Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Constraints ; 28(2): 138-165, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37545838

RESUMO

Constraint programming has proven to be a successful framework for determining whether a given instance of the three-dimensional stable matching problem with cyclic preferences (3dsm-cyc) admits a solution. If such an instance is satisfiable, constraint models can even compute its optimal solution for several different objective functions. On the other hand, the only existing output for unsatisfiable 3dsm-cyc instances is a simple declaration of impossibility. In this paper, we explore four ways to adapt constraint models designed for 3dsm-cyc to the maximum relaxation version of the problem, that is, the computation of the smallest part of an instance whose modification leads to satisfiability. We also extend our models to support the presence of costs on elements in the instance, and to return the relaxation with lowest total cost for each of the four types of relaxation. Empirical results reveal that our relaxation models are efficient, as in most cases, they show little overhead compared to the satisfaction version.

2.
Constraints ; 27(3): 249-283, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35965949

RESUMO

We introduce five constraint models for the 3-dimensional stable matching problem with cyclic preferences and study their relative performances under diverse configurations. While several constraint models have been proposed for variants of the two-dimensional stable matching problem, we are the first to present constraint models for a higher number of dimensions. We show for all five models how to capture two different stability notions, namely weak and strong stability. Additionally, we translate some well-known fairness notions (i.e. sex-equal, minimum regret, egalitarian) into 3-dimensional matchings, and present how to capture them in each model. Our tests cover dozens of problem sizes and four different instance generation methods. We explore two levels of commitment in our models: one where we have an individual variable for each agent (individual commitment), and another one where the determination of a variable involves pairing the three agents at once (group commitment). Our experiments show that the suitability of the commitment depends on the type of stability we are dealing with, and that the choice of the search heuristic can help improve performance. Our experiments not only brought light to the role that learning and restarts can play in solving this kind of problems, but also allowed us to discover that in some cases combining strong and weak stability leads to reduced runtimes for the latter.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA