Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
1.
Nano Lett ; 24(32): 9824-9831, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39056490

RESUMO

Using heterodyne transient grating spectroscopy, we observe a significant enhancement of exciton diffusion in a monolayer WSe2 stacked on graphene. The diffusion dynamics can be optically tuned within a few picoseconds by altering the photoexcited carrier density in graphene. The effective diffusion constant in initial picoseconds in the WSe2/graphene heterostructure is (40.3 ± 4.5) cm2 s-1, representing a substantial improvement over (2.1 ± 0.8) cm2 s-1, typical for an isolated WSe2 monolayer. This enhancement can be understood in terms of a transient screening of impurities, charge traps, and defect states in WSe2 by photoexcited charge carriers in graphene. Furthermore, diffusion within WSe2 is affected by interlayer interactions, such as charge transfer, varying with the incident excitation fluence. These findings underscore the dynamical nature of screening and diffusion processes in heterostructures of 2D semiconductors and graphene and provide insights for future applications of these systems in ultrafast optoelectronic devices.

2.
Nano Lett ; 24(33): 10258-10264, 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39134480

RESUMO

The moiré potential in rotationally misfit two-dimensional (2D) heterostructures has been used to build artificial exciton and electron lattices, which have become platforms for realizing exotic electronic phases. Here, we demonstrate a different approach to create a superlattice potential in 2D crystals by using the near field of an array of polar molecules. A bilayer of titanyl phthalocyanine (TiOPc), consisting of alternating out-of-plane dipoles, is deposited on monolayer MoS2. Time-resolved two-photon photoemission spectroscopy reveals a pair of interlayer exciton states with an energy difference of ∼0.1 eV, which is consistent with the electrostatic potential modulation induced by the TiOPc bilayer as determined by density functional theory calculations. Because the symmetry and the period of this potential superlattice can be changed readily by using molecules of different shapes and sizes, molecule/2D heterostructures can be promising platforms for designing artificial exciton and electron lattices.

3.
Nanotechnology ; 35(23)2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38467059

RESUMO

Heterostacks formed by combining two-dimensional materials show novel properties which are of great interest for new applications in electronics, photonics and even twistronics, the new emerging field born after the outstanding discoveries on twisted graphene. Here, we report the direct growth of tin nanosheets at the two-dimensional limit via molecular beam epitaxy on chemical vapor deposited graphene on Al2O3(0001). The mutual interaction between the tin nanosheets and graphene is evidenced by structural and chemical investigations. On the one hand, Raman spectroscopy indicates that graphene undergoes compressive strain after the tin growth, while no charge transfer is observed. On the other hand, chemical analysis shows that tin nanosheets interaction with sapphire is mediated by graphene avoiding the tin oxidation occurring in the direct growth on this substrate. Remarkably, optical measurements show that the absorption of tin nanosheets exhibits a graphene-like behavior with a strong absorption in the ultraviolet photon energy range, therein resulting in a different optical response compared to tin nanosheets on bare sapphire. The optical properties of ultra-thin tin films therefore represent an open and flexible playground for the absorption of light in a broad range of the electromagnetic spectrum and technologically relevant applications for photon harvesting and sensors.

4.
Nano Lett ; 23(23): 11006-11012, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38038967

RESUMO

Interlayer excitons (IXs) formed at the interface of van der Waals materials possess various novel properties. In parallel development, strain engineering has emerged as an effective means for creating 2D quantum emitters. Exploring the intersection of these two exciting areas, we use MoS2/WSe2 heterostructure as a model system and demonstrate how strain, defects, and layering can be utilized to create defect-bound IXs capable of bright, robust, and tunable quantum light emission in the technologically important near-infrared spectral range. Our work presents defect-bound IXs as a promising platform for pushing the performance of 2D quantum emitters beyond their current limitations.

5.
Nano Lett ; 23(7): 2544-2550, 2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-36920073

RESUMO

Semiconducting transparent metal oxides are critical high mobility materials for flexible optoelectronic devices such as displays. We introduce the continuous liquid metal printing (CLMP) technique to enable rapid roll-to-roll compatible deposition of semiconducting two-dimensional (2D) metal oxide heterostructures. We leverage CLMP to deposit 10 cm2-scale nanosheets of InOx and GaOx in seconds at a low process temperature (T < 200 °C) in air, fabricating heterojunction thin film transistors with 100× greater Ion/Ioff, 4× steeper subthreshold slope, and a 50% increase in mobility over pure InOx channels. Detailed nanoscale characterization of the heterointerface by X-ray photoelectron spectroscopy, UV-vis, and Kelvin probe elucidates the origins of enhanced electronic transport in these 2D heterojunctions. This combination of CLMP with the electrostatic control induced by the heterostructure architecture leads to high performance (µlin up to 22.6 cm2/(V s)) while reducing the process time for metal oxide transistors by greater than 100× compared with sol-gels and vacuum deposition methods.

6.
Small ; 19(12): e2205726, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36748291

RESUMO

Heat dissipation is a major limitation of high-performance electronics. This is especially important in emerging nanoelectronic devices consisting of ultra-thin layers, heterostructures, and interfaces, where enhancement in thermal transport is highly desired. Here, ultra-high interfacial thermal conductance in encapsulated van der Waals (vdW) heterostructures with single-layer transition metal dichalcogenides MX2 (MoS2 , WSe2 , WS2 ) sandwiched between two hexagonal boron nitride (hBN) layers is reported. Through Raman spectroscopic measurements of suspended and substrate-supported hBN/MX2 /hBN heterostructures with varying laser power and temperature, the out-of-plane interfacial thermal conductance in the vertical stack is calibrated. The measured interfacial thermal conductance between MX2 and hBN reaches 74 ± 25 MW m-2 K-1 , which is at least ten times higher than the interfacial thermal conductance of MX2 in non-encapsulation structures. Molecular dynamics (MD) calculations verify and explain the experimental results, suggesting a full encapsulation by hBN layers is accounting for the high interfacial conductance. This ultra-high interfacial thermal conductance is attributed to the double heat transfer pathways and the clean and tight vdW interface between two crystalline 2D materials. The findings in this study reveal new thermal transport mechanisms in hBN/MX2 /hBN structures and shed light on building novel hBN-encapsulated nanoelectronic devices with enhanced thermal management.

7.
Small ; 19(33): e2301097, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37093220

RESUMO

Supercritical CO2 (SC CO2 ), as one of the unique fluids that possess fascinating properties of gas and liquid, holds great promise in chemical reactions and fabrication of materials. Building special nanostructures via SC CO2 for functional applications has been the focus of intense research for the past two decades, with facile regulated reaction conditions and a particular reaction field to operate compared to the more widely used solvent systems. In this review, the significance of SC CO2 on fabricating various functional materials including modification of 1D carbon nanotubes, 2D materials, and 2D heterostructures is stated. The fundamental aspects involving building special nanostructures via SC CO2 are explored: how their structure, morphology, and chemical composition be affected by the SC CO2 . Various optimization strategies are outlined to improve their performances, and recent advances are combined to present a coherent understanding of the mechanism of SC CO2 acting on these functional nanostructures. The wide applications of these special nanostructures in catalysis, biosensing, optoelectronics, microelectronics, and energy transformation are discussed. Moreover, the current status of SC CO2 research, the existing scientific issues, and application challenges, as well as the possible future directions to advance this fertile field are proposed in this review.

8.
Small ; 19(50): e2304954, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37594729

RESUMO

Controlling the deposition of spin-crossover (SCO) materials constitutes a crucial step for the integration of these bistable molecular systems in electronic devices. Moreover, the influence of functional surfaces, such as 2D materials, can be determinant on the properties of the deposited SCO film. In this work, ultrathin films of the SCO Hofmann-type coordination polymer [Fe(py)2 {Pt(CN)4 }] (py = pyridine) onto monolayers of 1T and 2H MoS2 polytypes are grown. The resulting hybrid heterostructures are characterized by GIXRD, XAS, XPS, and EXAFS to get information on the structure and the specific interactions generated at the interface, as well as on the spin transition. The use of a layer-by-layer results in SCO/2D heterostructures, with crystalline and well-oriented [Fe(py)2 {Pt(CN)4 }]. Unlike with conventional Au or SiO2 substrates, no intermediate self-assembled monolayer is required, thanks to the surface S atoms. Furthermore, it is observed that the higher presence of Fe3+ in the 2H heterostructures hinders an effective spin transition for [Fe(py)2 {Pt(CN)4 }] films thinner than 8 nm. Remarkably, when using 1T MoS2 , this transition is preserved in films as thin as 4 nm, due to the reducing character of this metallic substrate. These results highlight the active role that 2D materials play as substrates in hybrid molecular/2D heterostructures.

9.
Small ; 19(5): e2205767, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36478659

RESUMO

Assembling different 2D nanomaterials into heterostructures with strong interfacial interactions presents a promising approach for novel artificial photocatalytic materials. Chemically implementing the 2D nanomaterials' construction/stacking modes to regulate different interfaces can extend their functionalities and achieve good performance. Herein, based on different fundamental principles and photochemical processes, multiple construction modes (e.g., face-to-face, edge-to-face, interface-to-face, edge-to-edge) are overviewed systematically with emphasis on the relationships between their interfacial characteristics (e.g., point, linear, planar), synthetic strategies (e.g., in situ growth, ex situ assembly), and enhanced applications to achieve precise regulation. Meanwhile, recent efforts for enhancing photocatalytic performances of 2D/2D heterostructures are summarized from the critical factors of enhancing visible light absorption, accelerating charge transfer/separation, and introducing novel active sites. Notably, the crucial roles of surface defects, cocatalysts, and surface modification for photocatalytic performance optimization of 2D/2D heterostructures are also discussed based on the synergistic effect of optimization engineering and heterogeneous interfaces. Finally, perspectives and challenges are proposed to emphasize future opportunities for expanding 2D/2D heterostructures for photocatalysis.

10.
Nano Lett ; 22(6): 2547-2553, 2022 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-35285224

RESUMO

Coulomb interactions play a crucial role in low-dimensional semiconductor materials, e.g., 2D layered semiconductors, dictating their electronic and optical properties. However, fundamental questions remain as to whether and how Coulomb interactions affect the charge or energy flow in 2D heterostructures, which is essential for their light-electricity conversions. Herein, using ultrafast spectroscopy, we report real space coupled electron-hole dynamics in 2D heterostructures. We show in (WSe2/)WS2/MoTe2 with a controlled energy gradient for the hole and a near flat band for electron transfer, the fate of the electron is controlled by the hole in coupled dynamics. The interfacial electron transfer from WS2 to MoTe2 follows the hole closely and can be facilitated or suppressed by dynamic Coulomb interaction. In parallel to the band alignment, this study reveals the critical role of Coulomb interactions on the fate of photogenerated charges in 2D heterostructures, providing experimental evidence for coupled electron-hole dynamics and a new knob for steering nanoscale charge or energy transfer process.

11.
Molecules ; 28(5)2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36903520

RESUMO

Researchers have found various families of two-dimensional (2D) materials and associated heterostructures through detailed theoretical work and experimental efforts. Such primitive studies provide a framework to investigate novel physical/chemical characteristics and technological aspects from micro to nano and pico scale. Two-dimensional van der Waals (vdW) materials and their heterostructures can be obtained to enable high-frequency broadband through a sophisticated combination of stacking order, orientation, and interlayer interactions. These heterostructures have been the focus of much recent research due to their potential applications in optoelectronics. Growing the layers of one kind of 2D material over the other, controlling absorption spectra via external bias, and external doping proposes an additional degree of freedom to modulate the properties of such materials. This mini review focuses on current state-of-the-art material design, manufacturing techniques, and strategies to design novel heterostructures. In addition to a discussion of fabrication techniques, it includes a comprehensive analysis of the electrical and optical properties of vdW heterostructures (vdWHs), particularly emphasizing the energy-band alignment. In the following sections, we discuss specific optoelectronic devices, such as light-emitting diodes (LEDs), photovoltaics, acoustic cavities, and biomedical photodetectors. Furthermore, this also includes a discussion of four different 2D-based photodetector configurations according to their stacking order. Moreover, we discuss the challenges that remain to be addressed in order to realize the full potential of these materials for optoelectronics applications. Finally, as future perspectives, we present some key directions and express our subjective assessment of upcoming trends in the field.

12.
Angew Chem Int Ed Engl ; 62(8): e202218343, 2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36562768

RESUMO

Two-dimensional metal-organic frameworks (2D MOFs) can be used as the cathodes for high-performance zinc-ion battery due to their large one-dimensional channels. However, the conventionally poor electrical conductivity and low structural stability hinder their advances. Herein, we report an alternately stacked MOF/MX heterostructure, exhibiting the 2D sandwich-like structure with abundant active sites, improved electrical conductivity and exceptional structural stability. Ex situ characterizations and theoretical calculations reveal a reversible intercalation mechanism of zinc ions and high electrical conductivity in the 2D heterostructure. Electrochemical tests confirm excellent Zn2+ migration kinetics and ideal pseudocapacitive behaviors. As a consequence, Cu-HHTP/MX shows a superior rate performance (260.1 mAh g-1 at 0.1 A g-1 and 173.1 mAh g-1 at 4 A g-1 ) and long-term cycling stability of 92.5 % capacity retention over 1000 cycles at 4 A g-1 .

13.
Small ; 18(15): e2106581, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35229469

RESUMO

2D heterostructures provide a competitive platform to tailor electrical property through control of layer structure and constituents. However, despite the diverse integration of 2D materials and their application flexibility, tailoring synergistic interlayer interactions between 2D materials that form electronically coupled heterostructures remains a grand challenge. Here, the rational design and optimized synthesis of electronically coupled N-doped mesoporous defective carbon and nitrogen modified titanium carbide (Ti3 C2 ) in a 2D sandwiched heterostructure, is reported. First, a F127-polydopamine single-micelle-directed interfacial assembly strategy guarantees the construction of two surrounding mesoporous N-doped carbon monolayers assembled on both sides of Ti3 C2 nanosheets. Second, the followed ammonia post-treatment successfully introduces N elements into Ti3 C2 structure and more defective sites in N-doped mesoporous carbon. Finally, the oxygen reduction reaction (ORR) and theoretical calculation prove the synergistic coupled electronic effect between N-Ti3 C2 and defective N-doped carbon active sites in the 2D sandwiched heterostructure. Compared with the control 2D samples (0.87-0.88 V, 4.90-5.15 mA cm-2 ), the coupled 2D heterostructure possesses the best onset potential of 0.90 V and limited density current of 5.50 mA cm-2 . Meanwhile, this catalyst exhibits superior methanol tolerance and cyclic durability. This design philosophy opens up a new thought for tailoring synergistic interlayer interactions between 2D materials.

14.
Small ; 18(20): e2200332, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35451165

RESUMO

2D lamellar materials can offer high surface area and abundant reactive sites, thus showing an appealing prospect in photocatalytic hydrogen evolution. However, it is still difficult to build cost-efficient photocatalytic hydrogen evolution systems based on 2D materials. Herein, an in situ growth method is employed to build 2D/2D heterojunctions, with which 2D Ni-based metal-organic layers (Ni-MOLs) are closely grown on 2D porous CdS (P-CdS) nanosheets, affording traditional P-CdS/Ni-MOL heterojunction materials. Impressively, the optimized P-CdS/Ni-MOL catalyst exhibits superior photocatalytic hydrogen evolution performance, with an H2 yield of 29.81 mmol g-1 h-1 . This value is 7 and 2981 times higher than that of P-CdS and Ni-MOLs, respectively, and comparable to those of reported state of the art catalysts. Photocatalytic mechanism studies reveal that the enhanced photocatalytic performance can be attributed to the 2D/2D intimate interface between P-CdS and Ni-MOLs, which facilitates the fast charge carriers' separation and transfer. This work provides a strategy to develop 2D MOL-based photocatalysts for sustainable energy conversion.

15.
Nanotechnology ; 34(2)2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-36215949

RESUMO

The combination of two-dimensional materials (2D) into heterostructures enables their integration in tunable ultrathin devices. For applications in electronics and optoelectronics, direct growth of wafer-scale and vertically stacked graphene/hexagonal boron nitride (h-BN) heterostructures is vital. The fundamental problem, however, is the catalytically inert nature of h-BN substrates, which typically provide a low rate of carbon precursor breakdown and consequently a poor rate of graphene synthesis. Furthermore, out-of-plane deformations such as wrinkles are commonly seen in 2D materials grown by chemical vapor deposition (CVD). Herein, a wrinkle-facilitated route is developed for the fast growth of graphene/h-BN vertical heterostructures on Cu foils. The key advantage of this synthetic pathway is the exploitation of the increased reactivity from inevitable line defects arising from the CVD process, which can act as active sites for graphene nucleation. The resulted heterostructures are found to exhibit superlubric properties with increased bending stiffness, as well as directional electronic properties, as revealed from atomic force microscopy measurements. This work offers a brand-new route for the fast growth of Gr/h-BN heterostructures with practical scalability, thus propelling applications in electronics and nanomechanical systems.

16.
Nanotechnology ; 33(47)2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-35970141

RESUMO

Taking into account the novel layered structure and unusual electronic properties of MoS2and WS2on the side the lack of dangling bonds between these two components and donor-acceptor linkage effects, growth of the MoS2/WS2vertical heterojunction film on the amorphous SiO2/Si substrate have created high demand. In this study, we reported the continuous, scalable, and vertical MoS2/WS2heterostructure film by using a sputtering without a transfer step. The WS2film was continuously grown on MoS2and eventually led to the formation of the MoS2/WS2vertical heterojunction film. Dozens of FETs fabricated on MoS2/WS2continuous heterojunction film were created on the same substrate in a single lithographic fabrication step, allowing them to be commercialized and not only used in research applications. RAMAN spectra proved the formation of the MoS2/WS2heterostructure film. In XPS measurements, it was shown that a separate MoS2and WS2layer was grown instead of the alloy structure. The polarity behavior of the MoS2/WS2heterostructure FET was found to be modulated with different drain voltages as p-type to ambipolar and finally n-type conductivity because of the transition of band structure and Schottky barrier heights at different drain voltages. Electron mobility (7.2 cm2V.s-1) and on/off ratio (104-105) exhibited by the MoS2/WS2heterostructure FETs displayed a more improved electrical performance than that of individual WS2, MoS2devices. It was observed that the mobility value of MoS2/WS2FET was approximately 514 times greater than WS2FET and 800 times greater than MoS2FET. Additionally, the MoS2/WS2FET on/off ratio was larger than 2 order MoS2FET and 1 order WS2FET. The film of continuous vertical heterojunctions as in the MoS2/WS2currents in the study would be a promising candidate for nanoelectronics fields. This work demonstrated the progress towards realizing carrier-type controlled high-performance MoS2/WS2heterojunction-based FETs for future logic devices.

17.
Proc Natl Acad Sci U S A ; 116(26): 12648-12653, 2019 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-31189607

RESUMO

Ion exchange, as a postsynthetic transformation strategy, offers more flexibilities in controlling material compositions and structures beyond direct synthetic methodology. Observation of such transformation kinetics on the single-particle level with rich spatial and spectroscopic information has never been achieved. We report the quantitative imaging of anion exchange kinetics in individual single-crystalline halide perovskite nanoplates using confocal photoluminescence microscopy. We have systematically observed a symmetrical anion exchange pathway on the nanoplates with dependence on reaction time and plate thickness, which is governed by the crystal structure and the diffusion-limited transformation mechanism. Based on a reaction-diffusion model, the halide diffusion coefficient was estimated to be on the order of [Formula: see text] This diffusion-controlled mechanism leads to the formation of 2D perovskite heterostructures with spatially resolved coherent interface through the precisely controlled anion exchange reaction, offering a design protocol for tailoring functionalities of semiconductors at the nano-/microscale.


Assuntos
Halogênios/química , Nanoestruturas/química , Semicondutores , Energia Solar , Benzofuranos/química , Cinética , Luz , Luminescência , Nanoestruturas/efeitos da radiação , Imagem Individual de Molécula
18.
Sci Technol Adv Mater ; 23(1): 275-299, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35557511

RESUMO

The past decades of materials science discoveries are the basis of our present society - from the foundation of semiconductor devices to the recent development of internet of things (IoT) technologies. These materials science developments have depended mainly on control of rigid chemical bonds, such as covalent and ionic bonds, in organic molecules and polymers, inorganic crystals and thin films. The recent discovery of graphene and other two-dimensional (2D) materials offers a novel approach to synthesizing materials by controlling their weak out-of-plane van der Waals (vdW) interactions. Artificial stacks of different types of 2D materials are a novel concept in materials synthesis, with the stacks not limited by rigid chemical bonds nor by lattice constants. This offers plenty of opportunities to explore new physics, chemistry, and engineering. An often-overlooked characteristic of vdW stacks is the well-defined 2D nanospace between the layers, which provides unique physical phenomena and a rich field for synthesis of novel materials. Applying the science of intercalation compounds to 2D materials provides new insights and expectations about the use of the vdW nanospace. We call this nascent field of science '2.5 dimensional (2.5D) materials,' to acknowledge the important extra degree of freedom beyond 2D materials. 2.5D materials not only offer a new field of scientific research, but also contribute to the development of practical applications, and will lead to future social innovation. In this paper, we introduce the new scientific concept of this science of '2.5D materials' and review recent research developments based on this new scientific concept.

19.
Nano Lett ; 21(20): 8888-8894, 2021 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-34661417

RESUMO

We predict that high temperature Bose-Einstein condensation of charge transfer excitons can be achieved in organic-two-dimensional (2D) material heterostructures, at ∼50-100 K. Unlike 2D bilayers that can be angle-misaligned, organic-2D systems generally have momentum-direct low-energy excitons, thus favoring condensation. Our predictions are obtained for ZnPc-MoS2 using state-of-the-art first-principles calculations with the GW-BSE approach. The exciton energies we predict are in excellent agreement with recent experiments. The lowest energy charge transfer excitons in ZnPc-MoS2 are strongly bound with a spatial extent of ∼1-2 nm and long lifetimes (τ0 ∼ 1 ns), making them ideal for exciton condensation. We also predict the emergence of inter-ZnPc excitons that are stabilized by the interaction of the molecules with the 2D substrate. This novel way of stabilizing intermolecular excitons by indirect substrate mediation suggests design strategies for singlet fission and exciton multiplication, which are important to overcome the Shockley-Queisser efficiency limit in solar cells.

20.
Nanotechnology ; 33(1)2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34610589

RESUMO

Among ultrathin monoelemental two-dimensional (2D) materials, bismuthene, the single layer of heavier group-VΑ element bismuth (Bi), has been predicted to have large non trivial gap. Here, we demonstrate the growth of Bi films by molecular beam epitaxy on 2D-HfTe2template. At the initial stage of Bi deposition (1-2 bilayers, BL), both the pseudocubic Bi(110) and the hexagonal Bi(111) phases are formed. When reaching 3 BL Bi, a transformation to pure hexagonal Bi(111) occurs. The electronic band structure of 3 BL Bi(111) films was measured by angle-resolved photoemission spectroscopy showing very good matching with the density functional theory band structure calculations of 3 BL free standing Bi(111). The grown Bi(111) thin film was capped with a protective Al2O3layer and its stability under ambient conditions, necessary for practical applications and device fabrication, was confirmed by x-ray photoelectron spectroscopy and Raman spectroscopy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA