Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Nutr Neurosci ; : 1-13, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38657030

RESUMO

OBJECTIVES: This study aimed to compare the efficacy of royal jelly (RJ) and its major fatty acid 10-hydroxy-2-decenoic acid (10-HDA) on ischemic stroke-related pathologies using histological and molecular approaches. METHODS: Male rats were subjected to middle cerebral artery occlusion (MCAo) to induce ischemic stroke and were supplemented daily with either vehicle (control group), RJ or 10-HDA for 7 days starting on the day of surgery. On the eighth day, rats were sacrificed and brain tissue and blood samples were obtained to analyze brain infarct volume, DNA damage as well as apoptotic, inflammatory and epigenetic parameters. RESULTS: Both RJ and 10-HDA supplementation significantly reduced brain infarction and decreased weight loss when compared to control animals. These effects were associated with reduced levels of active caspase-3 and PARP-1 and increased levels of acetyl-histone H3 and H4. Although both RJ and 10-HDA treatments significantly increased acetyl-histone H3 levels, the effect of RJ was more potent than that of 10-HDA. RJ and 10-HDA supplementation also alleviated DNA damage by significantly reducing tail length, tail intensity and tail moment in brain tissue and peripheral lymphocytes, except for the RJ treatment which tended to reduce tail moment in lymphocytes without statistical significance. CONCLUSIONS: Our findings suggest that neuroprotective effects of RJ in experimental stroke can mostly be attributed to 10-HDA.

2.
Adv Exp Med Biol ; 1412: 443-455, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37378782

RESUMO

Royal jelly is a yellowish to white gel-like substance that is known as a "superfood" and consumed by queen bees. There are certain compounds in royal jelly considered to have health-promoting properties, including 10-hydroxy-2-decenoic acid and major royal jelly proteins. Royal jelly has beneficial effects on some disorders such as cardiovascular disease, dyslipidemia, multiple sclerosis, and diabetes. Antiviral, anti-inflammatory, antibacterial, antitumor, and immunomodulatory properties have been ascribed to this substance. This chapter describes the effects of royal jelly on COVID-19 disease.


Assuntos
COVID-19 , Abelhas , Animais , Ácidos Graxos/metabolismo , Antibacterianos , Biomarcadores
3.
Int J Mol Sci ; 24(17)2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37686166

RESUMO

This study aimed to assess the impact of oleic acid (OA) supplementation on the biosynthesis of 10-hydroxy-2-decenoic acid (10-HDA) in Apis mellifera ligustica. In experiment 1, varying concentrations of OA (2%, 4%, 6% and 8%) were added to an artificial diet for newly emerged bees reared in cages. Analysis of 10-HDA content and gene expression in the mandibular gland (MG) revealed that the 8% OA treatment had the greatest impact on promoting the synthesis of 10-HDA. Subsequent investigations utilized RNA-seq and lipidomics to characterize the molecular signature in the MG after feeding the 8% OA diet. Phosphatidylcholine (PC) and triacylglycerol (TAG) were found to be the predominant lipids in the MG of worker bees. A total of 154 TAGs were identified, with TAG (18:1-18:1-18:1) exhibiting the highest abundance, which increased by 1.5 times. The major TAG species contained palmitic acid (16:0) and oleic acid (18:1) in their structure, which was associated with fatty acid composition of diet. The increase in abundance of main TAGs may be attributed to the upregulation of glycerol-3-phosphate acyltransferase (Gpat) and glycerol kinase (GK) gene expression at the transcriptional level. The upregulation of differentially expressed genes (DEGs) related to carbohydrate metabolism may contribute to meeting the heightened metabolic demands of the MGs in worker bees. Royal jelly (RJ) samples from bee colonies fed with the 8% OA diet exhibited higher 10-HDA level than RJ collected from bee colonies fed with the artificial diet. These results indicate that 8% OA addition in the diet enhanced biosynthesis of 10-HDA in the mandibular gland, which was accompanied by significant and highly species-selective remodeling of TAGs.


Assuntos
Ácidos Graxos Monoinsaturados , Ácido Oleico , Abelhas , Animais , Glicerol-3-Fosfato O-Aciltransferase , Lecitinas , Triglicerídeos
4.
Molecules ; 27(5)2022 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-35268586

RESUMO

Persistent infections caused by Staphylococcus aureus biofilms pose a major threat to global public health. 10-Hydroxy-2-decenoic acid (10-HDA), a main fatty acid in royal jelly, has been shown to possess various biological activities. The purpose of this study was to explore the effects of 10-HDA on the biofilms and virulence of S. aureus and its potential molecular mechanism. Quantitative crystal violet staining indicated that 10-HDA significantly reduced the biofilm biomass at sub-minimum inhibitory concentration (MIC) levels (1/32MIC to 1/2MIC). Scanning electron microscope (SEM) observations demonstrated that 10-HDA inhibited the secretion of extracellular polymeric substances, decreased bacterial adhesion and aggregation, and disrupted biofilm architecture. Moreover, 10-HDA could significantly decrease the biofilm viability and effectively eradicated the mature biofilms. It was also found that the hemolytic activity of S. aureus was significantly inhibited by 10-HDA. qRT-PCR analyses revealed that the expressions of global regulators sarA, agrA, and α-hemolysin gene hla were downregulated by 10-HDA. These results indicate that 10-HDA could be used as a potential natural antimicrobial agent to control the biofilm formation and virulence of S. aureus.


Assuntos
Staphylococcus aureus
5.
Food Technol Biotechnol ; 60(2): 213-224, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35910272

RESUMO

Research background: Acquisition of migratory potential is pivotal for cancer cells, enabling invasion and metastasis of colorectal carcinoma. Royal jelly and its bioactive component trans-10-hydroxy-2-decenoic acid (10H2DA) showed remarkable antimetastatic potential, but the molecular mechanism underlying this activity is unclear. Experimental approach: Identification and quantification of 10H2DA in royal jelly originating from Serbia was done by HPLC method. Cytotoxicity of 10H2DA was measured by tetrazolium dye MTT test in concentration range 1-500 µg/mL after 24 and 72 h. Its effect on the collective and single-cell migration was measured by wound healing and transwell migration assays. Invasive potential of cancer cells was evaluated by a transwell method modified with collagen. Immunofluorescence was used for migratory and invasive protein expression, while the gene expression of these markers was evaluated by quantitative real time polymerase chain reaction (qRT-PCR). All assays were applied on human colorectal carcinoma HCT-116 and SW-480 cell lines and, except for MTT, evaluated after 24 h of treatment with two selected concentrations of royal jelly and 10H2DA. Results and conclusions: According to HPLC, the mass fraction of 10H2DA in royal jelly was 0.92% (m/m). Treatment with 10H2DA showed no cytotoxic effect; however, significant inhibitory potential of royal jelly and 10H2DA on the motility and invasiveness of colorectal cancer cells was observed. More pronounced effect was exerted by 10H2DA, which significantly suppressed collective cell migration and invasiveness of SW-480 cells, as well as single- and collective cell migration and invasive potential of HCT-116 cell line. Treatments increased epithelial markers E-cadherin and cytoplasmic ß-catenin in HCT-116 cells, thus stabilizing intercellular connections. In SW-480 cells, 10H2DA increased E-cadherin on protein and gene level, and suppressed epithelial-mesenchymal transition (EMT) markers. In both cell lines, treatments induced significant suppression of promigratory/proinvasive markers: N-cadherin, vimentin and Snail on protein and gene level, which explains decreased migratory and invasive potential of HCT-116 and SW-480 cells. Novelty and scientific contribution: Our study presents new findings and elucidation of royal jelly and 10H2DA molecular mechanism that underlies their antimigratory/antiinvasive activity on colorectal cancer cells. These findings are shown for the first time indicating that these natural products are a valuable source of anticancer potential and should be reconsidered for further antitumour therapy.

6.
J Biol Chem ; 295(34): 12224-12232, 2020 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-32647011

RESUMO

The supplementation of royal jelly (RJ) is known to provide a variety of health benefits, including anti-inflammatory and anti-obesity effects. RJ treatment also reportedly protects against bone loss, but no single factor in RJ has yet been identified as an anti-osteoporosis agent. Here we fractionated RJ and identified 10-hydroxy-2-decenoic acid (10H2DA) as a key component involved in inhibiting osteoclastogenesis based on mass spectrometric analysis. We further demonstrated free fatty acid receptor 4 (FFAR4) as directly interacting with 10H2DA; binding of 10H2DA to FFAR4 on osteoclasts inhibited receptor activator of nuclear factor-κB (NF-κB) ligand (RANKL)-induced activation of NF-κB signaling, thereby attenuating the induction of nuclear factor of activated T cells (NFAT) c1, a key transcription factor for osteoclastogenesis. Oral administration of 10H2DA attenuated bone resorption in ovariectomized mice. These results suggest a potential therapeutic approach of targeting osteoclast differentiation by the supplementation of RJ, and specifically 10H2DA, in cases of pathological bone loss such as occur in postmenopausal osteoporosis.


Assuntos
Ácidos Graxos Monoinsaturados/farmacologia , Ácidos Graxos/química , NF-kappa B/metabolismo , Osteoclastos/metabolismo , Osteoporose/tratamento farmacológico , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Diferenciação Celular/efeitos dos fármacos , Modelos Animais de Doenças , Ácidos Graxos Monoinsaturados/química , Feminino , Camundongos , Fatores de Transcrição NFATC/metabolismo , Osteoclastos/patologia , Osteoporose/metabolismo , Osteoporose/patologia , Ligante RANK/metabolismo
7.
Molecules ; 26(12)2021 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-34200887

RESUMO

Royal jelly is a natural substance produced by worker bees that possesses a variety of biological activities, including antioxidant, anti-inflammatory, antibacterial, and protective. Although fresh royal jelly is kept at low temperatures, to increase its stability, it needs to be incorporated into pharmaceutical formulations, such as in situ gels. The aim of this study was to formulate in situ ocular gels containing Lithuanian royal jelly for topical corneal use in order to increase the retention time of the formulation on the ocular surface and bioavailability. Gels were evaluated for physicochemical characteristics (pH, rheological properties, refractive index) and in vitro drug release measuring the amount of 10-hydroxy-2-decenoic acid (10-HDA). An ocular irritation test and cell viability tests were performed using the SIRC (Statens Seruminstitut Rabbit Cornea) cell culture line. Results indicated that all the in situ gels were within an acceptable pH and refractive index range close to corneal properties. Rheology studies have shown that the gelation temperature varies between 25 and 32 °C, depending on the amount of poloxamers. The release studies have shown that the release of 10-HDA from in situ gels is more sustained than royal jelly suspension. All gel formulations were non-irritant according to the short-time exposure test (STE) using the SIRC cell culture line, and long-term cell viability studies indicated that the formulations used in small concentrations did not induce cell death. Prepared in situ gels containing royal jelly have potential for ocular drug delivery, and they may improve the bioavailability, stability of royal jelly, and formation of non-irritant ocular formulations.


Assuntos
Córnea/efeitos dos fármacos , Ácidos Graxos/química , Ácidos Graxos/farmacologia , Géis/química , Géis/farmacologia , Animais , Abelhas/metabolismo , Disponibilidade Biológica , Produtos Biológicos/química , Produtos Biológicos/farmacocinética , Produtos Biológicos/farmacologia , Morte Celular/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Química Farmacêutica/métodos , Córnea/metabolismo , Ácidos Decanoicos/química , Preparações de Ação Retardada/química , Preparações de Ação Retardada/farmacocinética , Preparações de Ação Retardada/farmacologia , Sistemas de Liberação de Medicamentos/métodos , Liberação Controlada de Fármacos/efeitos dos fármacos , Excipientes/química , Géis/farmacocinética , Poloxâmero/química , Coelhos , Reologia , Temperatura
8.
Eur J Nutr ; 59(7): 2875-2892, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31820078

RESUMO

PURPOSE: Neuroinflammation is thought to be associated with the pathogenesis of a series of neurodegenerative diseases. We have previously reported that royal jelly (RJ) has an anti-inflammatory effect on microglial BV-2 cells. However, components contributing to the effect of RJ were largely unexplored. The aim of this study was to assess whether trans-10-hydroxy-2-decenoic acid (10-HDA), the exclusive fatty acid in RJ, can alleviate neuroinflammation and to further explore the underlying mechanisms. METHODS: Immunohistochemistry staining, ELISA, qRT-PCR and Western blot were used to assess the effect of 10-HDA on LPS-induced neuroinflammation both in vivo and in vitro. To determine the extent of inflammatory changes after 10-HDA treatment, RNAseq transcriptomic analysis was conducted. RESULTS: 10-HDA pretreatment significantly reduced the production of pro-inflammatory mediators in LPS-treated C57BL/6J mice and microglial BV-2 cells. 10-HDA inhibited the activation of the TNF-α/NF-κB axis and NLRP3 inflammasome-IL-1ß pathway, which may be the anti-neuroinflammatory mechanism of 10-HDA. We also demonstrated that 10-HDA triggered cell autophagy, as evidenced by elevated levels of microtubule-associated protein 1 light chain 3-II (LC3-II) and decreased expression of SQSTM1. More importantly, 10-HDA increased the transcriptional activity of FOXO1 by increasing FOXO1 nuclear localization. Inhibition of FOXO1 and autophagy using chemical inhibitors markedly blunted the effect of 10-HDA on the TNF-α pathway and NLRP3 inflammasome-IL-1ß pathway, indicating that 10-HDA alleviates neuroinflammation in BV-2 cells by modulating FOXO1-mediated autophagy. CONCLUSIONS: 10-HDA may be a promising agent for various neuroinflammation-associated diseases.


Assuntos
Lipopolissacarídeos , Transdução de Sinais , Animais , Autofagia , Ácidos Graxos Monoinsaturados , Proteína Forkhead Box O1 , Lipopolissacarídeos/toxicidade , Camundongos , Camundongos Endogâmicos C57BL , Microglia/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo
9.
BMC Complement Altern Med ; 19(1): 33, 2019 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-30696450

RESUMO

BACKGROUND: Royal jelly (RJ) has been used traditionally for dietary, cosmetic and health purposes for a long time in different parts of the world. Scientific studies have also shown its numerous health-promoting properties including hypoglycemic and anti-hypercholesterolemic action. In this study, we investigated the anti-adipogenic activity of RJ in 3 T3-L1 cells and isolated the major responsible root component for the activity. METHODS: An active anti-adipogenic compound was isolated through bioassay-guided isolation process by successive treatment of RJ and its active fractions on 3 T3-L1 cell line. (E)-10-Hydroxy-2-decenoic Acid (10-HDA) was identified using NMR spectroscopy and ultra-performance liquid chromatography (UPLC). As 10-HDA showed significant anti-adipogenic activity with Oil Red O staining and TG content assay on 3 T3-L1 adipocytes, further study was carried out in molecular level for the expression of adipogenic transcription factors such as PPARγ, FABP4, C/EBPα, SREBP-1c, and Leptin. The effect of 10-HDA on preliminary molecules such as pAkt, pERK, C/EBPß, and pCREB were studied in the early stage of adipogenesis. The effect of 10-HDA on reactive oxygen species (ROS) production in fully differentiating adipocytes was measured by nitro blue tetrazolium (NBT) assay. RESULT: Results showed that triacylglycerol accumulation and ROS production was markedly suppressed by 10-HDA. Preliminary molecules such as pAkt, pERK, pCERB, and C/EBPß were found to be down-regulated by 10-HDA, which led to down-regulation of key adipogenic transcription factors such as PPARγ, FABP4, CEBPα, SREBP-1c, and Leptin on 3 T3-L1 adipocytes. CONCLUSION: Our results suggest that anti-adipogenesis of 10-HDA on 3 T3-L1 adipocyte takes place via two mechanisms: inhibition of cAMP/PKA pathway and inhibition of p-Akt and MAPK dependent insulin signaling pathway. So it is considered that 10-HDA, a major component of RJ, can be a potential therapeutic medicine for obesity.


Assuntos
Adipócitos/efeitos dos fármacos , Adipogenia/efeitos dos fármacos , Ácidos Graxos Monoinsaturados/farmacologia , Ácidos Graxos/química , Ácidos Graxos/farmacologia , Células 3T3-L1 , Animais , Bioensaio , Sobrevivência Celular/efeitos dos fármacos , Ácidos Graxos Monoinsaturados/isolamento & purificação , Insulina/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Camundongos , Transdução de Sinais/efeitos dos fármacos
10.
BMC Complement Altern Med ; 18(1): 202, 2018 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-29970062

RESUMO

BACKGROUND: Royal jelly (RJ), the exclusive food for the larva of queen honeybee, is regarded as the novel supplement to promote human health. The function of RJ may be attributed to its major and unique fatty acid, 10-hydroxy-2-decenoic acid (10-HDA). The current study investigated the anti-inflammory function of 10-HDA on human colon cancer cells, WiDr, as well as its effect on the growth of pathogenic bacterium. METHODS: The pro-inflammatory cytokines, receptor antagonist cytokine (IL-1ra) and nuclear factor-kappa B (NF-κB) in WiDr cells was analyzed by Enzyme-linked immunosorbent assay (ELISA) or western blot. The growth inhibition of 10-HDA on bacterium was evaluated by determination of minimal inhibitory concentrations (MIC) and minimal bactericide concentrations (MBC). RESULTS: The production of pro-inflammatory cytokines, Interleukin (IL)-8, IL-1ß and tumor necrosis factor-alpha (TNF-α) in WiDr cells was modulated by 10-HDA. IL-8 were dramatically declined by 10-HDA at 3 mM, while IL-1ß and TNF-α were significantly decreased. 10-HDA increased IL-1ra in a dose manner. NF-κB pathway is primarily in response to prototypical pro-inflammatory cytokines, and NF-κB was reduced after 10-HDA treatment. 10-HDA acted as potent bactericide against animal- or human-specific pathogens, including Staphylococcus aureus, Streptococcus alactolyticus, Staphylococcus intermedius B, Staphylococcus xylosus, Salmonella cholearasuis, Vibro parahaemolyticus and Escherichia coli (hemolytic). CONCLUSIONS: The current study showed that in vitro 10-HDA from RJ exhibited anti-inflammatory activity in WiDr cells, as well as anti-bacterial activity against animal pathogens. 10-HDA showed its potential as anti-imflammtory agent and bactericide to benefit human gastrointestinal tract.


Assuntos
Antibacterianos/farmacologia , Anti-Inflamatórios/farmacologia , Neoplasias do Colo/metabolismo , Ácidos Graxos Monoinsaturados/farmacologia , Ácidos Graxos/farmacologia , Antibacterianos/química , Anti-Inflamatórios/química , Bactérias/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Citocinas/análise , Citocinas/metabolismo , Ácidos Graxos/química , Ácidos Graxos Monoinsaturados/química , Humanos
11.
Int J Mol Sci ; 19(10)2018 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-30347885

RESUMO

Royal jelly (RJ) is a glandular secretion produced by worker honeybees and is a special food for the queen honeybee. It results in a significant prolongation of the lifespan of the queen honeybee compared with the worker honeybees through anti-inflammatory, anti-oxidant and anti-microbial activities. Consequently, RJ is used as cosmetic and dietary supplement throughout the world. In addition, in vitro studies and animal experiments have demonstrated that RJ inhibits cell proliferation and stimulates apoptosis in various types of malignant cells and affects the production of various chemokines, anti-oxidants and growth factors and the expression of cancer-related molecules in patients with malignancies, especially in patients treated with anti-cancer agents. Therefore, RJ is thought to exert anti-cancer effects on tumor growth and exhibit protective functions against drug-induced toxicities. RJ has also been demonstrated to be useful for suppression of adverse events, the maintenance of the quality of life during treatment and the improvement of prognosis in animal models and patients with malignancies. To understand the mechanisms of the beneficial effects of RJ, knowledge of the changes induced at the molecular level by RJ with respect to cell survival, inflammation, oxidative stress and other cancer-related factors is essential. In addition, the effects of combination therapies of RJ and other anti-cancer agents or natural compounds are important to determine the future direction of RJ-based treatment strategies. Therefore, in this review, we have covered the following five issues: (1) the anti-cancer effects of RJ and its main component, 10-hydroxy-2-decenoic acid; (2) the protective effects of RJ against anti-cancer agent-induced toxicities; (3) the molecular mechanisms of such beneficial effects of RJ; (4) the safety and toxicity of RJ; and (5) the future directions of RJ-based treatment strategies, with a discussion on the limitations of the study of the biological activities of RJ.


Assuntos
Antineoplásicos/uso terapêutico , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/prevenção & controle , Ácidos Graxos/uso terapêutico , Neoplasias/tratamento farmacológico , Animais , Antineoplásicos/efeitos adversos , Antineoplásicos/química , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/tratamento farmacológico , Ácidos Graxos/efeitos adversos , Ácidos Graxos/química , Ácidos Graxos Monoinsaturados/análise , Ácidos Graxos Monoinsaturados/farmacologia , Humanos
12.
Molecules ; 23(12)2018 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-30544571

RESUMO

Paenibacillus larvae (P. larvae) is a bacterial pathogen causing American foulbrood (AFB), the most serious disease of honeybee larvae. The food of young larvae could play an important role in the resistance of larvae against AFB. It contains antibacterial substances produced by honeybees that may inhibit the propagation of the pathogen in larval midguts. In this study, we identified and investigated the antibacterial effects of one of these substances, trans-10-hydroxy-2-decenoic acid (10-HDA), against P. larvae strains including all Enterobacterial Repetitive Intergenic Consensus (ERIC) genotypes. Its inhibitory activities were studied by determining the minimum inhibitory concentrations (MICs). It was found that 10-HDA efficacy increases substantially with decreasing pH; up to 12-fold differences in efficacy were observed between pH = 5.5 and pH = 7.2. P. larvae strains showed different susceptibility to 10-HDA; up to 2.97-fold differences existed among various strains with environmentally important ERIC I and ERIC II genotypes. Germinating spores of the pathogen were generally more susceptible to 10-HDA than vegetative cells. Our findings suggest that 10-HDA could play significant role in conferring antipathogenic activity to larval food in the midguts of young larvae and contribute to the resistance of individual larvae to P. larvae.


Assuntos
Ácidos Graxos Monoinsaturados/farmacologia , Ácidos Graxos/química , Paenibacillus larvae/efeitos dos fármacos , Paenibacillus larvae/crescimento & desenvolvimento , Antibacterianos/farmacologia , Genótipo , Concentração de Íons de Hidrogênio , Testes de Sensibilidade Microbiana , Paenibacillus larvae/genética , Esporos Bacterianos/efeitos dos fármacos
13.
Amino Acids ; 49(7): 1177-1192, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28417225

RESUMO

10-Hydroxy-2-decenoic acid (10-HDA) is the major compound produced from the mandibular glands (MGs) of honey bee workers. However, little information is available on the molecular mechanisms of 10-HDA biosynthesis. In our study, based on investigating the 10-HDA secretion pattern and the morphological characteristics of MGs from honey bee workers of different ages, a comparative proteomic analysis was performed in the MGs of workers with different 10-HDA production. In total, 59 up-regulated protein species representing 45 unique proteins were identified in high 10-HDA-producing workers by 2-DE-MALDI-TOF/TOF MS. These proteins were involved in carbohydrate/energy metabolism, fatty acid metabolism, protein metabolism and folding, antioxidation, cytoskeleton, development and cell signaling. Proteins related to fatty acid metabolism, including fatty acid synthase and ß-oxidation enzymes, are potentially crucial proteins involved in 10-HDA biosynthesis pathway. And RNA interference (RNAi) results demonstrated that knockdown of electron transfer flavoprotein subunit beta (ETF-ß), one of the protein related to fatty acid metabolism, decreased 10-HDA production of worker bees, suggesting that ETF-ß was necessary for 10-HDA biosynthesis. This study reveals the characteristics of MGs of worker bees at different developmental stages and proteins associated with 10-HDA biosynthesis, which provides the first insight into the molecular mechanism of 10-HDA biosynthesis.


Assuntos
Abelhas/metabolismo , Ácidos Graxos Monoinsaturados/metabolismo , Proteínas de Insetos/metabolismo , Proteômica , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Animais
14.
BMC Complement Altern Med ; 17(1): 392, 2017 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-28793915

RESUMO

BACKGROUND: It has been reported that royal jelly would reduce melanin synthesis and inhibit the expression of melanogensis related proteins and genes. In this study, we evaluate the anti-melanogenic and depigmenting activity of 10-hydroxy-2-decenoic acid (10-HDA) from royal jelly of Apis mellifera. METHODS: In this study, we assesses the 10-HDA whitening activity in comparison with the changes in the intracellular tyrosinase activity, melanin content and melanin production related protein levles in B16F1 melanoma cells after treating with 10-HDA. Furthermore, the skin whitening effect was evaluated by applying a cream product containing with 0.5%, 1% and 2% of 10-HDA onto the skin of mice (C57BL/6 J) for 3 week to observe the effect of DL*-values. RESULTS: The results showed that 10-HDA inhibited the MITF protein expression (IC50 0.86 mM) in B16F1 melanoma cells. Western blot analysis revealed that 10-HDA inhibited the activity of tyrosinase and the expression of tyrosinase-related protein 1 (TRP-1), TRP-2, and microphthalmia-associated transcription factor (MITF) in B16F1 melanoma cells. In addition, the 10-HDA was applied on the skin of mice show significantly increased the average skin-whitening index (L value). CONCLUSIONS: The validation data indicated the potential of 10-HDA for use in suppressing skin pigmentation. The 10-HDA is proposed as a candidate to inhibit melanogenesis, thus it could be developed as cosmetics skin care products.


Assuntos
Ácidos Graxos Monoinsaturados/farmacologia , Ácidos Graxos/farmacologia , Melaninas/biossíntese , Pigmentação da Pele/efeitos dos fármacos , Pele/efeitos dos fármacos , Animais , Linhagem Celular Tumoral , Cosméticos , Regulação para Baixo , Ácidos Graxos/química , Oxirredutases Intramoleculares/metabolismo , Camundongos Endogâmicos C57BL , Fator de Transcrição Associado à Microftalmia/metabolismo , Monofenol Mono-Oxigenase/metabolismo , Oxirredutases/metabolismo
15.
J Proteome Res ; 15(9): 3342-57, 2016 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-27517116

RESUMO

The mandibular glands (MGs) of honeybee workers are vital for the secretion of lipids, for both larval nutrition and pheromones. However, knowledge of how the proteome controls MG development and functionality at the different physiological stages of worker bees is still lacking. We characterized and compared the proteome across different ages of MGs in Italian bees (ITBs) and Royal Jelly (RJ) bees (RJBs), the latter being a line bred for increasing RJ yield, originating from the ITB. All 2000 proteins that were shared by differently aged MGs in both bee lines (>4000 proteins identified in all) were strongly enriched in metabolizing protein, nucleic acid, small molecule, and lipid functional groups. The fact that these shared proteins are enriched in similar groups in both lines suggests that they are essential for basic cellular maintenance and MG functions. However, great differences were found when comparing the proteome across different MG phases in each line. In newly emerged bees (NEBs), the unique and highly abundant proteins were enriched in protein synthesis, cytoskeleton, and development related functional groups, suggesting their importance to initialize young MG development. In nurse bees (NBs), specific and highly abundant proteins were mainly enriched in substance transport and lipid synthesis, indicating their priority may be in priming high secretory activity in lipid synthesis as larval nutrition. The unique and highly abundant proteins in forager bees (FBs) were enriched in lipid metabolism, small molecule, and carbohydrate metabolism. This indicates their emphasis on 2-heptanone synthesis as an alarm pheromone to enhance colony defense or scent marker for foraging efficiency. Furthermore, a wide range of different biological processes was observed between ITBs and RJBs at different MG ages. Both bee stocks may adapt different proteome programs to drive gland development and functionality. The RJB nurse bee has reshaped its proteome by enhancing the rate of lipid synthesis and minimizing degradation to increase 10-hydroxy-2-decenoic acid synthesis, a major component of RJ, to maintain the desired proportion of lipids in increased RJ production. This study contributes a novel understanding of MG development and lipid metabolism, and a potential starting point for lipid or pheromone biochemists as well as developmental geneticists.


Assuntos
Abelhas/metabolismo , Metabolismo dos Lipídeos , Proteoma/análise , Proteômica , Glândula Submandibular/crescimento & desenvolvimento , Animais , Metabolismo dos Carboidratos , Proteínas de Insetos/análise , Estágios do Ciclo de Vida , Feromônios , Especificidade da Espécie , Glândula Submandibular/metabolismo
16.
J Tradit Complement Med ; 14(3): 300-311, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38707922

RESUMO

Background: Royal jelly is an anti-inflammatory, antioxidant, and neuroprotective bee product. There are several sources for royal jelly and one of them is Indian Royal Jelly (IRJ). However, the neuroprotective actions of IRJ and the underlying molecular mechanisms involved are not well known. Objective: To evaluate the neuroprotective effect of IRJ in the okadaic acid (OKA)-induced Alzheimer's disease (AD) model in rats. Methods: In male Wistar rats, OKA was intracerebroventricularly (ICV) administered, and from day 7, they were treated orally with IRJ or memantine for 21 days. Spatial and recognition learning and memory were evaluated from days 27-34; employing the Morris water maze (MWM) and the novel object recognition tests (NORT), respectively. In vitro biochemical measurements were taken of the cholinergic system and oxidative stress markers. In silico docking was used to find the role of tau protein kinase and phosphatase in the pharmacological action. Results: In OKA-induced rats, IRJ decreased the escape latency and path length in MWM and increased the exploration time for novel objects and the discrimination index in NORT. ICV-OKA rats had higher free radicals and cytokines that caused inflammation and their level of free radical scavengers was back to normal with IRJ treatment. IRJ increased the level of acetylcholine and inhibited acetylcholinesterase. Moreover, the in silico docking study revealed the strong binding affinity of 10-hydroxy-2-decenoic acid (10-HDA), a bioactive constituent of IR, to the tau protein kinases and phosphatases. Conclusion: IRJ may serve as a nootropic agent in the treatment of dementia, and owing to its capacity to prevent oxidative stress and neuroinflammation, and increase cholinergic tone; it has the potential to be explored as a novel strategy for the treatment of dementia and AD. More studies may be needed to develop 10-HDA as a novel drug entity for AD.

17.
J Agric Food Chem ; 72(2): 1190-1202, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38175798

RESUMO

10-Hydroxy-2-decenoic acid (10-HDA) is an important component of royal jelly, known for its antimicrobial, anti-inflammatory, blood pressure-lowering, and antiradiation effects. Currently, 10-HDA biosynthesis is limited by the substrate selectivity of acyl-coenzyme A dehydrogenase, which restricts the technique to a two-step process. This study aimed to develop an efficient and simplified method for synthesizing 10-HDA. In this study, ACOX from Candida tropicalis 1798, which catalyzes 10-hydroxydecanoyl coenzyme A desaturation for 10-HDA synthesis, was isolated and heterologously coexpressed with FadE, Macs, YdiI, and CYP in Escherichia coli/SK after knocking out FadB, FadJ, and FadR genes. The engineered E. coli/AKS strain achieved a 49.8% conversion of decanoic acid to 10-HDA. CYP expression was improved through ultraviolet mutagenesis and high-throughput screening, increased substrate conversion to 75.6%, and the synthesis of 10-HDA was increased to 0.628 g/L in 10 h. This is the highest conversion rate and product concentration achieved in the shortest time to date. This study provides a simple and efficient method for 10-HDA biosynthesis and offers an effective method for developing strains with high product yields.


Assuntos
Escherichia coli , Ácidos Graxos Monoinsaturados , Escherichia coli/genética , Escherichia coli/metabolismo , Ácidos Graxos Monoinsaturados/metabolismo , Ácidos Graxos/metabolismo , Anti-Inflamatórios
18.
Foods ; 13(12)2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38928885

RESUMO

Royal jelly is a substance secreted by the hypopharyngeal and mandibular glands of nurse honey bees, serving as crucial nutritional source for young larvae, queen honey bees, and also valuable product for humans. In this study, the effect of the feed supplements on the nutritional composition and qualities of royal jelly was investigated. Two types of royal jelly samples were acquired: one from honey bees fed with sugar syrup as a feed supplement and the other from honey bees fed with honey. The production, harvesting, and storage of all royal jelly samples followed standard procedures. Parameters for quality assessment and nutritional value, including stable carbon isotopic ratio, moisture content, 10-hydroxy-2-decenoic acid (10-HDA) level, carbohydrate composition, amino acid composition, and mineral contents, were analyzed. The results revealed that despite variability in moisture content and carbohydrate composition, fructose was lower (2.6 and 4.1 g/100 g as is for sugar-fed and honey-fed royal jelly, respectively) and sucrose was higher (7.5 and 2.7 g/100 g as is for sugar-fed and honey-fed royal jelly, respectively) in the sugar-fed group. The stable isotope ratio (-16.4608‱ for sugar-fed and -21.9304‱ for honey-fed royal jelly) clearly distinguished the two groups. 10-HDA, amino acid composition, and total protein levels were not significantly different. Certain minerals, such as potassium, iron, magnesium, manganese, and phosphorus were higher in the honey-fed group. Hierarchical analysis based on moisture, sugar composition, 10-HDA, and stable carbon isotopes categorized the samples into two distinct groups. This study demonstrated that the feed source could affect the nutritional quality of royal jelly.

19.
Front Microbiol ; 14: 1285299, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37915852

RESUMO

Introduction: This study aimed to investigated the effects of 10-hydroxy-2-decenoic acid (10-HDA) on the growth performance, intestinal barrier, inflammatory response, oxidative stress, and gut microbiota of chickens challenged with lipopolysaccharide (LPS). Methods: A total of 240 one-day-old chickens were randomly assigned to five treatment groups: (1) control group (basal diet + saline); (2) LPS group (basal diet + LPS); (3) Chlortetracycline (CTC) group (basal diet containing 75 mg/kg CTC + LPS); (4) 0.1% 10-HDA group (basal diet containing 1 g/kg 10-HDA + LPS); and (5) 0.5% 10-HDA group (basal diet containing 5 g/kg 10-HDA + LPS). All chickens were injected intraperitoneally with 0.5 mg/kg body weight of either LPS or saline at 17, 19, and 21 days of age. Results: The results showed that dietary 10-HDA supplementation attenuated the loss in growth performance caused by the LPS challenge (p < 0.05). 10-HDA effectively alleviated LPS-induced intestinal mucosal injury, as evidenced by reduced bleeding, decreased serum diamine oxidase levels (p < 0.05), and increased villus/crypt ratios of the jejunum and ileum (p < 0.05). Dietary treatment with 0.1% 10-HDA reduced the concentrations of inflammatory cytokines (TNF-α, IL-1ß, IL-6; p < 0.05), and increased immunoglobulin (IgA, IgG) and antioxidant enzyme levels (CAT, GSH-px, T-SOD) in the serum of LPS-challenged chickens (p < 0.05). These effects were similar to those observed in the CTC group. Moreover, 0.1% 10-HDA treatment reversed the LPS-induced variations in the mRNA expression of genes related to inflammation, antioxidant capacity, and intestinal tight junctions (p < 0.05). 16S rRNA analysis revealed that 10-HDA supplementation increased the relative abundance of Faecalibacterium and Clostridia_UCG-014 (p < 0.05). Additionally, it decreased the abundance of Clostridia_vadinBB60_group, Eubacterium_nodatum_group, and UC5-1-2E3 (p < 0.05). These changes were correlated with reduced inflammation and improved antioxidant capacity in the LPS-challenged chickens. Conclusion: Collectively, dietary 10-HDA supplementation alleviated LPS-induced intestinal mucosal injury and the loss of growth performance through anti-inflammatory, antioxidant, and gut microbiota modulation activities in chickens. Moreover, 0.1% 10-HDA supplementation had comparable or even better protection for LPS-challenged chickens than supplementation with antibiotics or 0.5% 10-HDA. 10-HDA has the potential to be used as an alternative to antibiotics in protecting the intestinal health and improving the performance of poultry.

20.
J Clin Med ; 12(16)2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37629354

RESUMO

Although previous studies have demonstrated that royal jelly (RJ) may have estrogenic properties and prevent postmenopausal bone loss, the underlying mechanisms are not fully understood. This animal study aimed to investigate the effects of specific fatty acids of RJ, 10-hydroxy-2-decenoic acid (10H2DA) and 10-hydroxydecanoic acid (10HDAA), in ovariectomized rats. Ten-week-old female Wistar rats were divided into the Baseline, Sham, Ovx, Ovx + 10H2DA, and Ovx + 10HDAA groups. Rats in the Baseline group were sacrificed immediately, whereas those in the other groups were subjected to either a sham operation or bilateral ovariectomy. The animals in the Ovx + 10H2DA and Ovx + 10HDAA groups were fed diets containing 10H2DA and 10HDAA, respectively. Twelve weeks after surgery, the rats were sacrificed, and indices of bone mass and bone mechanics were analyzed. Femoral bone mineral density was significantly lower in the Ovx group than in the Sham group (p < 0.01). Administration of 10H2DA or 10HDAA did not ameliorate bone loss after ovariectomy. In addition, administration of these fatty acids diminished femur bone stiffness in ovariectomized rats (p < 0.01 and p < 0.05, respectively). These findings suggest that the favorable effects of RJ may not be exerted solely by 10H2DA or 10HDAA. However, these effects may be exhibited in combination with other RJ constituents.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA