the context of both diabetes and AD. Our previous work demonstrated that glyceraldehyde (GA)-derived toxic advanced glycation end-products (TAGE) disrupt neurite outgrowth through TAGE-ß-tubulin aggregation and tau phosphorylation in neural cultures. In this study, we further illustrated GA-induced suppression of optic nerve axonal elongation via abnormal ß-tubulin aggregation in mouse retinas. Elucidating this optic nerve degeneration mechanism holds promise for bridging the knowledge gap regarding vision loss associated with diabetes mellitus and AD.


Assuntos
Axônios , Produtos Finais de Glicação Avançada , Nervo Óptico , Tubulina (Proteína) , Animais , Tubulina (Proteína)/metabolismo , Produtos Finais de Glicação Avançada/metabolismo , Camundongos , Nervo Óptico/metabolismo , Nervo Óptico/patologia , Nervo Óptico/efeitos dos fármacos , Axônios/metabolismo , Axônios/efeitos dos fármacos , Axônios/patologia , Camundongos Endogâmicos C57BL , Agregados Proteicos/efeitos dos fármacos
6.
Int J Mol Sci ; 25(8)2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38673966

RESUMO

Activity-dependent neuroprotective protein (ADNP) is a neuroprotective protein essential for embryonic development, proper brain development, and neuronal plasticity. Its mutation causes the autism-like ADNP syndrome (also called the Helsmoortel-Van der Aa syndrome), characterized by neural developmental disorders and motor dysfunctions. Similar to the ADNP syndrome, the ADNP haploinsufficient mouse shows low synapse density, leading to motor and cognitive ability delays. Moderate physical activity (PA) has several neuroprotective and cognitive benefits, promoting neuronal survival, differentiation, neurogenesis, and plasticity. Until now, no study has investigated the effect of moderate exercise on ADNP expression and distribution in the rat brain. The aim of the current investigation was to study the effects of moderate exercise on the ADNP expression and neuronal activation measured by the microtubule protein ß-Tubulin III. In pursuit of this objective, twenty-four rats were selected and evenly distributed into two categories: sedentary control rats and rats exposed to moderate physical activity on a treadmill over a span of 12 weeks. Our results showed that moderate PA increases the expression of ADNP and ß-Tubulin III in the dentate gyrus (DG) hippocampal region and cerebellum. Moreover, we found a co-localization of ADNP and ß-Tubulin III in both DG and cerebellum, suggesting a direct association of ADNP with adult neuronal activation induced by moderate PA.


Assuntos
Encéfalo , Proteínas do Tecido Nervoso , Condicionamento Físico Animal , Animais , Masculino , Ratos , Encéfalo/metabolismo , Cerebelo/metabolismo , Giro Denteado/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/genética , Neurônios/metabolismo , Tubulina (Proteína)/metabolismo , Tubulina (Proteína)/genética , Ratos Wistar
7.
Int J Mol Sci ; 25(6)2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38542155

RESUMO

Peptidylarginine deiminases (PADs or PADIs) catalyze the conversion of positively charged arginine to neutral citrulline, which alters target protein structure and function. Our previous work established that gonadotropin-releasing hormone agonist (GnRHa) stimulates PAD2-catalyzed histone citrullination to epigenetically regulate gonadotropin gene expression in the gonadotrope-derived LßT2 cell line. However, PADs are also found in the cytoplasm. Given this, we used mass spectrometry (MS) to identify additional non-histone proteins that are citrullinated following GnRHa stimulation and characterized the temporal dynamics of this modification. Our results show that actin and tubulin are citrullinated, which led us to hypothesize that GnRHa might induce their citrullination to modulate cytoskeletal dynamics and architecture. The data show that 10 nM GnRHa induces the citrullination of ß-actin, with elevated levels occurring at 10 min. The level of ß-actin citrullination is reduced in the presence of the pan-PAD inhibitor biphenyl-benzimidazole-Cl-amidine (BB-ClA), which also prevents GnRHa-induced actin reorganization in dispersed murine gonadotrope cells. GnRHa induces the citrullination of ß-tubulin, with elevated levels occurring at 30 min, and this response is attenuated in the presence of PAD inhibition. To examine the functional consequence of ß-tubulin citrullination, we utilized fluorescently tagged end binding protein 1 (EB1-GFP) to track the growing plus end of microtubules (MT) in real time in transfected LßT2 cells. Time-lapse confocal microscopy of EB1-GFP reveals that the MT average lifetime increases following 30 min of GnRHa treatment, but this increase is attenuated by PAD inhibition. Taken together, our data suggest that GnRHa-induced citrullination alters actin reorganization and MT lifetime in gonadotrope cells.


Assuntos
Actinas , Citrulinação , Camundongos , Animais , Actinas/metabolismo , Tubulina (Proteína)/metabolismo , Citoesqueleto/metabolismo , Microtúbulos/metabolismo , Citrulina/metabolismo , Hormônio Liberador de Gonadotropina/metabolismo , Hidrolases/metabolismo
8.
Mol Cell Biochem ; 478(9): 1961-1971, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36585545

RESUMO

ß-tubulin isotypes regulate the structure and bundling of microtubule (MT) lattice, its dynamics, and resulting functions. They exhibit differential tissue expression, varying due to physical and biochemical cues. In this work, we investigated the effect of transient heat shock at 42 °C on the nuclear and cytoplasmic stiffness of SH-SY5Y neuroblastoma cells through atomic force microscopy. Moreover, the variations in the expression of ß-tubulin isotypes as a heat shock response were also monitored. The heat-exposed cells endured a recovery at 37 °C for 24 h and they manifested an increase of cytoplasmic stiffness by 130 ± 25% with respect to untreated controls. The expression of ß-II tubulin isotype in heat-recovered cells is augmented by 51 ± 5% whereas the levels of total tubulin and ß-III tubulin isotype remain unaltered. Upon depletion of ß-II tubulin isotype using shRNA, the increase in cytoplasmic stiffness was dampened. However, it remained unaffected upon depletion with ß-III tubulin isotype shRNA. This features the role of the ß-II tubulin isotype in regulating cellular stiffness. In addition, neuroblastoma SH-SY5Y cells undergo differentiation by initiating neuritogenesis and prior evidence suggests the indispensable role of ß-II tubulin isotype in this process. The heat-recovered cells which expressed higher levels of ß-II tubulin isotype expedited the differentiation process in 3-day which was around 5-day for control cells, however, upon depletion of ß-II tubulin isotype, the cells almost lost their differentiation potential. Altogether, this work highlights the role of ß-II tubulin isotype as a biomarker for cellular stiffness.


Assuntos
Neuroblastoma , Tubulina (Proteína) , Humanos , Tubulina (Proteína)/metabolismo , Neuroblastoma/metabolismo , Microtúbulos/metabolismo , Diferenciação Celular , RNA Interferente Pequeno/metabolismo
9.
Bioorg Med Chem Lett ; 91: 129370, 2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-37301522

RESUMO

Plinabulin is a promising microtubule destabilizing agent in phase 3 clinical stage for treating non-small cell lung cancer. However, the high toxicity and the poor water solubility of plinabulin limited its use and more plinabulin derivatives need to be explored. Here, two series of 29 plinabulin derivatives were designed, synthesized and evaluated for their anti-tumor effect against three types of cancer cell lines. Most of derivatives exerted obvious inhibition to the proliferation of the cell lines tested. Among them, compound 11c exerted stronger efficiency than plinabulin, and the reason might be the additional hydrogen bond between the nitrogen atom of the indole ring in compound 11c and Gln134 of ß-tubulin. Immunofluorescence assay showed that compound 11c at 10 nM significantly disrupted tubulin structure. Compound 11c also significantly induced G2/M cell cycle arrest and apoptosis in dose dependent manner. These results suggest that compound 11c might be a potential candidate for cancer treatment as antimicrotubule agent.


Assuntos
Antineoplásicos , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Tubulina (Proteína)/metabolismo , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Moduladores de Tubulina/química , Neoplasias Pulmonares/tratamento farmacológico , Antineoplásicos/química , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais , Linhagem Celular Tumoral , Relação Estrutura-Atividade , Apoptose
10.
Parasitology ; 150(8): 672-682, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37165895

RESUMO

Gastrointestinal nematodes threaten the productivity of grazing livestock and anthelmintic resistance has emerged globally. It is broadly understood that wild ruminants living in sympatry with livestock act as a positive source of refugia for anthelmintic-susceptible nematodes. However, they might also act as reservoirs of anthelmintic-resistant nematodes, contributing to the spread of anthelmintic resistance at a regional scale. Here, we sampled managed sheep and cattle together with feral goats within the same property in New South Wales, Australia. Internal transcribed spacer 2 (ITS-2) nemabiome metabarcoding identified 12 gastrointestinal nematodes (Cooperia oncophora, Cooperia punctata, Haemonchus contortus, Haemonchus placei, Nematodirus spathiger, Ostertagia ostertagi, Teladorsagia circumcincta, Oesophagostomum radiatum, Oesophagostomum venulosum, Trichostrongylus axei, Trichostrongylus colubriformis and Trichostrongylus rugatus). Isotype-1 ß-tubulin metabarcoding targeting benzimidazole resistance polymorphisms identified 6 of these nematode species (C. oncophora, C. punctata, H. contortus, H. placei, O. ostertagi and T. circumcincta), with the remaining 3 genera unable to be identified to the species level (Nematodirus, Oesophagostomum, Trichostrongylus). Both ITS-2 and ß-tubulin metabarcoding showed the presence of a cryptic species of T. circumcincta, known from domestic goats in France. Of the gastrointestinal nematodes detected via ß-tubulin metabarcoding, H. contortus, T. circumcincta, Nematodirus and Trichostrongylus exhibited the presence of at least one resistance genotype. We found that generalist gastrointestinal nematodes in untreated feral goats had a similarly high frequency of the benzimidazole-resistant F200Y polymorphism as those nematodes in sheep and cattle. This suggests cross-transmission and maintenance of the resistant genotype within the wild ruminant population, affirming that wild ruminants should be considered potential reservoirs of anthelmintic resistance.


Assuntos
Reservatórios de Doenças , Resistência a Medicamentos , Cabras , Helmintíase Animal , Nematoides , Bovinos/parasitologia , Criação de Animais Domésticos/métodos , Animais Selvagens/parasitologia , Reservatórios de Doenças/parasitologia , Resistência a Medicamentos/genética , Genótipo , Cabras/parasitologia , Helmintíase Animal/parasitologia , Helmintíase Animal/transmissão , Nematoides/efeitos dos fármacos , Nematoides/genética , New South Wales , Ovinos/parasitologia , Animais
11.
Biochem J ; 479(5): 629-640, 2022 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-35175311

RESUMO

Iodide (I-) is crucial to thyroid function, and its regulation in thyrocytes involves ion transporters and reactive oxygen species (ROS). However, the extent of 2Cl-/H+ exchanger (ClC-3) involvement in the iodide (I-) efflux from thyrocytes remains unclear. Therefore, we examined the effects of ClC-3 on I- efflux. ClC-3 expression was found to significantly alter the serum TT3 and TT4 concentrations in mice. We further found that excess I- stimulation affected ClC-3 expression, distribution, and I- efflux in FRTL-5 cells. Immunofluorescence analyses indicated that ClC-3 mainly accumulated in the cell membrane and co-localized with ß-tubulins after 24 h of excess I- treatment, and that this process depended on ROS production. Thus, ClC-3 may be involved in I- efflux at the apical pole of thyrocytes via excess I--induced ROS production and ß-tubulin polymerization. Our results reveal novel insights into the role of ClC-3 in I- transport and thyroid function.


Assuntos
Canais de Cloreto/metabolismo , Células Epiteliais da Tireoide , Animais , Transporte Biológico , Iodetos , Camundongos , Prótons , Espécies Reativas de Oxigênio , Tubulina (Proteína)
12.
Pestic Biochem Physiol ; 197: 105642, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38072561

RESUMO

Methyl benzimidazole carbamate (MBC) fungicides were once widely used for brown rot (Monilinia fructicola) control of peach (Prunus persica (L.) Batsch) in the southeastern US, but their use was substantially reduced and often eliminated due to widespread resistance. In this study, 233 M. fructicola isolates were collected from major peach production areas in Alabama, Georgia, and South Carolina, and sensitivity to thiophanate-methyl was examined. Isolates were also collected from one organic and two experimental peach orchards. A discriminatory dose of 1 µg/ml was used to distinguish sensitive (S) and moderately sensitive (S-LR) isolates from low resistant phenotypes, while 50 and 500 µg/ml thiophanate-methyl concentrations were used to determine high resistant (HR) phenotypes. Sequence analyses were performed to identify mutations in the ß-tubulin target gene and detached fruit assays were performed to determine the efficacy of a commercial product against isolates representing each phenotype. Results indicated 55.7%, 63.5%, and 75.9% of isolates from Alabama, Georgia, and South Carolina, respectively, were S to thiophanate-methyl; 44.3%, 36.5%, and 21.4% were S-LR; no isolates were LR; and only 3 isolates (1.3%) from South Carolina were HR. No mutations in S or S-LR isolates were found, but HR isolates revealed the E198A mutation, an amino acid change of glutamic acid to alanine conferring high resistance. The high label rate of a commercial product containing thiophanate-methyl controlled brown rot caused by S and S-LR isolates in detached fruit studies but was ineffective against HR isolates. The combinations of thiophanate-methyl with azoxystrobin or isofetamid, when mixed together and applied in an experimental orchard 14 days preharvest, significantly reduced brown rot incidence on pre and postharvest commercially ripe fruit and efficacy was comparable to that of a grower standard fungicide. These results indicate that thiophanate-methyl may again be useful to peach growers in the southeastern US for brown rot and fungicide resistance management.


Assuntos
Fungicidas Industriais , Prunus persica , Tiofanato/farmacologia , Fungicidas Industriais/farmacologia , Sudeste dos Estados Unidos
13.
Molecules ; 28(5)2023 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-36903629

RESUMO

Tubulin isotypes are known to regulate microtubule stability and dynamics, as well as to play a role in the development of resistance to microtubule-targeted cancer drugs. Griseofulvin is known to disrupt cell microtubule dynamics and cause cell death in cancer cells through binding to tubulin protein at the taxol site. However, the detailed binding mode involved molecular interactions, and binding affinities with different human ß-tubulin isotypes are not well understood. Here, the binding affinities of human ß-tubulin isotypes with griseofulvin and its derivatives were investigated using molecular docking, molecular dynamics simulation, and binding energy calculations. Multiple sequence analysis shows that the amino acid sequences are different in the griseofulvin binding pocket of ßI isotypes. However, no differences were observed at the griseofulvin binding pocket of other ß-tubulin isotypes. Our molecular docking results show the favorable interaction and significant affinity of griseofulvin and its derivatives toward human ß-tubulin isotypes. Further, molecular dynamics simulation results show the structural stability of most ß-tubulin isotypes upon binding to the G1 derivative. Taxol is an effective drug in breast cancer, but resistance to it is known. Modern anticancer treatments use a combination of multiple drugs to alleviate the problem of cancer cells resistance to chemotherapy. Our study provides a significant understanding of the involved molecular interactions of griseofulvin and its derivatives with ß-tubulin isotypes, which may help to design potent griseofulvin analogues for specific tubulin isotypes in multidrug-resistance cancer cells in future.


Assuntos
Griseofulvina , Tubulina (Proteína) , Humanos , Tubulina (Proteína)/metabolismo , Griseofulvina/análise , Simulação de Acoplamento Molecular , Sítios de Ligação , Microtúbulos , Paclitaxel/farmacologia
14.
Eur J Immunol ; 51(2): 342-353, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33169379

RESUMO

The immunological synapse is a transient junction that occurs when the plasma membrane of a T cell comes in close contact with an APC after recognizing a peptide from the antigen-MHC. The interaction starts when CRAC channels embedded in the T cell membrane open, flowing calcium ions into the cell. To counterbalance the ion influx and subsequent depolarization, Kv 1.3 and KCa3.1 channels are recruited to the immunological synapse, increasing the extracellular K+ concentration. These processes are crucial as they initiate gene expression that drives T cell activation and proliferation. The T cell-specific function of the K2P channel family member TASK2 channels and their role in autoimmune processes remains unclear. Using mass spectrometry analysis together with epifluorescence and super-resolution single-molecule localization microscopy, we identified TASK2 channels as novel players recruited to the immunological synapse upon stimulation. TASK2 localizes at the immunological synapse, upon stimulation with CD3 antibodies, likely interacting with these molecules. Our findings suggest that, together with Kv 1.3 and KCa3.1 channels, TASK2 channels contribute to the proper functioning of the immunological synapse, and represent an interesting treatment target for T cell-mediated autoimmune disorders.


Assuntos
Sinapses Imunológicas/imunologia , Canais de Potássio de Domínios Poros em Tandem/imunologia , Animais , Doenças Autoimunes/imunologia , Complexo CD3/imunologia , Cálcio/imunologia , Linhagem Celular Tumoral , Membrana Celular/imunologia , Células Cultivadas , Feminino , Expressão Gênica/imunologia , Humanos , Canais de Potássio Ativados por Cálcio de Condutância Intermediária/imunologia , Células Jurkat , Canal de Potássio Kv1.3/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Linfócitos T/imunologia
15.
Curr Genet ; 68(3-4): 429-447, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35419713

RESUMO

Exploration of molecular structure of ß-tubulin is key to understand mechanism of action of carbendazim since its activity depends on strong binding to ß-tubulin. Resistance against the fungicide is often associated with mutation in ß-tubulin gene. A full-length (1619 bp) ß-tubulin gene has been cloned and sequenced from a carbendazim resistant and a sensitive isolates of F. solani isolated from agricultural fields of Murshidabad (24.23 °N, 88.25 °E), West Bengal, India. Phylogenetic position of the isolates was confirmed using internal transcribed spacer and ß-tubulin gene sequences. In the ß-tubulin based phylogenetic tree, Fusarium species with available data were clustered in nine species complexes and members of both F. solani species complex and F. fujikuroi species complex were distributed into three clades each. The ß-tubulin gene of F. solani was found to be shortest due to least number of non-coding sequences indicating its primitiveness among the Fusarium species. The coding region (G + C 58.54%) was organized into five exons. The protein has 446 amino acid, 49.834 KD molecular weight and 4.64 isoelectric point. Amino acid sequence of the resistant and the sensitive isolates were identical, suggesting that the mechanism of carbendazim resistance in the F. solani isolate was not due to point mutation in ß-tubulin gene. The secondary and tertiary structure of ß-tubulin were similar in all the species except F. oxysporum f.sp. cubense. The identification of binding sites for GDP, carbendazim and α-tubulin would resolve how carbendazim prevents tubulin polymerization. All the data are useful to design tubulin-targeted fungicide with better performance.


Assuntos
Fungicidas Industriais , Fusarium , Benzimidazóis , Carbamatos , Fungicidas Industriais/farmacologia , Fusarium/genética , Fusarium/metabolismo , Filogenia , Tubulina (Proteína)/genética
16.
Med Mycol ; 60(9)2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-36130102

RESUMO

Feline sporotrichosis caused by the Sporothrix schenckii complex is a global subcutaneous mycosis, having higher prevalence in Latin America and Malaysia. However, its etiological agents have not been elucidated in Thailand, a neighboring country of Malaysia, where the cases are increasing. This study identified 38 feline isolates of S. schenckii from Southern Thailand, collected between 2018 and 2021, using phenotypic characterization and molecular identification using polymerase chain reaction (PCR)-sequencing of partial calmodulin (CAL) and ß-tubulin (Bt2) genes. Phenotypic characteristics proved that the isolates were S. schenckii sensu lato, with low thermotolerance. Based on partial CAL and Bt2-PCR sequencing, all isolates were identified as S. schenckii sensu stricto. Phylogenetic analyses revealed that the isolates were clustered with S. schenckii sensu stricto isolated from the cats in Malaysia. A low degree of genetic diversity was observed among the Thai feline isolates. The antifungal susceptibility of these isolates to antifungal agents, including itraconazole (ITC), ketoconazole (KTC), fluconazole (FLC), and amphotericin B (AMB), was investigated according to the M27-A3 protocol of the Clinical and Laboratory Standards Institute. Results showed low ITC, KTC, and AMB activities against S. schenckii sensu stricto isolates, with high minimum inhibitory concentration (MIC) ranges of 1-8, 1-8, and 2-16 µg/ml, respectively, whereas FLC exhibited MICs of 64 and > 64 µg/ml. This study indicated that S. schenckii sensu stricto is the causative agent responsible for feline sporotrichosis in Southern Thailand. Their phenotypic characteristics and in vitro antifungal susceptibility profiles will help to improve our understanding of this mycosis in Thailand.


Sporothrix schenckii sensu stricto is a causative agent of feline sporotrichosis in Southern Thailand identified by PCR-sequencing of calmodulin and ß-tubulin genes. Phenotypic tests are not recommended for species identification. All isolates showed low susceptibility to commonly used antifungals.


Assuntos
Doenças do Gato , Sporothrix , Esporotricose , Anfotericina B , Animais , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Calmodulina/genética , Doenças do Gato/tratamento farmacológico , Doenças do Gato/epidemiologia , Gatos , Fluconazol , Itraconazol/farmacologia , Cetoconazol/farmacologia , Testes de Sensibilidade Microbiana/veterinária , Filogenia , Esporotricose/epidemiologia , Esporotricose/microbiologia , Esporotricose/veterinária , Tailândia/epidemiologia , Tubulina (Proteína)/genética
17.
Molecules ; 27(19)2022 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-36234875

RESUMO

Acanthamoeba species are capable of causing amoebic keratitis (AK). As a monotherapy, alpha-mangostin is effective for the treatment of AK; however, its bioavailability is quite poor. Moreover, the efficacy of therapy is contingent on the parasite and virulent strains. To improve readiness against AK, it is necessary to find other derivatives with accurate target identification. Beta-tubulin (BT) has been used as a target for anti-Acanthamoeba (A. keratitis). In this work, therefore, a model of the BT protein of A. keratitis was constructed by homology modeling utilizing the amino acid sequence from NCBI (GenBank: JQ417907.1). Ramachandran Plot was responsible for validating the protein PDB. The verified BT PDB was used for docking with the specified ligand. Based on an improved docking score compared to alpha-mangostin (AM), two modified compounds were identified: 1,6-dihydroxy-7-methoxy-2,8-bis(3-methylbut-2-en-1-yl)-9H-xanthen-9-one (C1) and 1,6-dihydroxy-2,8-bis(3-methylbut-2-en-1-yl)-9H-xanthen-9-one (C2). In addition, molecular dynamics simulations were conducted to analyze the interaction characteristics of the two bound BT-new compound complexes. During simulations, the TRP9, ARG50, VAL52, and GLN122 residues of BT-C1 that align to the identical residues in BT-AM generate consistent hydrogen bond interactions with 0-3 and 0-2. However, the BT-C2 complex has a different binding site, TYR 258, ILE 281, and SER 302, and can form more hydrogen bonds in the range 0-4. Therefore, this study reveals that C1 and C2 inhibit BT as an additive or synergistic effect; however, further in vitro and in vivo studies are needed.


Assuntos
Ceratite por Acanthamoeba , Acanthamoeba , Ceratite por Acanthamoeba/parasitologia , Humanos , Ligantes , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Tubulina (Proteína) , Xantonas
18.
Curr Genet ; 67(1): 165-176, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33130939

RESUMO

ß-tubulin, a component of microtubules, is involved in a wide variety of roles in cell shape, motility, intracellular trafficking and regulating intracellular metabolism. It has been an important fungicide target to control plant pathogen, for example, Fusarium. However, the regulation of fungicide sensitivity by ß-tubulin-interacting proteins is still unclear. Here, ASK1 was identified as a ß-tubulin interacting protein. The ASK1 regulated the sensitivity of Fusarium to carbendazim (a benzimidazole carbamate fungicide), and multiple cellular processes, such as chromatin separation, conidiation and sexual production. Further, we found the point mutations at 50th and 198th of ß2-tubulin which caused carbendazim resistance decreased the binding between ß2-tubulin and ASK1, resulting in the deactivation of ASK1. ASK1, on the other hand, competed with carbendazim to bind to ß2-tubulin. The point mutation F167Y in ß2-tubulin broke the intermolecular H-bonds and salt bridges between ß2-tubulin and ASK1, which reduced the competitive effect of ASK1 to carbendazim and resulted in the similar carbendazim sensitivities in F167Y-ΔASK1 and F167Y. These findings have powerful implications for efforts to understand the interaction among ß2-tubulin, its interacting proteins and fungicide, as well as to discover and develop new fungicide against Fusarium.


Assuntos
Farmacorresistência Fúngica/efeitos dos fármacos , Fusarium/genética , MAP Quinase Quinase Quinase 5/genética , Tubulina (Proteína)/genética , Benzimidazóis/farmacologia , Carbamatos/farmacologia , Farmacorresistência Fúngica/genética , Fusarium/efeitos dos fármacos , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Mutação Puntual/genética , Mapas de Interação de Proteínas/genética
19.
Appl Environ Microbiol ; 87(20): e0096721, 2021 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-34378994

RESUMO

The plant pathogen Fusarium graminearum contains two α-tubulin isotypes (α1 and α2) and two ß-tubulin isotypes (ß1 and ß2). The functional roles of these tubulins in microtubule assembly are not clear. Previous studies reported that α1- and ß2-tubulin deletion mutants showed severe growth defects and hypersensitivity to carbendazim, which have not been well explained. Here, we investigated the interaction between α- and ß-tubulin of F. graminearum. Colocalization experiments demonstrated that ß1- and ß2-tubulin are colocalized. Coimmunoprecipitation experiments suggested that ß1-tubulin binds to both α1- and α2-tubulin and that ß2-tubulin can also bind to α1- or α2-tubulin. Interestingly, deletion of α1-tubulin increased the interaction between ß2-tubulin and α2-tubulin. Microtubule observation assays showed that deletion of α1-tubulin completely disrupted ß1-tubulin-containing microtubules and significantly decreased ß2-tubulin-containing microtubules. Deletion of α2-, ß1-, or ß2-tubulin had no obvious effect on the microtubule cytoskeleton. However, microtubules in α1- and ß2-tubulin deletion mutants were easily depolymerized in the presence of carbendazim. The sexual reproduction assay indicates that α1- and ß1-tubulin deletion mutants could not produce asci and ascospores. These results implied that α1-tubulin may be essential for the microtubule cytoskeleton. However, our Δα1-2×α2 mutant (α1-tubulin deletion mutant containing two copies of α2-tubulin) exhibited normal microtubule network, growth, and sexual reproduction. Interestingly, the Δα1-2×α2 mutant was still hypersensitive to carbendazim. In addition, both ß1-tubulin and ß2-tubulin were found to bind the mitochondrial outer membrane voltage-dependent anion channel (VDAC), indicating that they could regulate the function of VDAC. IMPORTANCE In this study, we found that F. graminearum contains four different α-/ß-tubulin heterodimers (α1-/ß1-, α1-/ß2-, α2-/ß1-, and α2-/ß2-tubulin heterodimers), and they assemble together into a single microtubule. Moreover, α1- and α2-tubulins are functionally interchangeable in microtubule assembly, vegetative growth, and sexual reproduction. These results provide more insights into the functional roles of different tubulins of F. graminearum, which could be helpful for purification of tubulin heterodimers and development of new tubulin-binding agents.


Assuntos
Fusarium/fisiologia , Microtúbulos/fisiologia , Tubulina (Proteína)/fisiologia , Proteínas Fúngicas/fisiologia , Fusarium/genética , Fusarium/crescimento & desenvolvimento , Canais de Ânion Dependentes de Voltagem/fisiologia
20.
Arch Microbiol ; 203(1): 355-366, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32959153

RESUMO

Corn, sorghum and wheat grains are used as livestock feed in the world. Identification of black aspergilli associated with these grains is necessary to make sure of the safety of the grains because its occurrence is an indicator of mycotoxin production. Forty-five isolates were isolated from the samples collected from Upper Egypt's markets and identified morphologically based on colony color, conidia, stipe and vesicle size and molecularly by using ß-tubulin and calmodulin genes. Isolates were divided into 30 strains of Aspergillus welwitschiae and 15 strains of A. niger. We have found new criteria in the morphological identification of A. welwitschiae as its colony color was black to brown with yellow edge, but in A. niger was black with white edge, also A. welwitschiae sometimes produced finely-to-distinctly roughened brownish conidia on malt extract agar (MEA) media. Thirteen isolates of A. welwitschiae and six of A. niger were recognized as potential producers for ochratoxin A.


Assuntos
Aspergillus niger/classificação , Aspergillus niger/genética , Aspergillus/classificação , Aspergillus/genética , Grão Comestível/microbiologia , Aspergillus/citologia , Aspergillus niger/citologia , Calmodulina/genética , Técnicas de Tipagem Micológica , Ocratoxinas , Sorghum/microbiologia , Triticum/microbiologia , Tubulina (Proteína)/genética , Zea mays/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA