Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Chemistry ; 26(26): 5872-5886, 2020 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-31999859

RESUMO

Uranium(IV) complexation by 2-furoic acid (2-FA) was examined to better understand the effects of ligand identity and reaction conditions on species formation and stability. Five compounds were isolated: [UCl2 (2-FA)2 (H2 O)2 ]n (1), [U4 Cl10 O2 (THF)6 (2-FA)2 ]⋅2 THF (2), [U6 O4 (OH)4 (H2 O)3 (2-FA)12 ]⋅7 THF⋅H2 O (3), [U6 O4 (OH)4 (H2 O)2 (2-FA)12 ]⋅8.76 H2 O (4), and [U38 Cl42 O54 (OH)2 (H2 O)20 ]⋅m H2 O⋅n THF (5). The structures were determined by single-crystal X-ray diffraction and further characterized by Raman, IR, and optical absorption spectroscopy. The thermal stability and magnetic behavior of the compounds were also examined. Variations in the synthetic conditions led to notable differences in the structural units observed in the solid state. At low H2 O/THF ratios, a tetranuclear oxo-bridged [U4 O2 ] core was isolated. Aging of this solution resulted in the formation a U38 oxo cluster capped by chloro and water ligands. However, at increasing water concentrations only hexanuclear units were observed. In all cases, at temperatures of 100-120 °C, UO2 nanoparticles formed.

2.
Appl Microbiol Biotechnol ; 104(2): 527-543, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31820067

RESUMO

2,5-Furandicarboxylic acid (FDCA) is attracting increasing attention because of its potential applications as a sustainable substitute to petroleum-derived terephthalic acid for the production of bio-based polymers, such as poly(ethylene 2,5-furandicarboxylate) (PEF). Many catalytic methods have been developed for the synthesis of FDCA, including chemocatalysis, biocatalysis, photocatalysis, and electrocatalysis. Biocatalysis is a promising approach with advantages that include mild reaction condition, lower cost, higher selectivity, and environment amity. However, the biocatalytic production of FDCA has hardly been reviewed. To fully understand the current research developments, this review comprehensively considers the research progress on toxic effects and biodegradation of furan aldehydes, and then summarizes the latest achievements concerning the synthesis of FDCA from 5-hydroxymethylfurfural and other chemicals, such as 2-furoic acid and 5-methoxymethylfurfural. Our primary focus is on biocatalytic methods, including enzymatic catalysis (in vitro) and whole-cell catalysis (in vivo). Furthermore, future research directions and general developmental trends for more efficient biocatalytic production of FDCA are also proposed.


Assuntos
Biotecnologia/métodos , Ácidos Dicarboxílicos/metabolismo , Furaldeído/análogos & derivados , Furanos/metabolismo , Biotransformação , Furaldeído/metabolismo , Redes e Vias Metabólicas
3.
Immunopharmacol Immunotoxicol ; 41(3): 361-369, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31155984

RESUMO

Objective: Dendritic cells (DCs) are important players in immunity against pathogens, but overactive DCs have been implicated in autoimmune diseases, like lupus, in which a paucity of targeted therapies remains. Recent research shows that DCs upregulate their immunometabolism when activating. We explored whether modulating fatty acid (FA) metabolism needed for oxidative phosphorylation can affect the activation of two main DC subsets. Material and methods: Sorted murine plasmacytoid DCs (pDCs) and conventional DCs (cDCs), generated in FLT3-L medium, were treated with etomoxir, an inhibitor of FA oxidation, or TOFA, an inhibitor of FA synthesis, then stimulated with TLR9 agonist CpGA. Surface activation markers and viability were analyzed by flow cytometry, cytokine, and chemokine production and were measured by ELISA. Results: Modulation of FA metabolism suppressed the upregulation of costimulatory molecules and the production of proinflammatory cytokine IL-6 and type I Interferon-dependent chemokine CXCL10 by both subsets of DCs, without affecting DC viability, neither of resting DCs or upon activation. Etomoxir inhibited pDCs at lower doses than cDCs, suggesting that pDCs may be more susceptible to FA metabolic modulation. Conclusions: Both cDCs, the primary antigen presenting cell, and pDCs, the primary type I IFN producer, exhibit a suppressed ability to activate but normal viability when their FA metabolism is inhibited by etomoxir or TOFA. Our findings indicate that FA metabolism plays an important role in the activation of both pDCs and cDCs and suggest that its modulation is an exploitable therapeutic target to suppress DC activation in inflammation or autoimmunity.


Assuntos
Células Dendríticas/imunologia , Compostos de Epóxi/farmacologia , Ácidos Graxos/imunologia , Furanos/farmacologia , Animais , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/imunologia , Citocinas/imunologia , Células Dendríticas/citologia , Camundongos , Receptor Toll-Like 9/imunologia
4.
J Labelled Comp Radiopharm ; 57(5): 342-9, 2014 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-24700683

RESUMO

In support of a program to develop an alpha 7 agonist as a treatment for Alzheimer's disease, three drug candidates, 1, 2, and 3, were prepared in labeled forms. Compound 1 was prepared in C-14 labeled form by lithiation of [2,6-(14)C2]2-chloropyridine and subsequent coupling with spirooxirane-2,3'-quinuclidine. When this same coupling was attempted using [3,4,5,6-(2)H4]2-chloropyridine, alcohol [(2)H6]-6 was the major product indicating that the primary isotope effect for the lithiation step was significant enough to shift the reaction pathway. Therefore, an alternate site of labeling was used to prepare [(2)H4]-1. [(13)C5]-2 was prepared in five steps from [(13)C5 ]2-furoic acid, but the C-14 labeled compound used [(14)C2]-1 as the starting material instead. [(14)C2]-3 was prepared in two steps from [carbonyl-(14)C]nicotinic acid.


Assuntos
Isótopos de Carbono/química , Isótopos de Carbono/isolamento & purificação , Niacina/análogos & derivados , Receptor Nicotínico de Acetilcolina alfa7/antagonistas & inibidores , Marcação por Isótopo , Compostos Radiofarmacêuticos/síntese química
5.
Microorganisms ; 12(6)2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38930604

RESUMO

Lignocellulosic biomass is abundant on Earth, and there are multiple acidic pretreatment options to separate the cellulose, hemicellulose, and lignin fraction. By doing so, the fermentation inhibitors 5-Hydroxymethylfurfural (HMF) and furfural (FF) are produced in varying concentrations depending on the hydrolyzed substrate. In this study, the impact of these furanic compounds on Chlorella vulgaris growth and photosynthetic activity was analyzed. Both compounds led to a prolonged lag phase in Chlorella vulgaris growth. While the photosynthetic yield Y(II) was not significantly influenced in cultivations containing HMF, FF significantly reduced Y(II). The conversion of 5-Hydroxymethylfurfural and furfural to 5-Hydroxymethyl-2-Furoic Acid and 2-Furoic Acid was observed. In total, 100% of HMF and FF was converted in photoautotrophic and mixotrophic Chlorella vulgaris cultivations. The results demonstrate that Chlorella vulgaris is, as of now, the first known microalgal species converting furanic compounds.

6.
J Inorg Biochem ; 258: 112637, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38876026

RESUMO

Wet synthesis approach afforded four new heteroleptic mononuclear neutral diamagnetic oxidovanadium(V) complexes, comprising salicylaldehyde-based 2-furoic acid hydrazones and a flavonol coligand of the general composition [VO(fla)(L-ONO)]. The complexes were comprehensively characterized, including chemical analysis, conductometry, infrared, electronic, and mass spectroscopy, as well as 1D 1H and proton-decoupled 13C(1H) NMR spectroscopy, alongside extensive 2D 1H1H COSY, 1H13C HMQC, and 1H13C HMBC NMR analyses. Additionally, the quantum chemical properties of the complexes were studied using Gaussian at the B3LYP, HF, and M062X levels on the 6-31++g(d,p) basis sets. The interaction of these hydrolytically inert vanadium complexes and the BSA was investigated through spectrofluorimetric titration, synchronous fluorimetry, and FRET analysis in a temperature-dependent manner, providing valuable thermodynamic insights into van der Waals interactions and hydrogen bonding. Molecular docking was conducted to gain further understanding of the specific binding sites of the complexes to BSA. Complex 2, featuring a 5-chloro-substituted salicylaldehyde component of the hydrazone, was extensively examined for its biological activity in vivo. The effects of complex administration on biochemical and hematological parameters were evaluated in both healthy and diabetic Wistar rats, revealing antihyperglycemic activity at millimolar concentration. Furthermore, histopathological analysis and bioaccumulation studies of the complex in the brain, kidneys, and livers of healthy and diabetic rats revealed the potential for further development of vanadium(V) hydrazone complexes as antidiabetic and insulin-mimetic agents.


Assuntos
Complexos de Coordenação , Diabetes Mellitus Experimental , Hidrazonas , Hipoglicemiantes , Simulação de Acoplamento Molecular , Vanádio , Animais , Hidrazonas/química , Hidrazonas/síntese química , Hidrazonas/farmacologia , Ratos , Diabetes Mellitus Experimental/tratamento farmacológico , Hipoglicemiantes/química , Hipoglicemiantes/síntese química , Hipoglicemiantes/farmacologia , Complexos de Coordenação/síntese química , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química , Vanádio/química , Flavonóis/farmacologia , Flavonóis/química , Flavonóis/síntese química , Masculino , Ratos Wistar , Soroalbumina Bovina/química , Soroalbumina Bovina/metabolismo , Aldeídos
7.
Food Chem X ; 21: 101208, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38370299

RESUMO

Fermentation is a process that improves health functionality by inducing the production and increase of bioactive compounds. In this study, to standardize the fermentation process for Benincasa hispida, marker compounds that are increased or produced during fermentation were identified based on UPLC-QTOF-MS/MS. Analysis method verification and content analysis were conducted using HPLC-PDA. The marker compounds produced or increased in content were identified as 2-furoic acid, 2,3-dihydroxybenzoic acid, and rubinaphthin A by comparing their retention times, UV and MS spectra, and molecular formulas with those reported in previous studies. In addition, the increase in the content of the marker compounds by fermentation was confirmed, and the analytical method was validated by measuring its specificity, linearity, limit of detection and quantitation, precision, and accuracy. These results suggest that the developed fermentation process, marker compound identification, and verified analysis method can be applied to develop potential functional food ingredients from fermented B. hispida.

8.
Microbiol Spectr ; : e0189623, 2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37754836

RESUMO

Dactylellina haptotyla is a typical nematode-trapping fungus that has garnered the attention of many scholars for its highly effective lethal potential for nematodes. Secondary metabolites play an important role in D. haptotyla-nematode interactions, but which metabolites perform which function remains unclear. We report the metabolic functions based on high-quality, chromosome-level genome assembly of wild D. haptotyla YMF1.03409. The results indicate that a large variety of secondary metabolites and their biosynthetic genes were significantly upregulated during the nematode-trapping stage. In parallel, we identified that 2-furoic acid was specifically produced during nematode trapping by D. haptotyla YMF1.03409 and isolated it from fermentation production. 2-Furoic acid demonstrated strong nematicidal activity with an LD50 value of 55.05 µg/mL against Meloidogyne incognita at 48 h. Furthermore, the pot experiment showed that the number of galls of tomato root was significantly reduced in the experimental group treated with 2-furoic acid. The considerable increase in the 2-furoic acid content during the infection process and its virulent nematicidal activity revealed an essential synergistic effect during the process of nematode-trapping fungal infection. IMPORTANCE Dactylellina haptotyla have significant application potential in nematode biocontrol. In this study, we determined the chromosome-level genome sequence of D. haptotyla YMF1.03409 by long-read sequencing technology. Comparative genomic analysis identified a series of pathogenesis-related genes and revealed significant gene family contraction events during the evolution of D. haptotyla YMF1.03409. Combining transcriptomic and metabolomic data as well as in vitro activity test results, a compound with important application potential in nematode biocontrol, 2-furoic acid, was identified. Our result expanded the genetic resource of D. haptotyla and identified a previously unreported nematicidal small molecule, which provides new options for the development of plant biocontrol agents.

9.
Chemosphere ; 332: 138782, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37142106

RESUMO

The compounds including furan-2,5-dicarboxylic acid (FDCA), 2-methyl-3-furoic acid (MFA), and 2-furoic acid (FA), containing Furan ring are considered to be possessing high ozone reactivity, although in depth studies of their ozonation processes have not been carried out yet. Hence, mechanism, kinetics and toxicity by quantum chemical, and their structure activity relationship are being investigated in this study. Studies of reaction mechanisms revealed that during the ozonolysis of three furan derivatives containing C=C double bond, furan ring opening occurs. At temperature (298 K) and pressure of 1 atm, the degradations rates of 2.22 × 103 M-1 s-1 (FDCA), 5.81 × 106 M-1 s-1 (MFA) and 1.22 × 105 M-1 s-1 (FA) suggested that the reactivity order is: MFA > FA > FDCA. In the presence of water, oxygen and ozone, the Criegee intermediates (CIs) as the primary products of ozonation would produce lower molecule weight of aldehydes and carboxylic acids by undergoing degradation pathways. The aquatic toxicity reveals that three furan derivatives play green chemicals roles. Significantly, most of the degradation products are least harmful to organisms residing in the hydrosphere. The mutagenicity and developmental toxicity of FDCA is minimum as compared to FA and MFA, which shows the applicability of FDCA in a wider and broader field. Results of this study reveal its importance in the industrial sector and degradation experiments.


Assuntos
Ozônio , Poluentes Químicos da Água , Oxirredução , Furanos/toxicidade , Água , Ozônio/química , Cinética , Modelos Teóricos , Poluentes Químicos da Água/análise
10.
ACS Appl Mater Interfaces ; 15(40): 47004-47015, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37751496

RESUMO

Synthesis of 2-furoic acid (FURA) via oxidation of furfural (FAL) is vital in evolving the biorefinery concept as FURA has numerous important applications in the pharmaceuticals and optic areas. Though few works on this reaction are done, those are marred with shortcomings such as the nonrecyclability of catalyst, dilute solutions, lower yields, or use of H2O2 as an oxidizing agent. Herein, we report catalytic aqueous phase oxidation of FAL to FURA using molecular oxygen as an oxidizing agent. For the synthesis of FURA, various catalysts with a combination of metal (Pt, Pd, Ru) and supports (carbon, Al2O3) were prepared and characterized by multiple techniques (X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Brunauer-Emmett-Teller (BET), X-ray photoelectron spectroscopy (XPS)). Oxidation of FAL carried out over 5 wt % Ru/C catalyst in the presence of Na2CO3 yielded 83% of FURA at 120 °C and 15 bar oxygen pressure. The catalyst could show potential for reusability as similar activity was achieved after subjecting the spent catalyst to mild reduction treatment (150 °C). Studies on the effects of temperature, pressure, and time could help accomplish enhanced yields of FURA. Additionally, learning about the effect of base (weak/strong/solid) revealed that due to the weak basicity of Na2CO3, higher yields could be achieved by maintaining approximately a pH of 11, which is optimal for suppressing side reactions. Under the given conditions, FURA is stable (>90%) and also adsorption studies divulge that it is immediately removed from the catalyst surface, and hence higher yields could be achieved in our catalytic system. Using the initial rates methodology, an activation energy of 21.91 kJ mol-1 was derived and also a high turn over frequency (TOF) (85.9 h-1) was observed under optimized conditions.

11.
J Inorg Biochem ; 244: 112232, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37084582

RESUMO

Solution synthesis afforded five novel neutral heteroleptic octahedral paramagnetic mononuclear oxidovanadium(IV) complexes of general composition [VO(bpy)L], where L is a dianionic tridentate ONO-donor hydrazone ligand derived from 2-furoic acid hydrazide and salicylaldehyde and its 5-substituted derivatives. Characterization was carried out by elemental analysis, mass spectrometry, infrared, electron, NMR, and EPR spectroscopy, cyclic voltammetry and conductometry. The molecular and crystal structure of the complex with 5-chloro-salicylaldehyde 2-furoic acid hydrazone (2) was determined. The quantum chemical properties of the vanadium complexes were studied at B3LYP and M062X levels with the lanl2dz basis set using Gaussian. Additionally, Swiss-ADME analysis was performed and complex (4), featuring a 5-nitro substituent on the hydrazone ligand, was selected for further investigation. The effects of the in vivo application of the complex on selected biochemical parameters in healthy and diabetic Wistar rats were investigated. Strong antidiabetic effect associated with moderate hypoalbuminemia was observed. Furthermore, the interaction of complexes with BSA was studied by spectrofluorimetry. A significant conformational change of BSA in the presence of vanadium complexes was found. Synchronous fluorescence spectra revealed significant changes in the tyrosine microenvironment of BSA. The FRET analysis was also used and the non-radiative process of energy transfer is elucidated. Thermodynamic data suggest van der Waals forces and hydrogen bonding as predominant binding modes of complexes to BSA.


Assuntos
Hidrazonas , Vanádio , Animais , Ratos , Vanádio/química , Hidrazonas/química , Hipoglicemiantes/farmacologia , Ligantes , Ratos Wistar
12.
ChemistryOpen ; 11(4): e202100301, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35363428

RESUMO

The one-pot synthesis of 2,5-furandicarboxylic acid from 2-furoic acid with a yield of 57 % was achieved for the first time using a Pd-catalyzed bromination-hydroxycarbonylation tandem reaction in HOAc-NaOAc buffer. This synthetic protocol shows major improvements compared to previously reported methods, such as using biomass-based 2-furoic acid as low-cost raw material, one-pot synthesis without isolation of intermediate products, and no need for an acidification procedure. Experiments indicate that the involved Xantphos-modified Pd-catalyst and the buffer solution play significant promoting roles for each individual reaction whereas Br2 (as the brominating reagent) had a negative effect on the second hydroxycarbonylation step, while CO was deleterious for the first bromination step. Hence, in this practical one-pot synthesis, Br2 should be consumed in the first bromination step as fully as possible, and CO is introduced after the first bromination step has been completed.


Assuntos
Halogenação , Paládio , Acetatos , Ácidos Dicarboxílicos , Furanos
13.
J Agric Food Chem ; 70(15): 4644-4657, 2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-35404052

RESUMO

To replace biohazardous nematicides, there is an ever-increasing need to identify natural product-based agents to contain root-knot nematodes (RKNs) in agriculture. In this chemical ecology study, an antagonistic fungus Aspergillus fumigatus 1T-2, which could cause the formation of withering of the gut and vacuole-like structures in the nematode body, was isolated based on the gradually increased antagonistic interactions between the soil fungi and RKNs. Based on these typical morphological characteristics, a potent nematode-antagonistic compound 2-furoic acid, which had a simple structure, was successfully identified from 1T-2 fermentation broth by liquid chromatography-mass spectrometry (LC-MS). 2-Furoic acid showed effective mortality activity in vitro, of which the LC50 value to Megalaima incognita at 24 h was 37.75 µg/mL. 2-Furoic acid had similar mortality activity to the positive control fosthiazate at 30 µg/mL. Continuous 2-furoic acid exposure had obvious negative influences on both nematode vitality and egg hatchability. Notably, significant variations were observed in nematodes and eggs with 2-furoic acid treatment, which might be induced by novel nematocidal mechanisms. Furthermore, the 1T-2 fermentation broth and 2-furoic acid had significant control efficacy on M. incognita under the greenhouse test-tube assay. Overall, these findings provide valuable insights into the use of 2-furoic acid with biocontrol potential as a preferable lead structure for the development of innovative nematicides.


Assuntos
Tylenchoidea , Animais , Antinematódeos/farmacologia , Aspergillus fumigatus , Fungos , Chumbo
14.
Anticancer Res ; 41(7): 3389-3400, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34230134

RESUMO

BACKGROUND/AIM: Cholangiocarcinoma (CCA), a biliary cancer, is a health problem worldwide. The major problem in CCA treatment presents limited options. To date, targeting cancer metabolism is a promising anti-cancer strategy. To elucidate the functional importance of lipid metabolism in CCA, de novo lipogenesis was inhibited using 5-(tetradecyloxy)-2-furoic acid (TOFA), an acetyl CoA carboxylase inhibitor. MATERIALS AND METHODS: Anti-proliferative effects of TOFA were determined both in vitro and in vivo. Its inhibitory effect on cell-cycle and apoptosis was investigated by flow cytometry and western blot analysis of relevant markers. RESULTS: TOFA inhibited CCA cell growth, induced cell-cycle progression accompanied by apoptosis in a dose-dependent manner. Induction of p21, and caspase-3, -8, and -9 cleavages, while down-regulation of cyclin B1 and cyclin D1 were observed in TOFA-treated cells. The therapeutic potential was demonstrated in vivo. CONCLUSION: De novo lipogensis is essential for CCA cell growth and is an alternative target for CCA treatment.


Assuntos
Apoptose/efeitos dos fármacos , Neoplasias dos Ductos Biliares/tratamento farmacológico , Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Colangiocarcinoma/tratamento farmacológico , Furanos/farmacologia , Acetil-CoA Carboxilase/metabolismo , Neoplasias dos Ductos Biliares/metabolismo , Neoplasias dos Ductos Biliares/patologia , Biomarcadores Tumorais/metabolismo , Linhagem Celular Tumoral , Colangiocarcinoma/metabolismo , Colangiocarcinoma/patologia , Regulação para Baixo/efeitos dos fármacos , Humanos , Metabolismo dos Lipídeos/efeitos dos fármacos
15.
Food Chem ; 341(Pt 1): 128165, 2021 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-33038777

RESUMO

The aim of this study was to develop a multi-analyte UHPLC method for furans and to apply it to commercial coffee samples as well as commercial roasting trials. Furans, as rising time-temperature indicators (TTIs), promised to be an alternative to unsatisfactory roasting temperature measurements. Consequently, a UHPLC-UV method for the determination of 5-hydroxymethyl-2-furfural (HMF), 5-hydroxymethyl-2-furoic acid (HMFA), 2-furfural (F), 5-methylfurfural (MF), 2-furyl methyl ketone (FMC), 2-furoic acid (FA), and for 3-caffeoylquinic acid (3-CQA) was developed and validated. Commercial roasted coffee beans contained 77.7-322 mg/kg HMF, 73.3-158 mg/kg HMFA, 109-200 mg/kg 2-F, 157-209 mg/kg MF, 12.3-32.8 mg/kg FMC, and 137-205 mg/kg FA. Roasting trial samples showed strong rising HMF contents (max.: Arabica: 769 mg/kg, Robusta: 364 mg/kg) followed by a distinct decline. Only MF and FA appeared as steady rising TTIs in the roasting process in Arabica and Robusta beans. 3-CQA fitted well as a decreasing TTI as expected.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Café/química , Furanos/análise , Sementes/química , Ácido Clorogênico/análise , Análise de Alimentos/métodos , Indústria de Processamento de Alimentos/métodos , Furaldeído/análogos & derivados , Furaldeído/análise , Temperatura Alta
16.
Food Chem ; 303: 125406, 2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31472386

RESUMO

This study reports the heat-induced formation of furan by decarboxylation of 2-furoic acid, and 2-methylfuran by dehydration of furfuryl alcohol under dry conditions. Model systems were incubated at temperatures up to 190 °C, followed by quantitative determination of furan and 2-methylfuran performed by isotope dilution headspace gas chromatography-mass spectrometry. Results show that 2-furoic acid decarboxylation and furfuryl alcohol dehydration are activated as from about 140-160 °C. Furfuryl alcohol and 2-furoic acids were measured in a selection of roasted coffee products by isotope dilution liquid chromatography-high resolution mass spectrometry, and the data evidenced a strong correlation between the two compounds, suggesting an intimate mechanistic relationship between them. The possible oxidation of furfuryl alcohol to furfural and 2-furoic acid in heated food is raised with particular emphasis on coffee roasting. These findings are relevant for better understanding the formation of furan and alkylfurans in food, and ultimately opening avenues for mitigation.


Assuntos
Furanos/análise , Furanos/química , Coffea/química , Culinária , Contaminação de Alimentos/análise , Cromatografia Gasosa-Espectrometria de Massas/métodos , Temperatura Alta , Sementes/química
17.
Food Res Int ; 137: 109444, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33233124

RESUMO

The mitigation of furfuryl alcohol, 5-hydroxymethylfurfural, 2-furoic acid, and 5-hydroxymethyl 2-furoic acid was conducted in two dry model systems mimicking coffee and an actual coffee system by incorporating 14 chemicals, that are categorized to phenolic acids, flavonoids, non-phenolic antioxidants, and non-antioxidant agents. Mitigation effects were determined as the decrease in the levels of the studied furan derivatives after the systems went through a controlled roasting process. Strong mitigation effects in the dry model systems were observed after the application of phenolic acids, quinic acid or EDTA. The mitigation effects of phenolic acids and flavonoids depended on the number and availability of phenolic hydroxyl groups. Certain agents exhibited a furan derivative-specific reducing effect while most of them showed a generalized effect. The mitigation efficacy decreased with the increasing complexity of the tested systems. In the coffee system, mitigation effects were almost completely lost in comparison with dry model systems. Still, taurine and sodium sulfite exerted the strongest mitigation effect in the coffee system.


Assuntos
Café , Temperatura Alta , Furaldeído/análogos & derivados , Furanos/análise
18.
Artigo em Inglês | MEDLINE | ID: mdl-24291575

RESUMO

The structural and vibrational properties of cyclic dimer of 2-furoic acid (2FA) were predicted by combining the available experimental infrared and Raman spectra in the solid phase and ab initio calculations based on density functional theory (DFT) with Pople's basis sets. The calculations show that there are two cyclic dimers for the title molecule that have been theoretically determined in the gas phase, and that only one of them, cis conformer, is present in the solid phase. The complete assignment of the 66 normal vibrational modes for the cis cyclic dimer was performed using the Pulay's Scaled Quantum Mechanics Force Field (SQMFF) methodology. Four strong bands in the infrared spectrum at 1583, 1427, 1126 and 887 cm(-1) and the group of bands in the Raman spectrum at 1464, 1452, 1147, 1030, 885, 873, 848, 715 and 590 cm(-1) are characteristic of the dimeric form of 2FA in the solid phase. In this work, the calculated structural and vibrational properties of both dimeric species were analyzed and compared between them. In addition, three types of atomic charges, bond orders, possible charge transfer, topological properties of the furan rings, Natural Bond Orbital (NBO) and Atoms in Molecules (AIM) theory calculations were employed to study the stabilities and intermolecular interactions of the both dimers of 2FA.


Assuntos
Dimerização , Furanos/química , Análise Espectral Raman , Vibração , Modelos Moleculares , Conformação Molecular , Espectroscopia de Infravermelho com Transformada de Fourier
19.
Artigo em Inglês | MEDLINE | ID: mdl-23735205

RESUMO

In this work, FT-IR and FT-Raman spectra are recorded on the solid phase of 5-nitro-2-furoic acid (abbreviated as NFA) in the regions 4000-400 cm(-1) and 3500-100 cm(-1) respectively. The geometrical parameters, vibrational assignments, HOMO-LUMO energies and NBO calculations are obtained for the monomer and dimer of NFA from HF and DFT (B3LYP) with 6-311++G (d, p) basis set calculations. Second order perturbation energies and electron density (ED) transfer from filled lone pairs of Lewis base to unfilled Lewis acid sites of NFA are discussed on the basis of NBO analysis. Intermolecular hydrogen bonds exist through COOH groups; give the evidence for the formation of dimer entities in the title molecule. The theoretically calculated harmonic frequencies are scaled by common scale factor. The observed and the calculated frequencies are found to be in good agreement. The thermodynamic functions were obtained for the range of temperature 100-1000 K. The polarizability, first hyperpolarizability, anisotropy polarizability invariant has been computed using quantum chemical calculations. The chemical parameters were calculated from the HOMO and LUMO values. The NMR chemical shielding anisotropy (CSA) parameters were also computed for the title molecule.


Assuntos
Furanos/química , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Dinâmica não Linear , Teoria Quântica , Análise Espectral Raman , Vibração , Anisotropia , Dimerização , Ligação de Hidrogênio , Conformação Molecular , Espectroscopia de Infravermelho com Transformada de Fourier , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA