Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 138
Filtrar
1.
Nano Lett ; 24(42): 13356-13363, 2024 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-39377657

RESUMO

Strategic manipulation of spatiotemporal evolution of charge carriers is critical for optimizing performance of quasi-two-dimensional (2D) perovskite-based optoelectronic devices. Nonetheless, the inhomogeneous phase distribution and band alignment engender intricate energy landscapes, complicating internal charge and energy funneling processes. Herein, we integrate high spatiotemporal resolution transient absorption microscopy with multiple time-resolved spectroscopy and find that asynchronous electron and hole transfers rather than direct energy transfer govern the funneling mechanisms. Notably, the charge funneling pathways and transport behaviors can be modifiable by phase manipulation. The accumulation of small-n phases suppresses the electron funneling toward large-n phases and doubles the carrier diffusion rate from 0.085 to 0.20 cm2/s, yielding a 1.5-fold enhancement in diffusion length. Phase order engineering is further corroborated for facilitating charge separation. Our investigation underscores the prospects of manipulating the phase distribution to control internal charge funneling and transport, thereby substantiating the theoretical foundations for optimizing optoelectronic devices.

2.
Nano Lett ; 24(27): 8240-8247, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38925628

RESUMO

The realization of efficient optical devices depends on the ability to harness strong nonlinearities, which are challenging to achieve with standard photonic systems. Exciton-polaritons formed in hybrid organic-inorganic perovskites offer a promising alternative, exhibiting strong interactions at room temperature (RT). Despite recent demonstrations showcasing a robust nonlinear response, further progress is hindered by an incomplete understanding of the microscopic mechanisms governing polariton interactions in perovskite-based strongly coupled systems. Here, we investigate the nonlinear properties of quasi-2D dodecylammonium lead iodide perovskite (n3-C12) crystals embedded in a planar microcavity. Polarization-resolved pump-probe measurements reveal the contribution of indirect exchange interactions assisted by dark states formation. Additionally, we identify a strong dependence of the unique spin-dependent interaction of polaritons on sample detuning. The results are pivotal for the advancement of polaritonics, and the tunability of the robust spin-dependent anisotropic interaction in n3-C12 perovskites makes this material a powerful choice for the realization of polaritonic circuits.

3.
Nano Lett ; 24(27): 8436-8444, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38920089

RESUMO

Two-dimensional (2D) lead halide perovskites are excellent candidates for X-ray detection due to their high resistivity, high ion migration barrier, and large X-ray absorption coefficients. However, the high toxicity and long interlamellar distance of the 2D perovskites limit their wide application in high sensitivity X-ray detection. Herein, we demonstrate stable and toxicity-reduced 2D perovskite single crystals (SCs) realized by interlamellar-spacing engineering via a distortion self-balancing strategy. The engineered low-toxicity 2D SC detectors achieve high stability, large mobility-lifetime product, and therefore high-performance X-ray detection. Specifically, the detectors exhibit a record high sensitivity of 13488 µC Gy1- cm-2, a low detection limit of 8.23 nGy s-1, as well as a high spatial resolution of 8.56 lp mm-1 in X-ray imaging, all of which are far better than those of the high-toxicity 2D lead-based perovskite detectors. These advances provide a new technical solution for the low-cost fabrication of low-toxicity, scalable X-ray detectors.

4.
Nano Lett ; 24(1): 261-269, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38113224

RESUMO

2D Dion-Jacobson (DJ) perovskites have emerged as promising photovoltaic materials, but the insulating organic spacer has hindered the efficient charge transport. Herein, we successfully synthesized a terthiophene-based semiconductor spacer, namely, 3ThDMA, for 2D DJ perovskite. An interesting finding is that the energy levels of 3ThDMA extensively overlap with the inorganic components and directly contribute to the band formation of (3ThDMA)PbI4, leading to enhanced charge transport across the organic spacer layers, whereas no such orbital interactions were found in (UDA)PbI4, a DJ perovskite based on 1,11-undecanediaminum (UDA). The devices based on (3ThDMA)MAn-1PbnI3n+1 (nominal n = 5) obtained a champion efficiency of 15.25%, which is a record efficiency for 2D DJ perovskite solar cells using long-conjugated spacers (conjugated rings ≥ 3) and a 22.60% efficiency for 3ThDMA-treated 3D PSCs. Our findings provide an important insight into understanding the orbital interactions in 2D DJ perovskite using an organic semiconductor spacer for efficient solar cells.

5.
Nano Lett ; 24(37): 11599-11606, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39229905

RESUMO

2D layered metal halide perovskites (MHPs) are a potential material for fabricating self-powered photodetectors (PDs). Nevertheless, 2D MHPs produced via solution techniques frequently exhibit multiple quantum wells, leading to notable degradation in the device performance. Besides, the wide band gap in 2D perovskites limits their potential for broad-band photodetection. Integrating narrow-band gap materials with perovskite matrices is a viable strategy for broad-band PDs. In this study, the use of methylamine acetate (MAAc) as an additive in 2D perovskite precursors can effectively control the width of the quantum wells (QWs). The amount of MAAc greatly affects the phase purity. Subsequently, PbSe QDs were embedded into the 2D perovskite matrix with a broadened absorption spectrum and no negative effects on ferroelectric properties. PM6:Y6 was combined with the hybrid ferroelectric perovskite films to create a self-powered and broad-band PD with enhanced performance due to a ferro-pyro-phototronic effect, reaching a peak responsivity of 2.4 A W-1 at 940 nm.

6.
Nano Lett ; 24(18): 5550-5555, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38683946

RESUMO

Understanding and controlling exciton properties are important for the design of 2D semiconductors, such as monolayer transition metal dichalcogenides (TMDCs) and 2D halide perovskites (HPs). This paper demonstrates that the widespread strategy used for the exciton engineering of 2D HPs, based on dielectric mismatch, is flawed since dielectric mismatch has very little correlation with exciton properties. For monolayer TMDCs, however, the dielectric mismatch is shown to be more important.

7.
Nano Lett ; 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38587481

RESUMO

Unlocking the restricted interlayer carrier transfer in a two-dimensional perovskite is a crucial means to achieve the harmonization of efficiency and stability in perovskite solar cells. In this work, the effects of conjugated organic molecules on the interlayer carrier dynamics of 2D perovskites were investigated through nonadiabatic molecular dynamics simulations. We found that elongated conjugated organic cations contributed significantly to the accelerated interlayer carrier dynamics, originating from lowered transport barrier and boosted π-p coupling between organic and inorganic layers. Utilizing conjugated molecules of moderate length as spacer cations can yield both superior efficiency and exceptional stability simultaneously. However, conjugated chains that are too long lead to structural instability and stronger carrier recombination. The potential of conjugated chain-like molecules as spacer cations in 2D perovskites has been demonstrated in our work, offering valuable insights for the development of high-performance perovskite solar cells.

8.
Nano Lett ; 24(13): 3952-3960, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38527956

RESUMO

Despite light-emitting diodes (LEDs) based on quasi-two-dimensional (Q-2D) perovskites being inexpensive and exhibiting high performance, defects still limit the improvement of electroluminescence efficiency and stability by causing nonradiative recombination. Here, an organic molecule, 1-(o-tolyl) biguanide, is used to simultaneously inhibit and passivate defects of Q-2D perovskites via in situ synchronous crystallization. This molecule not only prevents surface bromine vacancies from forming through hydrogen bonding with the bromine of intermediaries but also passivates surface defects through its interaction with uncoordinated Pb. Via combination of defect inhibition and passivation, the trap density of Q-2D perovskite films can be significantly reduced, and the emission efficiency of the film can be improved. Consequently, the corresponding LED shows an external quantum efficiency of 24.3%, and its operational stability has been increased nearly 15 times.

9.
Small ; 20(13): e2305207, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37963824

RESUMO

2D perovskites have attracted tremendous attention due to their superior optoelectronic properties and potential applications in optoelectronic devices. Especially, the larger bandgap of 2D perovskite means that they are suitable for UV photodetection. However, the layered structure of 2D perovskites hinders the interlayer carrier transport, which limits the improvement of device performance. Therefore, nanoscale structures are normally used to enhance the light absorption ability, which is an effective strategy to improve the photocurrent in 2D perovskite-based photodetectors. Herein, a template-assisted low-temperature method is proposed to fabricate 2D perovskite ((C6H5C2H4NH3)2PbBr4, (PEA)2PbBr4) grating single crystal films (GSCFs). The crystallinity of the (PEA)2PbBr4 GSCFs is significantly improved due to the slow evaporation of the precursor solution under low temperatures. Based on this high crystalline quality and extremely ordered microstructures, the metal-semiconductor-metal photodetectors are assembled. Finite-different time-domain (FDTD) simulation and experiment indicate that the GSCF-based photodetectors exhibit significantly improved performance in comparison with the plane devices. The optimized 2D perovskite photodetectors are sensitive to UV light and demonstrate a responsivity and detectivity of 28.6 mA W-1 and 2.4 × 1011 Jones, respectively. Interestingly, the photocurrent of this photodetector varies as the angle of the incident polarized light, resulting in a high polarization ratio of 1.12.

10.
Small ; 20(24): e2310529, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38148294

RESUMO

2D organic-inorganic hybrid perovskites (OIHPs) have become one of the hottest research topics due to their excellent environmental stability and unique optoelectronic properties. Recently, the ferroelectricity and thermochromism of 2D OIHPs have attracted increasing interests. Integrating ferroelectricity and thermochromism into perovskites can significantly promote the development of multichannel intelligent devices. Here, a novel 2D Dion-Jacobson OIHP of the formula (3AMP)PbI4 (where 3AMP is 3-(aminomethyl)pyridinium) is reported, which has a remarkable spontaneous polarization value (Ps) of 15.6 µC cm-2 and interesting thermochromism. As far it is known, such a large Ps value is the highest for 2D OIHPs recorded so far. These findings will inspire further exploration and application of multifunctional perovskites.

11.
Small ; 20(22): e2309009, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38100243

RESUMO

Using seeds to control the crystallization of perovskite film is an effective strategy for achieving high-efficiency perovskite solar cells (PSCs). Owing to their excellent environmental stability brought by their long alkyl chain, n-butylammonium (BA) cations are widely used for fabricating efficient and stable PSCs. However, BA-based 2D perovskite is seldom been investigated as a seed. Here, BA2PbI4 is employed to regulate the crystallization of PbI2, acting as nucleation centers. As a result, porous PbI2 film with high crystallinity is obtained, which allows the realization of perovskite film with preferential crystal orientations of (001) and large grain size of over 2 µm. The corresponding PSC achieves a high power conversion efficiency (PCE) of 24.30% and exhibits satisfactory stability, retaining 91.70% of the initial PCE after 300 h of thermal aging at 85°C.

12.
Small ; : e2403920, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39148188

RESUMO

Ideal bandgap (1.3-1.4 eV) Sn-Pb mixed perovskite solar cells (PSC) hold the maximum theoretical efficiency given by the Shockley-Queisser limit. However, achieving high efficiency and stable Sn-Pb mixed PSCs remains challenging. Here, piperazine-1,4-diium tetrafluoroborate (PDT) is introduced as spacer for bottom interface modification of ideal bandgap Sn-Pb mixed perovskite. This spacer enhances the quality of the upper perovskite layer and forms better energy band alignment, leading to enhanced charge extraction at the hole transport layer (HTL)/perovskite interface. Then, 2D Ti3C2Tx MXene is incorporated for surface treatment of perovskite, resulting in reduced surface trap density and enhanced interfacial electron transfer. The combinations of double-sided treatment afford the ideal bandgap PSC with a high efficiency of 20.45% along with improved environment stability. This work provides a feasible guideline to prepare high-performance and stable ideal-bandgap PSCs.

13.
Small ; 20(44): e2402786, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38966898

RESUMO

Quasi-2D perovskites exhibit impressive optoelectronic properties and hold significant promise for future light-emitting devices. However, the efficiency of perovskite light-emitting diodes (PeLEDs) is seriously limited by defect-induced nonradiative recombination and imbalanced charge injection. Here, the defect states are passivated and charge injection balance is effectively improved by introducing the additive cyclohexanemethylammonium (CHMA) to bromide-based Dion-Jacobson (D-J) structure quasi-2D perovskite emission layer. CHMA participates in the crystallization of perovskite, leading to high quality film composed of compact and well-contacted grains with enhanced hole transportation and less defects. As a result, the corresponding PeLEDs exhibit stable pure blue emission at 466 nm with a maximum external quantum efficiency (EQE) of 9.22%. According to current knowledge, this represents the highest EQE reported for pure-blue PeLEDs based on quasi-2D bromide perovskite thin films. These findings underscore the potential of quasi-2D perovskites for advanced light-emitting devices and pave the way for further advancements in PeLEDs.

14.
Small ; 20(35): e2401197, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38676332

RESUMO

Interface passivation is a key method for improving the efficiency of perovskite solar cells, and 2D/3D perovskite heterojunction is the mainstream passivation strategy. However, the passivation layer also produces a new interface between 2D perovskite and fullerene (C60), and the properties of this interface have received little attention before. Here, the underlying properties of the 2D perovskite/C60 interface by taking the 2D TEA2PbX4 (TEA = C6H10NS; X = I, Br, Cl) passivator as an example are systematically expounded. It is found that the 2D perovskite preferentially exhibits (002) orientation with the outermost surface featuring an oriented arrangement of TEACl, where the thiophene groups face outward. The outward thiophene groups further form a strong π-π stacking system with C60 molecule, strengthening the interaction force with C60 and facilitating the creation of a superior interface. Based on the vacuum-assisted blade coating, wide-bandgap (WBG, 1.77 eV) perovskite solar cells achieved impressive records of 19.28% (0.09 cm2) and 18.08% (1.0 cm2) inefficiency, respectively. This research not only provides a new understanding of interface processing for future perovskite solar cells but also lays a solid foundation for realizing efficient large-area devices.

15.
Small ; 20(27): e2311569, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38312092

RESUMO

Quasi-2D perovskites show great potential as photovoltaic devices with superior stability, but the power conversion efficiency (PCE) is limited by poor carrier transport. Here, it is simultaneously affected the hole transport layer (HTL) and the perovskite layer by incorporating pyridine-based materials into poly(3,4-ethylenedioxythiophene): polystyrene sulfonate (PEDOT:PSS) to address the key problem above in 2D perovskites. With this approach, the enhanced optoelectronic performance of the novel PEDOT:PSS is due to electron transfer between the additives and PEDOT or PSS, as well as a dissociation between PEDOT and PSS based on experimental and theoretical studies, which facilitates the charge extraction and transfer. Concurrently, in-situ X-ray scattering studies reveal that the introduction of pyridine-based molecules alters the transformation process of the perovskite intermediate phase, which leads to a preferred orientation and ordered distribution caused by the Pb─N chemical bridge, achieving efficient charge transport. As a result, the pyridine-treated devices achieve an increased short-circuit current density (Jsc) and PCE of over 17%.

16.
Small ; 20(10): e2305956, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37875778

RESUMO

Achieving longitudinal doping of specific ions by surface treatment remains a challenge for perovskite solar cells, which are often limited by dopant and solvent compatibility. Here, with the flowing environment created by CsBr colloidal nanocrystals, ion exchange is induced on the surface of the perovskite film to enable the homogeneous distribution of Cs+ and gradient distribution of Br- simultaneously at whole depth of the film. Meanwhile, assisted by long-chain organic ligands, the excess PbI2 on the surface of perovskite film is converted to a more stable quasi-2D perovskite, which realizes effective passivation of defects on the surface. As a result, the unfavorable n-type doping on the top surface is suppressed, so that the energy level alignment between perovskite and hole transport layer is optimized. On the basis of co-modification of the surface and the bulk, the PCE of champion device reaches 23.22% with enhanced VOC of 1.12 V. Device maintains 97.12% of the initial PCE in dark ambient air at 1% RH after 1056 h without encapsulation, and 91.56% of the initial PCE under light illumination of 1 sun in N2 atmosphere for more than 200 h. The approach demonstrated here provides an effective strategy for the nondestructive introduction of inorganic ions in perovskite film.

17.
Nano Lett ; 23(1): 252-258, 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36562880

RESUMO

Quasi-2D perovskites are natural quantum well (QW) structures composed of insulating organic layers inserted between conducting [An-1PbnX3n+1]2- slabs. The presence of the bulky organic layer improves the stability but meanwhile sacrifices carrier transport performance. By utilizing two A-site cations of formamidinium (FA+) and cesium (Cs+), we synthesize unique compact-type quasi-2D perovskites CsPbBr3@FABr. Instead of the bulky organic cations, the FA+ cation was employed to work as interlayer "spacer", while the smaller Cs+ cation was chosen to occupy perovskite cages. Transient absorption reveals an energy transfer from small-n-value QWs to large-n-value QWs, enabling a photoluminescence quantum yield (PLQY) of 36.1%. After further promoting the formation of middle-n-value QWs, the homogeneous QW distribution provides a complete energy cascade to access more efficient energy transfer, leading to significant PLQY raise to 70.1%. We break the shackles to report the first case of compact-type quasi-2D perovskites, providing new guidelines for designing high-performance perovskite materials for optoelectronic devices.

18.
Angew Chem Int Ed Engl ; 63(3): e202315943, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38057544

RESUMO

The crystal growth and orientation of two-dimensional (2D) perovskite films significantly impact solar cell performance. Here, we incorporated robust quadrupole-quadrupole interactions to govern the crystal growth of 2D Ruddlesden-Popper (RP) perovskites. This was achieved through the development of two unique semiconductor spacers, namely PTMA and 5FPTMA, with different dipole moments. The ((5FPTMA)0.1 (PTMA)0.9 )2 MAn-1 Pbn I3n+1 (nominal n=5, 5F/PTMA-Pb) film shows a preferred vertical orientation, reduced grain boundaries, and released residual strain compared to (PTMA)2 MAn-1 Pbn I3n+1 (nominal n=5, PTMA-Pb), resulting in a decreased exciton binding energy and reduced electron-phonon coupling coefficients. In contrast to PTMA-Pb device with an efficiency of 15.66 %, the 5F/PTMA-Pb device achieved a champion efficiency of 18.56 %, making it among the best efficiency for 2D RP perovskite solar cells employing an MA-based semiconductor spacer. This work offers significant insights into comprehending the crystal growth process of 2D RP perovskite films through the utilization of quadrupole-quadrupole interactions between semiconductor spacers.

19.
Angew Chem Int Ed Engl ; : e202413898, 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39223782

RESUMO

Antiferroelectric (AFE) has emerged as a promising branch of electroactive materials, due to intriguing physical attributes stemming from the electric field-induced antipolar-to-polar phase transformation. However, the requirement of extremely high electric field strength to switch adjacent sublattice polarization poses great challenges for exploiting new molecular AFE system. Although photoirradiation is striking as a noncontact and nondestructive manipulation tool to optimize physical properties, optical control of antiferroelectricity still remains unexplored. Here, by adopting light-sensitive I3 - anion into 2D perovskite family, we design a new I3 --intercalated molecular AFE of (t-ACH)2EA2Pb3I10(I3)0.5 ⋅ ((H3O)(H2O))0.5 (1, t-ACH=trans-4-aminomethyl-1-cyclohexanecarboxylate, EA=ethylammonium). The I3 --intercalating gives an ultra-narrow band gap of 1.65 eV with strong absorption. In term of AFE structure, the anti-parallel alignment of electric dipoles results in a large spontaneous polarization of 4.3 µC/cm2. Strikingly, 1 merely shows AFE behaviour in the dark even under ultrahigh voltage, while the field-induced ferroelectric state can be facilely obtained upon visible illumination. Such unprecedented visible-photo-assisted phase switching ascribes to the incorporation of photoactive I3 - anions that reduces AFE-to-ferroelectric switching barrier. This pioneering work on the photo-assisting transformation of ferroic orders paves a way to develop future photoactive materials with potential applications.

20.
Angew Chem Int Ed Engl ; 63(7): e202318206, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38165142

RESUMO

Layered two-dimensional (2D) perovskites are emerging as promising optoelectronic materials owing to their excellent environmental stability. Regulating the dipole moment of organic spacers has the potential to reduce the exciton binding energy (Eb ) of 2D perovskites and improve their photovoltaic performance. Here, we developed two azetidine-based secondary ammonium spacers with different electron-withdrawing groups, namely 3-hydroxyazatidine (3-OHAz) and 3,3-difluoroazetidine (3,3-DFAz) spacers, for 2D Ruddlesden-Popper (RP) perovskites. It was found that the large dipole moment of the fluorinated dipole spacer could effectively enhance the interaction between organic spacers and inorganic layers, leading to improved charge dissociation in 2D RP perovskite. In contrast to 3-OHAz spacer, the 2D perovskite using 3,3-DFAz as spacer also shows improved film quality, optimized energy level alignment, and reduced exciton binding energy. As a result, the 2D perovskite (n=4) device based on 3,3-DFAz yields an outstanding efficiency of 19.28 %, surpassing that of the 3-OHAz-Pb device (PCE=11.35 %). The efficiency was further improved to 19.85 % when using mixed A-site cation of MA0.95 FA0.05 . This work provides an effective strategy for modulating the energy level alignment and reducing the Eb by regulating the dipole moment of organic spacers, ultimately enabling the development of high-performance 2D perovskite solar cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA