Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Technol Adv Mater ; 22(1): 326-344, 2021 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-34025215

RESUMO

The state-of-the-art artificial intelligence technologies mainly rely on deep learning algorithms based on conventional computers with classical von Neumann computing architectures, where the memory and processing units are separated resulting in an enormous amount of energy and time consumed in the data transfer process. Inspired by the human brain acting like an ultra-highly efficient biological computer, neuromorphic computing is proposed as a technology for hardware implementation of artificial intelligence. Artificial synapses are the main component of a neuromorphic computing architecture. Memristors are considered to be a relatively ideal candidate for artificial synapse applications due to their high scalability and low power consumption. Oxides are most widely used in memristors due to the ease of fabrication and high compatibility with complementary metal-oxide-semiconductor processes. However, oxide memristors suffer from unsatisfactory stability and reliability. Oxide-based hybrid structures can effectively improve the device stability and reliability, therefore providing a promising prospect for the application of oxide memristors to neuromorphic computing. This work reviews the recent advances in the development of hybrid oxide memristive synapses. The discussion is organized according to the blending schemes as well as the working mechanisms of hybrid oxide memristors.

2.
Sci Technol Adv Mater ; 22(1): 885-907, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34675754

RESUMO

Infectious diseases of bacterial and viral origins contribute to substantial mortality worldwide. Collaborative efforts have been underway between academia and the industry to develop technologies for a more effective treatment for such diseases. Due to their utility in various industrial applications, nanoparticles (NPs) offer promising potential as antimicrobial agents against bacterial and viral infections. NPs have been established to possess potent antimicrobial activities against various types of pathogens due to their unique characteristics and cell-damaging ability through several mechanisms. The recently accepted antimicrobial mechanisms possessed by NPs include metal ion release, oxidative stress induction, and non-oxidative mechanisms. Another merit of NPs lies in the low likelihood of the development of microbial tolerance towards NPs, given the multiple simultaneous mechanisms of action against the pathogens targeting numerous gene mutations in these pathogens. Moreover, NPs provide a fascinating opportunity to curb microbial growth before infections: this outstanding feature has led to their utilization as active antimicrobial agents in different industrial applications, e.g. the coating of medical devices, incorporation in food packaging, promoting wound healing and encapsulation with other potential materials for wastewater treatment. This review discusses the progress and achievements in the antimicrobial applications of NPs, factors contributing to their actions, mechanisms underlying their efficiency, and risks of their applications, including the antimicrobial action of metal nanoclusters (NCs). The review concludes with a discussion of the restrictions on present studies and future prospects of nanotechnology-based NPs development.

3.
Sci Technol Adv Mater ; 22(1): 194-204, 2021 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-33907525

RESUMO

Shortwave infrared (SWIR) optical sensing and imaging are essential to an increasing number of next-generation applications in communications, process control or medical imaging. An all-organic SWIR upconversion device (OUC) consists of an organic SWIR sensitive photodetector (PD) and an organic light-emitting diode (OLED), connected in series. OUCs directly convert SWIR to visible photons, which potentially provides a low-cost alternative to the current inorganic compound-based SWIR imaging technology. For OUC applications, only few organic materials have been reported with peak absorption past 1000 nm and simultaneous small absorption in the visible. Here, we synthesized a series of thermally stable high-extinction coefficient donor-substituted benz[cd]indole-capped SWIR squaraine dyes. First, we coupled the phenyl-, carbazole-, and thienyl-substituted benz[cd]indoles with squaric acid (to obtain the SQ dye family). We then combined these donors with the dicyanomethylene-substituted squaraine acceptor unit, to obtain the dicyanomethylene-functionalized squaraine DCSQ family. In the solid state, the absorbance of all dyes extended considerably beyond 1100 nm. For the carbazole- and thienyl-substituted DCSQ dyes, even the peak absorptions in solution were in the SWIR, at 1008 nm and 1014 nm. We fabricated DCSQ PDs with an external photon-to-current efficiency over 30%. We then combined the PD with a fluorescent OLED and fabricated long-term stable OUCs with peak sensitivity at 1020 nm, extending to beyond 1200 nm. Our OUCs are characterized by a very low dark luminance (<10-2 cd m-2 at below 6 V) in the absence of SWIR light, and a low turn-on voltage of 2 V when SWIR light is present.

4.
Sci Technol Adv Mater ; 22(1): 718-728, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34434076

RESUMO

Wearable sensors, especially pressure sensors, have become an indispensable part of life when reflecting human interactions and surroundings. However, the difficulties in technology and production-cost still limit their applicability in the field of human monitoring and healthcare. Herein, we propose a fabrication method with flexible, waterproof, thin, and high-performance circuits - based on hand-drawing for pressure sensors. The shape of the sensor is drawn on the pyralux film without assistance from any designing software and the wet-tissues coated by CNTs act as a sensing layer. Such sensor showed a sensitivity (~0.2 kPa-1) while ensuring thinness (~0.26 mm) and flexibility for touch detection or breathing monitoring. More especially, our sensor is waterproof for underwater wearable applications, which is a drawback of conventional paper-based sensors. Its outstanding capability is demonstrated in a real application when detecting touch actions to control a phone, while the sensor is dipped underwater. In addition, by leveraging machine learning technology, these touch actions were processed and classified to achieve highly accurate monitoring (up to 94%). The available materials, easy fabrication techniques, and machine learning algorithms are expected to bring significant contributions to the development of hand-drawing sensors in the future.

5.
Sci Technol Adv Mater ; 22(1): 794-807, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34552391

RESUMO

We investigated a flexible and transparent conductive electrode (FTCE) based on Ag nanowires (AgNWs) and a graphene oxide (GO) nanosheet and fabricated through a simple and cost-effective spray coating method. The AgNWs/GO hybrid FTCE was optimized by adjusting the nozzle-to-substrate distance, spray speed, compressor pressure, and volume of the GO solution. The optimal AgNWs/GO hybrid FTCE has a high transmittance of 88% at a wavelength of 550 nm and a low sheet resistance of 20 Ohm/square. We demonstrate the presence of the GO nanosheet on the AgNWs through Raman spectroscopy. Using scanning electron microscopy and atomic force microscopy, we confirmed that the nanosheet acted as a conducting bridge between AgNWs and improved the surface morphology and roughness of the electrode. Effective coverage by the GO sheet improved the conductivity of the AgNWs electrode Effective coverage of the GO sheet improved conductivity of the AgNWs electrode with minimum degradation of optical and mechanical properties. Flexible thin film heater (TFH) and electroluminescent (EL) devices fabricated on AgNWs/GO hybrid FTCEs showed better performance than devices on bare AgNWs electrodes due to lower sheet resistance and uniform conductivity. In addition, an AgNWs/GO electrode layer on a facial mask acts as a self-heating and antibacterial coating. A facial mask with an AgNWs/GO electrode showed a bacteriostatic reduction rate of 99.7 against Staphylococcus aureus and Klebsiella pneumonia.

6.
Sci Technol Adv Mater ; 22(1): 85-99, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35185387

RESUMO

In the present paper we discuss correlations between crystal structure and magnetic properties of epitaxial ε-Fe2O3 films grown on GaN. The large magnetocrystalline anisotropy and room temperature multiferroic properties of this exotic iron oxide polymorph, make it a perspective material for the development of low power consumption magnetic media storage devices. Extending our recent progress in PLD growth of ε-Fe2O3 on the surface of technologically important nitride semiconductors, we apply reciprocal space tomography by electron and x-ray diffraction to investigate the break of crystallographic symmetry occurring at the oxide-nitride interface resulting in the appearance of anisotropic crystallographic disorder in the sub-100 nm ε-Fe2O3 films. The orthorhombic-on-hexagonal nucleation scenario is shown responsible for the development of a peculiar columnar structure observed in ε-Fe2O3 by means of HRTEM and AFM. The complementary information on the direct and reciprocal space structure of the columnar ε-Fe2O3 films is obtained by various techniques and correlated to their magnetic properties. The peculiar temperature dependence of magnetization studied by the small-field magnetization derivative method and by neutron diffraction reveals the existence of a magnetic softening below 150 K, similar to the one observed earlier solely in nanoparticles. The magnetization reversal in ε-Fe2O3 films probed by X-ray magnetic circular dichroism is found different from the behavior of the bulk averaged magnetization measured by conventional magnetometry. The presented results fill the gap between the numerous studies performed on randomly oriented ε-Fe2O3 nanoparticles and much less frequent investigations of epitaxial epsilon ferrite films with lattice orientation fixed by the substrate.

7.
Sci Technol Adv Mater ; 21(1): 147-186, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32284767

RESUMO

Two dimensional (2D) materials have offered unique electrical, chemical, mechanical and physical properties over the past decade owing to their ultrathin, flexible, and multilayer structure. These layered materials are being used in numerous electronic devices for various applications, and this review will specifically focus on the resistive random access memories (RRAMs) based on 2D materials and their nanocomposites. This study presents the device structures, conduction mechanisms, resistive switching properties, fabrication technologies, challenges and future aspects of 2D-materials-based RRAMs. Graphene, derivatives of graphene and MoS2 have been the major contributors among 2D materials for the application of RRAMs; however, other members of this family such as hBN, MoSe2, WS2 and WSe2 have also been inspected more recently as the functional materials of nonvolatile RRAM devices. Conduction in these devices is usually dominated by either the penetration of metallic ions or migration of intrinsic species. Most prominent advantages offered by RRAM devices based on 2D materials include fast switching speed (<10 ns), less power losses (10 pJ), lower threshold voltage (<1 V) long retention time (>10 years), high electrical endurance (>108 voltage cycles) and extended mechanical robustness (500 bending cycles). Resistive switching properties of 2D materials have been further enhanced by blending them with metallic nanoparticles, organic polymers and inorganic semiconductors in various forms.

8.
Sci Technol Adv Mater ; 21(1): 371-378, 2020 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-32939162

RESUMO

In this study, we developed a high-performance extended-gate ion-sensitive field-effect transistor (EG-ISFET) sensor on a flexible polyethylene naphthalate (PEN) substrate. The EG-ISFET sensor comprises a tin dioxide (SnO2) extended gate, which acts as a detector, and an amorphous indium-gallium-zinc-oxide (a-IGZO) thin-film transistor (TFT) for a transducer. In order to self-amplify the sensitivity of the pH sensors, we designed a uniquely-structured a-IGZO TFT transducer with a high-k engineered top gate insulator consisting of a silicon dioxide/tantalum pentoxide (SiO2/Ta2O5) stack, a floating layer under the channel, and a control gate coplanar with the channel. The SiO2/Ta2O5 stacked top gate insulator and in-plane control gate significantly contribute to capacitive coupling, enabling the amplification of sensitivity to be enlarged compared to conventional dual-gate transducers. For a pH sensing method suitable for EG-ISFET sensors, we propose an in-plane control gate (IG) sensing mode, instead of conventional single-gate (SG) or dual-gate (DG) sensing modes. As a result, a pH sensitivity of 2364 mV/pH was achieved at room temperature - this is significantly superior to the Nernstian limit (59.15 mV/pH at room temperature). In addition, we found that non-ideal behavior was improved in hysteresis and drift measurements. Therefore, the proposed transparent EGISFFET sensor with an IG sensing mode is expected to become a promising platform for flexible and wearable biosensing applications.

9.
Sci Technol Adv Mater ; 21(1): 435-449, 2020 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-32939169

RESUMO

We investigated the characteristics of thermally evaporated fullerene (C60)/Ag/C60 (CAC) multilayer films for use in semi-transparent perovskite solar cells (PSCs) and thin-film heaters (TFHs). The top and bottom C60 layers and Ag interlayer were prepared using multi-source thermal evaporation, and the thickness of the Ag interlayer was investigated in detail for its effects on the resistivity, optical transmittance, and mechanical properties of the CAC electrodes. We used a figure-of-merit analysis to obtain a CAC electrode with a smooth surface morphology that exhibited a sheet resistance of 5.63 Ohm/square and an optical transmittance of 66.13% at a 550 nm wavelength. We conducted mechanical deformation tests to confirm that the thermally evaporated multilayer CAC electrode has a high durability, even after 10,000 times of inner and outer bending, rolling, and twisting due to the flexibility of the amorphous C60 and Ag interlayer. We evaluated the feasibility of using CAC electrodes for semi-transparent PSCs and TFHs. The semi-transparent PSC with 1.08 cm2 active area prepared with a transparent multilayer CAC cathode showed a power conversion efficiency (PCE) of 5.1%. Furthermore, flexible TFHs (2.5 × 2.5 cm2) fabricated on a thermally evaporated CAC electrode show a high saturation temperature of 116.6 C, even at a low input voltage of 4.5 V, due to a very low sheet resistance. Based on the performance of the PSCs and TFHs, we conclude that the thermally evaporated multilayer CAC electrode is promising for use as a transparent conductive electrode (TCE) for semi-transparent PSCs and TFHs, with characteristics comparable to sputtered TCEs.

10.
Sci Technol Adv Mater ; 21(1): 303-322, 2020 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-33628119

RESUMO

The large and vivid field of intermetallic compounds in catalysis is reviewed to identify necessities, strategies and new developments making use of the advantageous catalytic properties of intermetallic compounds. Since recent reviews summarizing contributions in heterogeneous catalysis as well as electrocatalysis are available, this contribution is not aiming at a comprehensive literature review. To introduce the field, first the interesting nature of intermetallic compounds is elaborated - including possibilities as well as requirements to address catalytic questions. Subsequently, this review focuses on exciting developments and example success stories of intermetallic compounds in catalysis. Since many of these are based on recent advances in synthesis, a short overview of synthesis and characterisation is included. Thus, this contribution aims to be an introduction to the newcomer as well as being helpful to the experienced researcher by summarising the different approaches. Selected examples from literature are chosen to illustrate the versatility of intermetallic compounds in heterogeneous catalysis where the emphasis is on developments since the last comprehensive review in the field.

11.
Sci Technol Adv Mater ; 21(1): 79-91, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32158509

RESUMO

Several current topics are introduced in this review, with particular attention to highly proton-conductive polymer thin films with organized structure and molecularly oriented structure. Organized structure and molecularly oriented structure are anticipated as more promising approaches than conventional less-molecular-ordered structure to elucidate mechanisms of high proton conduction and control proton conduction. This review introduces related polymer materials and molecular design using lyotropic liquid crystals and hydrogen bond networks for high proton conduction. It also outlines the use of substrate surfaces and external fields, such as pressure and centrifugal force, for organizing structures and molecularly oriented structures.

12.
Sci Technol Adv Mater ; 21(1): 424-434, 2020 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-32939168

RESUMO

Sputtering and electrodeposition are among the most widespread techniques for metallic thin film deposition. Since these techniques operate under different principles, the resulting films typically show different microstructures even when the chemical composition is kept fixed. In this work, films of Fe70Pd30 were produced in a thickness range between 30 and 600 nm, using both electrodeposition and sputtering. The electrodeposited films were deposited under potentiostatic regime from an ammonia sulfosalicylic acid-based aqueous solution. Meanwhile, the sputtered films were deposited from a composite target in radio frequency regime. Both approaches were proven to yield high quality and homogenous films. However, their crystallographic structure was different. Although all films were polycrystalline and Fe and Pd formed a solid solution with a body-centered cubic structure, a palladium hydride phase was additionally detected in the electrodeposited films. The occurrence of this phase induced internal stress in the films, thereby influencing their magnetic properties. In particular, the thickest electrodeposited Fe70Pd30 films showed out-of-plane magnetic anisotropy, whereas the magnetization easy axis lied in the film plane for all the sputtered films. The domain pattern of the electrodeposited films was investigated by magnetic force microscopy. Finally, nanoindentation studies highlighted the high quality of both the sputtered and electrodeposited films, the former exhibiting higher reduced Young's modulus and Berkovich hardness values.

13.
Sci Technol Adv Mater ; 20(1): 1150-1163, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32082437

RESUMO

In this study, an antimicrobial composition based on polyvinyl alcohol (PVA) and zinc oxide (ZnO) was developed. The aim of the work was to obtain a film-forming product for antimicrobial treatment of surfaces. To improve the physical, mechanical, and film-forming properties of the compositions, three natural stabilizing agents were added to the formulation: gelatine, guar gum and hydroxyethyl cellulose. Formulations with different concentrations of each stabilizer were tested, and the physicochemical properties of the obtained products were measured. The size of zinc oxide particles in obtained compositions varied from 232 to 692 nm. The compositions had a slight acidic nature. Their pH ranged from 6.84 to 6.99. The average density of products was equal to 1.37 × 103 (kg/m3). It was confirmed that zinc oxide nanoparticles do not penetrate through a model dermal membrane which is a desired effect concerning their toxicity. The antimicrobial activity of the obtained compositions was assessed against Aspergillus niger strain. After 24 h of studying, the growth inhibition was in 71% greater than in reference material. After statistical analysis of the results, it was concluded in order to achieve the most desirable physicochemical and utilitarian properties, the concentrations of gelatine, guar gum and hydroxyethylcellulose should be equal to 0.5%, 0.03% and 0.055%, respectively.

14.
Sci Technol Adv Mater ; 20(1): 786-795, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31447957

RESUMO

The possibility to manufacture perovskite solar cells (PSCs) at low temperatures paves the way to flexible and lightweight photovoltaic (PV) devices manufactured via high-throughput roll-to-roll processes. In order to achieve higher power conversion efficiencies, it is necessary to approach the radiative limit via suppression of non-radiative recombination losses. Herein, we performed a systematic voltage loss analysis for a typical low-temperature processed, flexible PSC in n-i-p configuration using vacuum deposited C60 as electron transport layer (ETL) and two-step hybrid vacuum-solution deposition for CH3NH3PbI3 perovskite absorber. We identified the ETL/absorber interface as a bottleneck in relation to non-radiative recombination losses, the quasi-Fermi level splitting (QFLS) decreases from ~1.23 eV for the bare absorber, just ~90 meV below the radiative limit, to ~1.10 eV when C60 is used as ETL. To effectively mitigate these voltage losses, we investigated different interfacial modifications via vacuum deposited interlayers (BCP, B4PyMPM, 3TPYMB, and LiF). An improvement in QFLS of ~30-40 meV is observed after interlayer deposition and confirmed by comparable improvements in the open-circuit voltage after implementation of these interfacial modifications in flexible PSCs. Further investigations on absorber/hole transport layer (HTL) interface point out the detrimental role of dopants in Spiro-OMeTAD film (widely employed HTL in the community) as recombination centers upon oxidation and light exposure.

15.
Sci Technol Adv Mater ; 20(1): 173-186, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30891104

RESUMO

We present a methodology to accelerate and estimate the lifetime of an interlayer under dynamic loading in body-like media. It is based on accelerating corrosion fatigue processes taking place at the buried interface of a Si-based adhesion-promoting interlayer in articulating implants on a CoCrMo biomedical alloy; the implants are coated with diamond-like carbon (DLC). The number of interface loading cycles to delamination is determined by reciprocal loading in corrosive fluid. Its dependence on the load is summarized in a Wöhler-like curve of a DLC/DLC-Si/CoCrMo system in body working conditions: cyclic stresses at 37 °C in phosphate buffered saline (PBS). The presence of oxygen as a contaminant strongly affects the lifetime of the interface under corrosion fatigue. The main parameters acting on the prediction, with a special emphasis on simulated in vivo conditions, are analyzed and discussed: the media (PBS, Milli-Q water, NaCl, Ringers' solution and bovine calf serum), the load, the frequency and the composition of the interface determined by X-ray photoelectron spectroscopy.

16.
Sci Technol Adv Mater ; 20(1): 456-463, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31191758

RESUMO

The role of epitaxial strain and chemical termination in selected interfaces of perovskite oxide heterostructures is under intensive investigation because of emerging novel electronic properties. SrTiO   3 (STO) is one of the most used substrates for these compounds, and along its < 001 > direction allows for two nonpolar chemical terminations: TiO2 and SrO. In this paper, we investigate the surface morphology and crystal structure of SrO epitaxial ultrathin films: from 1 to about 25 layers grown onto TiO   2 -terminated STO substrates. X-ray diffraction and transmission electron microscopy analysis reveal that SrO grows along its [ 111 ] direction with a 4% out-of-plane elongation. This large strain may underlay the mechanism of the formation of self-organized pattern of stripes that we observed in the initial growth. We found that the distance between the TiO   2 plane and the first deposited SrO layer is 0.27 ( 3 ) nm, a value which is about 40% bigger than in the STO bulk. We demonstrate that a single SrO-deposited layer has a different morphology compared to an ideal atomically flat chemical termination.

17.
Sci Technol Adv Mater ; 20(1): 389-400, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31068986

RESUMO

Ga-doped ZnO (GZO)-graded layer, facilitating electron extraction from electron transport layer, was integrated on the surface of transparent indium tin oxide (ITO) cathode by using graded sputtering technique to improve the performance of planar n-i-p perovskite solar cells (PSCs). The thickness of graded GZO layer was controlled to optimize GZO-indium tin oxide (ITO) combined electrode for planar n-i-p PSCs. At optimized graded thickness of 15 nm, the GZO-ITO combined electrode showed an optical transmittance of 95%, a resistivity of 2.3 × 10-4 Ohm cm, a sheet resistance of 15.6 Ohm/square, and work function of 4.23 eV, which is well matched with the 4.0-eV lowest unoccupied molecular orbital of [6,6]-phenyl-C61-butyric acid methyl ester. Owing to enhanced extraction of electron by the graded GZO, the n-i-p PSC with GZO-ITO combined electrode showed higher power conversion efficiency (PCE) of 9.67% than the PCE (5.25%) of PSC with only ITO electrode without GZO-graded layer. In addition, the GZO integrated-ITO electrode acts as transparent electrode and electron extraction layer simultaneously due to graded mixing of the GZO at the surface region of ITO electrode.

18.
Sci Technol Adv Mater ; 20(1): 465-496, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31164953

RESUMO

Atomic layer deposition (ALD) is an ultra-thin film deposition technique that has found many applications owing to its distinct abilities. They include uniform deposition of conformal films with controllable thickness, even on complex three-dimensional surfaces, and can improve the efficiency of electronic devices. This technology has attracted significant interest both for fundamental understanding how the new functional materials can be synthesized by ALD and for numerous practical applications, particularly in advanced nanopatterning for microelectronics, energy storage systems, desalinations, catalysis and medical fields. This review introduces the progress made in ALD, both for computational and experimental methodologies, and provides an outlook of this emerging technology in comparison with other film deposition methods. It discusses experimental approaches and factors that affect the deposition and presents simulation methods, such as molecular dynamics and computational fluid dynamics, which help determine and predict effective ways to optimize ALD processes, hence enabling the reduction in cost, energy waste and adverse environmental impacts. Specific examples are chosen to illustrate the progress in ALD processes and applications that showed a considerable impact on other technologies.

19.
Sci Technol Adv Mater ; 20(1): 979-991, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31692919

RESUMO

Many bacteria become progressively more resistant to antibiotics and it remains a challenging task to control their overall levels. Polymers combined with active biomolecules come to the forefront for the design of antibacterial materials that can address this encounter. In this work, we investigated the photo-crosslinking approach of UV-sensitive benzophenone molecule (BP) with polyvinylpyrrolidone (PVP) polymer within electrospun fibres. The BP and PVP solutions allowed fabricating polymer mats that were subsequently functionalised with antibacterial lysozyme. The physical properties of the crosslinked electrospun fibres were investigated by scanning electron microscopy and atomic force microscopy. The average diameter of the obtained fibres decreased from 290 ± 50 nm to 270 ± 70 nm upon the addition of the crosslinking molecules and then to 240 ± 80 nm and 180 ± 90 nm after subsequent crosslinking reaction at an increasing time: 3 and 5 h, respectively. The peak force quantitative nanomechanical mapping (PF-QNM) indicated the increase of DMT modulus of obtained cross-linked fibres from 4.1 ± 0.8 GPa to 7.2 ± 0.5 GPa. Furthermore, the successful crosslinking reaction of PVP and BP solution into hydrogels was investigated in terms of examining photo-crosslinking mechanism and was confirmed by rheology, Raman, Fourier transform infrared and nuclear magnetic resonance. Finally, lysozyme was successfully encapsulated within cross-linked PVP-BP hydrogels and these were successfully electrospun into mats which were found to be as effective antibacterial agents as pure lysozyme molecules. The dissolution rate of photo cross-linked PVP mats was observed to increase in comparison to pure PVP electrospun mats which opened a potential route for their use as antibacterial, on-demand, dissolvable coatings for various biomedical applications.

20.
Sci Technol Adv Mater ; 20(1): 1031-1042, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31723370

RESUMO

Optically transparent, colorless Al-O-N and Al-Si-O-N coatings with discretely varied O and Si contents were fabricated by reactive direct current magnetron sputtering (R-DCMS) from elemental Al and Si targets and O2 and N2 reactive gases. The Si/Al content was adjusted through the electrical power on the Si and Al targets, while the O/N content was controlled through the O2 flow piped to the substrate in addition to the N2 flow at the targets. The structure and morphology of the coatings were studied by X-ray diffraction (XRD) and transmission electron microscopy (TEM), while the elemental composition was obtained from Rutherford backscattering spectrometry (RBS) and heavy ion elastic recoil detection analysis (ERDA). The chemical states of the elements in the coatings were analyzed by X-ray photoelectron spectroscopy (XPS). Based on analytical results, a model describing the microstructural evolution of the Al-O-N and also previously studied Al-Si-N [1, 2, 3, 4] coatings with O and Si content, respectively, is established. The universality of the microstructural evolution of these coatings with the concentration of the added element is attributed to the extra valence electron (e-) that must be incorporated into the AlN wurtzite host lattice. In the case of Al-O-N, this additional valence charge arises from the e - acceptor O replacing N in the AlN wurtzite lattice, while the e - donor Si substituting Al fulfills that role in the Al-Si-N system. In view of future applications of ternary Al-O-N and quaternary Al-Si-O-N transparent protective coatings, their mechanical properties such as residual stress (σ), hardness (HD) and Young's modulus (E) were obtained from the curvature of films deposited onto thin substrates and by nanoindentation, respectively. Moderate compressive stress levels between -0.2 and -0.5 GPa, which suppress crack formation and film-substrate delamination, could be obtained together with HD values around 25 GPa.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA