Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Anal Biochem ; 671: 115135, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37019253

RESUMO

Given the importance of identifying the presence of biomarkers of human diseases in DNA samples, the main objective of this work was to investigate, for the first time, the electro-catalytic oxidation of 7-methyl-guanine (7-mGua) and 5-methyl-cytosine (5-mCyt) on a boron doped diamond electrode pre-treated cathodically (red-BDDE), using differential pulse voltammetry (DPV) and cyclic voltammetry (CV). The anodic peak potentials of 7-mGua and 5-mCyt by DPV were at E = 1.04 V and E = 1.37 V at pH = 4.5, indicating excellent peak separation of approximately 330 mV between species. Using DPV, experimental conditions such as supporting electrolyte, pH and influence of interferents were also investigated to develop a sensitive and selective method for individual and simultaneous quantification of these biomarkers. The analytical curves for the simultaneous quantification of 7-mGua and 5-mCyt in the acid medium (pH = 4.5) were: concentration range of 0.50-5.00 µmol L-1 (r = 0.999), detection limit of 0.27 µmol L-1 for 7-mGua; from 3.00 to 25.00 µmol L-1 (r = 0.998), with a detection limit of 1.69 µmol L-1 for 5-mCyt. A new DP voltammetric method for the simultaneous detection and quantification of biomarkers 7-mGua and 5-mCyt using a red-BDDE is proposed.


Assuntos
5-Metilcitosina , Boro , Humanos , Oxirredução , Eletrodos , Guanina
2.
Inflamm Res ; 72(1): 133-148, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36352034

RESUMO

OBJECTIVES: Recurrent aphthous stomatitis (RAS) is the most common inflammatory disease of the oral mucosa resulting in an impaired life quality and even leading to tumors in susceptible populations. N7-Methylguanine (m7G) plays a vital role in various cellular activities but has not yet been investigated in RAS. We aimed at picturing the immune landscape and constructing an m7G-related gene signature, and investigating candidate drugs and gene-disease association to aid therapy for RAS. METHODS: For our study, m7G-related differentially expressed genes (DEGs) were screened. We outlined the immune microenvironment and studied the correlations between the m7G-related DEGs and immune cells/pathways. We performed functional enrichment analyses and constructed the protein-protein interaction (PPI) and multifactor regulatory network in RAS. The m7G-related hub genes were extracted to formulate the corresponding m7G predictive signature. RESULTS: We obtained 11 m7G-related DEGs and studied a comprehensive immune infiltration landscape, which indicated several immune markers as possible immunotherapeutic targets. The PPI and multifactor regulatory network was constructed and 4 hub genes (DDX58, IFI27, IFIT5, and PML) were identified, followed by validation of the corresponding m7G predictive signature for RAS. GO and KEGG analyses revealed the participation of JAK-STAT and several immune-related pathways. Finally, we suggested candidate drugs and gene-disease associations for potential RAS medical interventions. CONCLUSIONS: The present study pictured a comprehensive immune infiltration landscape and suggested that m7G played a vital role in RAS through immune-related pathways. This study provided new insight for the future investigation of the mechanisms and therapeutic strategies for RAS.


Assuntos
Estomatite Aftosa , Humanos , Estomatite Aftosa/genética , Estomatite Aftosa/terapia , Guanina
3.
Biochemistry (Mosc) ; 88(6): 783-791, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37748874

RESUMO

Inhibitors of human poly(ADP-ribose) polymerase (PARP) are considered as promising agents for treatment of cardiovascular, neurological, and other diseases accompanied by inflammation and oxidative stress. Previously, the ability of natural compounds 7-methylguanine (7mGua) and 8-hydroxy-7-methylguanine (8h7mGua) to suppress activity of the recombinant PARP protein was demonstrated. In the present work, we have investigated the possibility of PARP-inhibitory and cytoprotective action of 7mGua and 8h7mGua against the rat cardiomyoblast cultures (undifferentiated and differentiated H9c2). It was found that 7mGua and 8h7mGua rapidly penetrate into the cells and effectively suppress the H2O2-stimulated PARP activation (IC50 = 270 and 55 µM, respectively). The pronounced cytoprotective effects of 7mGua and 8h7mGua were shown in a cellular model of oxidative stress, and effectiveness of 8h7mGua exceeded the classic PARP inhibitor 3-aminobenzamide. The obtained data indicate promise for the development of PARP inhibitors based on guanine derivatives and their testing using the models of ischemia-reperfusion tissue damage.


Assuntos
Miócitos Cardíacos , Inibidores de Poli(ADP-Ribose) Polimerases , Humanos , Animais , Ratos , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Peróxido de Hidrogênio/farmacologia , Estresse Oxidativo , Guanina/farmacologia
4.
Biochemistry (Mosc) ; 87(8): 823-831, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36171646

RESUMO

Previously, we have found that a nucleic acid metabolite, 7-methylguanine (7mGua), produced in the body can have an inhibitory effect on the poly(ADP-ribose) polymerase 1 (PARP1) enzyme, an important pharmacological target in anticancer therapy. In this work, using an original method of analysis of PARP1 activity based on monitoring fluorescence anisotropy, we studied inhibitory properties of 7mGua and its metabolite, 8-hydroxy-7-methylguanine (8h7mGua). Both compounds inhibited PARP1 enzymatic activity in a dose-dependent manner, however, 8h7mGua was shown to be a stronger inhibitor. The IC50 values for 8h7mGua at different concentrations of the NAD+ substrate were found to be 4 times lower, on average, than those for 7mGua. The more efficient binding of 8h7mGua in the PARP1 active site is explained by the presence of an additional hydrogen bond with the Glu988 catalytic residue. Experimental and computational studies did not reveal the effect of 7mGua and 8h7mGua on the activity of other DNA repair enzymes, indicating selectivity of their inhibitory action.


Assuntos
NAD , Ácidos Nucleicos , Guanina/análogos & derivados , Humanos
5.
Biochemistry (Mosc) ; 87(5): 443-449, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35790378

RESUMO

tRNA-guanine transglycosylase, an enzyme catalyzing replacement of guanine with queuine in human tRNA and participating in the translation mechanism, is involved in the development of cancer. However, information on the small-molecule inhibitors that can suppress activity of this enzyme is very limited. Molecular dynamics simulations were used to determine the amino acid residues that provide efficient binding of inhibitors in the active site of tRNA-guanine transglycosylase. It was demonstrated using 7-methylguanine molecule as a probe that the ability of the inhibitor to adopt a charged state in the environment of hydrogen bond acceptors Asp105 and Asp159 plays a key role in complex formation. Formation of the hydrogen bonds and hydrophobic contacts with Gln202, Gly229, Phe109, and Met259 residues are also important. It has been predicted that introduction of the substituents would have a different effect on the ability to inhibit tRNA-guanine transglycosylase, as well as the DNA repair protein poly(ADP-ribose) polymerase 1, which can contribute to the development of more efficient and selective compounds.


Assuntos
Guanina , RNA de Transferência , Guanina/análogos & derivados , Humanos , Ligação de Hidrogênio , RNA de Transferência/química
6.
Proc Natl Acad Sci U S A ; 115(5): E916-E924, 2018 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-29339505

RESUMO

Abasic (apurinic/apyrimidinic, AP) sites in DNA arise from spontaneous base loss or by enzymatic removal during base excision repair. It is commonly accepted that both classes of AP site have analogous biochemical properties and are equivalent substrates for AP endonucleases and AP lyases, although the relative roles of these two types of enzymes are not well understood. We provide here genetic and biochemical evidence that, in Arabidopsis, AP sites generated by spontaneous loss of N7-methylguanine (N7-meG) are exclusively repaired through an AP endonuclease-independent pathway initiated by FPG, a bifunctional DNA glycosylase with AP lyase activity. Abasic site incision catalyzed by FPG generates a single-nucleotide gap with a 3'-phosphate terminus that is processed by the DNA 3'-phosphatase ZDP before repair is completed. We further show that the major AP endonuclease in Arabidopsis (ARP) incises AP sites generated by enzymatic N7-meG excision but, unexpectedly, not those resulting from spontaneous N7-meG loss. These findings, which reveal previously undetected differences between products of enzymatic and nonenzymatic base release, may shed light on the evolution and biological roles of AP endonucleases and AP lyases.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/enzimologia , Arabidopsis/genética , Metilação de DNA , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/genética , Endonucleases/genética , Sítios de Ligação , Catálise , Sistema Livre de Células , Dano ao DNA , Reparo do DNA , Regulação da Expressão Gênica de Plantas , Guanina/análogos & derivados , Guanina/química , Mutação , Domínios Proteicos
7.
Int J Mol Sci ; 21(6)2020 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-32245127

RESUMO

7-Methylguanine (7-MG), a natural compound that inhibits DNA repair enzyme poly(ADP-ribose) polymerase 1 (PARP-1), can be considered as a potential anticancer drug candidate. Here we describe a study of 7-MG inhibition mechanism using molecular dynamics, fluorescence anisotropy and single-particle Förster resonance energy transfer (spFRET) microscopy approaches to elucidate intermolecular interactions between 7-MG, PARP-1 and nucleosomal DNA. It is shown that 7-MG competes with substrate NAD+ and its binding in the PARP-1 active site is mediated by hydrogen bonds and nonpolar interactions with the Gly863, Ala898, Ser904, and Tyr907 residues. 7-MG promotes formation of the PARP-1-nucleosome complexes and suppresses DNA-dependent PARP-1 automodification. This results in nonproductive trapping of PARP-1 on nucleosomes and likely prevents the removal of genotoxic DNA lesions.


Assuntos
Guanina/análogos & derivados , Poli(ADP-Ribose) Polimerase-1/metabolismo , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Catálise , Domínio Catalítico , Polarização de Fluorescência , Transferência Ressonante de Energia de Fluorescência , Guanina/química , Guanina/farmacologia , Humanos , Simulação de Dinâmica Molecular , Nucleossomos/metabolismo , Poli(ADP-Ribose) Polimerase-1/química , Inibidores de Poli(ADP-Ribose) Polimerases/química
8.
Molecules ; 24(21)2019 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-31683505

RESUMO

A wide range of endogenous and exogenous alkylating agents attack DNA to generate various alkylation adducts. N7-methyl-2-deoxyguanosine (Fm7dG) is the most abundant alkylative DNA lesion. If not repaired, Fm7dG can undergo spontaneous depurination, imidazole ring-opening, or bypass by translesion synthesis DNA polymerases. Human DNA polymerase η (polη) efficiently catalyzes across Fm7dG in vitro, but its structural basis is unknown. Herein, we report a crystal structure of polη in complex with templating Fm7dG and an incoming nonhydrolyzable dCTP analog, where a 2'-fluorine-mediated transition destabilization approach was used to prevent the spontaneous depurination of Fm7dG. The structure showed that polη readily accommodated the Fm7dG:dCTP base pair with little conformational change of protein and DNA. In the catalytic site, Fm7dG and dCTP formed three hydrogen bonds with a Watson-Crick geometry, indicating that the major keto tautomer of Fm7dG is involved in base pairing. The polη-Fm7dG:dCTP structure was essentially identical to the corresponding undamaged structure, which explained the efficient bypass of the major methylated lesion. Overall, the first structure of translesion synthesis DNA polymerase bypassing Fm7dG suggests that in the catalytic site of Y-family DNA polymerases, small N7-alkylguanine adducts may be well tolerated and form the canonical Watson-Crick base pair with dCTP through their keto tautomers.


Assuntos
Dano ao DNA , DNA Polimerase Dirigida por DNA/metabolismo , Alquilação , Pareamento de Bases , Domínio Catalítico , DNA/química , Nucleotídeos de Desoxicitosina/metabolismo , Desoxiguanosina/química , Humanos , Cinética , Metais/química , Modelos Moleculares , Conformação de Ácido Nucleico
9.
J Biol Chem ; 290(38): 23148-61, 2015 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-26240148

RESUMO

N-Methylpurines (NMPs), including N(7)-methylguanine (7MeG) and N(3)-methyladenine (3MeA), can be induced by environmental methylating agents, chemotherapeutics, and natural cellular methyl donors. In human cells, NMPs are repaired by the multi-step base excision repair pathway initiated by human alkyladenine glycosylase. Repair of NMPs has been shown to be affected by DNA sequence contexts. However, the nature of the sequence contexts has been poorly understood. We developed a sensitive method, LAF-Seq (Lesion-Adjoining Fragment Sequencing), which allows nucleotide-resolution digital mapping of DNA damage and repair in multiple genomic fragments of interest in human cells. We also developed a strategy that allows accurate measurement of the excision kinetics of NMP bases in vitro. We demonstrate that 3MeAs are induced to a much lower level by the SN2 methylating agent dimethyl sulfate and repaired much faster than 7MeGs in human fibroblasts. Induction of 7MeGs by dimethyl sulfate is affected by nearest-neighbor nucleotides, being enhanced at sites neighbored by a G or T on the 3' side, but impaired at sites neighbored by a G on the 5' side. Repair of 7MeGs is also affected by nearest-neighbor nucleotides, being slow if the lesions are between purines, especially Gs, and fast if the lesions are between pyrimidines, especially Ts. Excision of 7MeG bases from the DNA backbone by human alkyladenine glycosylase in vitro is similarly affected by nearest-neighbor nucleotides, suggesting that the effect of nearest-neighbor nucleotides on repair of 7MeGs in the cells is primarily achieved by modulating the initial step of the base excision repair process.


Assuntos
Adenina/análogos & derivados , Reparo do DNA/fisiologia , Fibroblastos/metabolismo , Guanina/análogos & derivados , Adenina/metabolismo , Linhagem Celular , Reparo do DNA/efeitos dos fármacos , Fibroblastos/citologia , Guanina/metabolismo , Humanos , Ésteres do Ácido Sulfúrico/farmacologia
10.
Methods ; 64(1): 59-66, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23876937

RESUMO

DNA glycosylases excise a broad spectrum of alkylated, oxidized, and deaminated nucleobases from DNA as the initial step in base excision repair. Substrate specificity and base excision activity are typically characterized by monitoring the release of modified nucleobases either from a genomic DNA substrate that has been treated with a modifying agent or from a synthetic oligonucleotide containing a defined lesion of interest. Detection of nucleobases from genomic DNA has traditionally involved HPLC separation and scintillation detection of radiolabeled nucleobases, which in the case of alkylation adducts can be laborious and costly. Here, we describe a mass spectrometry method to simultaneously detect and quantify multiple alkylpurine adducts released from genomic DNA that has been treated with N-methyl-N-nitrosourea (MNU). We illustrate the utility of this method by monitoring the excision of N3-methyladenine (3 mA) and N7-methylguanine (7 mG) by a panel of previously characterized prokaryotic and eukaryotic alkylpurine DNA glycosylases, enabling a comparison of substrate specificity and enzyme activity by various methods. Detailed protocols for these methods, along with preparation of genomic and oligonucleotide alkyl-DNA substrates, are also described.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Reparo do DNA , DNA/química , Espectrometria de Massas em Tandem/métodos , Alquilação , Bacillus cereus/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Adutos de DNA/química , Dano ao DNA , Humanos , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Salmonella typhi/genética
11.
Front Pharmacol ; 13: 842316, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35873588

RESUMO

7-Methylguanine (7-MG) competitively inhibits the DNA repair enzyme poly(ADP-ribose) polymerase (PARP) and RNA-modifying enzyme tRNA-guanine transglycosylase (TGT) and represents a potential anticancer drug candidate. Furthermore, as a natural compound, it could escape the serious side effects characteristic for approved synthetic PARP inhibitors. Here we present a comprehensive study of toxicological and carcinogenic properties of 7-MG. It was demonstrated that 7-MG does not induce mutations or structural chromosomal abnormalities, and has no blastomogenic activity. A treatment regimen with 7-MG has been established in mice (50 mg/kg per os, 3 times per week), exerting no adverse effects or changes in morphology. Preliminary data on the 7-MG anticancer activity obtained on transplantable tumor models support our conclusions that 7-MG can become a promising new component of chemotherapy.

12.
Front Pharmacol ; 13: 903699, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35614935

RESUMO

Accumulating evidence indicates that RNA methylation, as the most common modification of mRNA, is of great significance in tumor progression and metastasis. Colorectal cancer is a common malignant tumor of the digestive system that seriously affects the health of middle-aged and elderly people. Although there have been many studies on the biological mechanism of the occurrence and development of colorectal cancer, there are still major deficiencies in the diagnosis and prognosis of colorectal cancer. With the deep study of RNA methylation, it was found that RNA modification is highly related to colorectal cancer tumorigenesis, development and prognosis. Here, we will highlight various RNA chemical modifications including N6-methyladenosine, 5-methylcytosine, N1-methyladenosine, 7-methylguanine, pseudouridine and their modification enzymes followed by summarizing their functions in colorectal cancer.

13.
Cancers (Basel) ; 13(6)2021 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-33801950

RESUMO

The PARP family consists of 17 members with diverse functions, including those related to cancer cells' viability. Several PARP inhibitors are of great interest as innovative anticancer drugs, but they have low selectivity towards distinct PARP family members and exert serious adverse effects. We describe a family-wide study of the nicotinamide (NA) binding site, an important functional region in the PARP structure, using comparative bioinformatic analysis and molecular modeling. Mutations in the NA site and D-loop mobility around the NA site were identified as factors that can guide the design of selective PARP inhibitors. Our findings are of particular importance for the development of novel tankyrase (PARPs 5a and 5b) inhibitors for cancer therapy.

14.
J Mol Model ; 27(6): 184, 2021 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-34036469

RESUMO

In this paper, we aim to determine whether the N7-methylation can influence the base pairing properties of guanine by promoting the formation of guanine enol-tautomers. The keto- to -enol-tautomerization of N7-methylguanine (N7mG) and its base pairing patterns with all the canonical DNA bases have been investigated at the M06-2X/6-311+G(d,p) level of density functional theory. The barrier free energy calculations reveal that N7-methylation does not promote the keto- to enol- tautomerization of guanine. The Watson-Crick-like enol-N7mG:T1 or enol-N7mG:T2 base pair similar to what is observed experimentally is found to be energetically more stable than the keto-N7mG:T base pairs. However, the keto-N7mG:C1 which is structurally similar to the canonical G:C base pair is the most stable base pair among all the base pairs studied here. Thus, our calculations predict that N7mG would pair preferably with cytosine during DNA replication but there is also a probability that it can cause mutation through mispairing with thymine, in agreement with experimental observations.

15.
Front Bioeng Biotechnol ; 8: 595552, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33251203

RESUMO

Cyclic adenosine monophosphate (cAMP) has been known to play an important role in regulating morphological development and antibiotic production in Streptomyces coelicolor. However, the functional connection between cAMP levels and antibiotic production and the mechanism by which cAMP regulates antibiotic production remain unclear. In this study, metabolomics- and transcriptomics-based multi-omics analysis was applied to S. coelicolor strains that either produce the secondary metabolite actinorhodin (Act) or lack most secondary metabolite biosynthesis pathways including Act. Comparative multi-omics analysis of the two strains revealed that intracellular and extracellular cAMP abundance was strongly correlated with actinorhodin production. Notably, supplementation of cAMP improved cell growth and antibiotic production. Further multi-omics analysis of cAMP-supplemented S. coelicolor cultures showed an increase of guanine and the expression level of purine metabolism genes. Based on this phenomenon, supplementation with 7-methylguanine, a competitive inhibitor of reactions utilizing guanine, with or without additional cAMP supplementation, was performed. This experiment revealed that the reactions inhibited by 7-methylguanine are mediating the positive effect on growth and antibiotic production, which may occur downstream of cAMP supplementation.

16.
Genes Environ ; 42: 26, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32944094

RESUMO

INTRODUCTION: Urinary nicotine and cotinine levels are often measured as biomarkers for tobacco smoke exposure. However, these biomarkers are not appropriate to evaluate the effects of quitting smoking for several days, because of their short half-lives. In this study, we focused on the changes in the urinary 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL) levels of 55 patients in a smoking cessation program, because of the long half-life. At the same time, urinary 7-methylguanine (m7Gua) and 8-hydroxy-2'-deoxyguanosine (8-OHdG), as DNA damage markers of cigarette smoking, were also measured. RESULTS: In the subjects who completed the quit-smoking program (18 subjects out of 55), the urinary nicotine and cotinine levels decreased to 1.7 and 0.2% at 8 weeks after the first visit to the clinic. By contrast, the NNAL levels decreased to 12.3% at 8 weeks after quitting smoking. During the same period, the urinary m7Gua levels significantly decreased, from 27.32 µg/mg creatinine to 14.17 µg/mg creatinine by the elimination of subjects who showed increased levels of NNAL during the smoking cessation program. The 8-OHdG levels were also reduced within the same period, but were not significantly different. From the all data analysis, the urinary levels of cotinine and NNAL positively correlated with the level of m7Gua. CONCLUSIONS: NNAL may be an appropriate exposure marker for evaluating the smoking status of patients in a smoking cessation program. The urinary cotinine and NNAL levels positively correlated with the m7Gua levels.

17.
Sci Total Environ ; 598: 289-296, 2017 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-28445826

RESUMO

An increased understanding is needed of the physiological effects and plausible biological mechanisms that link PM2.5 (particulate matter with an aerodynamic diameter below 2.5µm) exposure to mortality and morbidities such as atherosclerosis and respiratory disease. PM2.5 causes carcinogenic health effects. Biomonitoring in humans has suggested that 8-oxo-7, 8-dihydro-2-deoxyguanosine (8-oxodG) and N7-methylguanine (N7-MeG) are correlated with oxidative and methylated DNA damage. Thus, it is meaningful to explore the mechanisms of mutagenesis and carcinogenesis associated with oxidative and methylated DNA damage by simultaneously measuring these two markers. We recruited 72 participants from 2 areas (residential and commercial as well as residential and industrial) in the greater Taipei metropolitan area at baseline. Personal samplers were used to collect 24-hour PM2.5-integrated samples. All participants completed an interview, and blood and urine samples were collected the next morning. All collection procedures were repeated twice after a two-month follow-up period. Urinary 8-oxodG and N7-MeG were assayed as biomarkers of oxidative and methylated DNA damage, respectively. Plasma superoxide dismutase (SOD) and glutathione peroxidase-1 (GPX-1) were measured as biomarkers of antioxidants. Urinary 1-hydroxypyrene (1-OHP) was used as a biomarker of exposure to polycyclic aromatic hydrocarbons (PAHs). The mean PM2.5 level was 37.3µg/m3 at baseline. PM2.5 concentrations were higher during winter than during spring and summer. After adjusting for confounds through a generalized estimating equation (GEE) analysis, N7-MeG was significantly increased by 8.1% (ß=0.034, 95% CIs=0.001-0.068) per 10µg/m3 increment in PM2.5. 8-oxodG levels were positively correlated with N7-MeG according to both cross-sectional and longitudinal analyses, and 1-OHP was significantly associated with increasing 8-oxodG and N7-MeG concentrations. Exposure to PM2.5 increases methylated DNA damage. The mean level of urinary N7-MeG was 1000-fold higher than that of 8-oxodG.


Assuntos
Poluentes Atmosféricos/efeitos adversos , Dano ao DNA , Metilação de DNA , Estresse Oxidativo , Material Particulado/efeitos adversos , 8-Hidroxi-2'-Desoxiguanosina , Adulto , Estudos Transversais , Desoxiguanosina/análogos & derivados , Desoxiguanosina/análise , Monitoramento Ambiental , Feminino , Guanina/análogos & derivados , Guanina/análise , Humanos , Estudos Longitudinais , Masculino , Taiwan , Adulto Jovem
18.
J Cancer Prev ; 19(3): 216-23, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25337591

RESUMO

BACKGROUND: Seamustard and seatangle are commonly consumed seaweeds in Korea and rich sources of non-digestible polysaccharides which possess biological activities. However anti-mutagenic and anti-cancer activities of these seaweeds under physiological condition have not been clarified yet. The objective of this study was to investigate the effect of seaweeds consumption on azoxymethane (AOM) -induced DNA methylation at N(7) and O(6) position of guanine base, an indicator of DNA damage related to cancer initiation. METHODS: THIRTY ICR MICE WERE DIVIDED INTO FIVE GROUPS AND FED ONE OF THE FOLLOWING DIETS FOR TWO WEEKS: control diet, diet containing 10% water-soluble or water-insoluble fraction of seamustard or seatangle. After two weeks of experimental diet AOM was injected at 6 hours before sacrifice and N(7)-methylguanine (N(7)-meG) and O(6)-methylguanine (O(6)-meG) from the colon and liver DNA were quantified using a gas chromatography-mass spectroscopy. RESULTS: Water-soluble fractions of both seamustard and seatangle significantly reduced AOM-induced production of N(7)-meG guanine in colon and liver. Also water-soluble fractions of these seaweeds suppressed the level of methylation at O(6)-guanine of colon and liver directly responsible for tumorigenesis. While water-insoluble fraction of seamustard suppressed the production of N(7)-meG in liver this seaweed fraction decreased O(6)-meG and the ratio of O(6)/N(7)-meG in liver. Water insoluble fraction of seatangle decreased both O(6)- and N(7)-meG in colon and liver. Supplementation of all seaweeds extracts increased fecal weight of animals and the increase of fecal weight by water-insoluble fraction of seaweeds were higher than that by water-soluble fraction. CONCLUSION: Seamustard and seatangle intake may effectively prevent colon and liver carcinogenesis by decreasing DNA damage and the mechanism of inhibiting carcinogenesis by seaweeds in a long term study are warranted.

19.
DNA Repair (Amst) ; 13: 50-4, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24286669

RESUMO

Tandem helical repeats have emerged as an important DNA binding architecture. DNA glycosylase AlkD, which excises N3- and N7-alkylated nucleobases, uses repeating helical motifs to bind duplex DNA and to selectively pause at non-Watson-Crick base pairs. Remodeling of the DNA backbone promotes nucleotide flipping of the lesion and the complementary base into the solvent and toward the protein surface, respectively. The important features of this new DNA binding architecture that allow AlkD to distinguish between damaged and normal DNA without contacting the lesion are poorly understood. Here, we show through extensive mutational analysis that DNA binding and N3-methyladenine (3mA) and N7-methylguanine (7mG) excision are dependent upon each residue lining the DNA binding interface. Disrupting electrostatic or hydrophobic interactions with the DNA backbone substantially reduced binding affinity and catalytic activity. These results demonstrate that residues seemingly only involved in general DNA binding are important for catalytic activity and imply that base excision is driven by binding energy provided by the entire substrate interface of this novel DNA binding architecture.


Assuntos
Adenina/análogos & derivados , DNA Glicosilases/química , DNA Glicosilases/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Guanina/análogos & derivados , Adenina/metabolismo , Domínio Catalítico , DNA Glicosilases/genética , Reparo do DNA , Proteínas de Ligação a DNA/genética , Guanina/metabolismo , Modelos Moleculares , Mutação , Conformação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Especificidade por Substrato
20.
FEBS Lett ; 587(21): 3575-80, 2013 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-24076028

RESUMO

Thermoplasma acidophilum is a thermo-acidophilic archaeon. We purified tRNA(Leu) (UAG) from T. acidophilum using a solid-phase DNA probe method and determined the RNA sequence after determining via nucleoside analysis and m(7)G-specific aniline cleavage because it has been reported that T. acidophilum tRNA contains m(7)G, which is generally not found in archaeal tRNAs. RNA sequencing and liquid chromatography-mass spectrometry revealed that the m(7)G modification exists at a novel position 49. Furthermore, we found several distinct modifications, which have not previously been found in archaeal tRNA, such as 4-thiouridine9, archaeosine13 and 5-carbamoylmethyuridine34. The related tRNA modification enzymes and their genes are discussed.


Assuntos
RNA de Transferência/química , Thermoplasma/metabolismo , Sequência de Aminoácidos , Proteínas Arqueais/metabolismo , Sequência de Bases , Guanosina/química , Espectrometria de Massas , Conformação de Ácido Nucleico , Thermoplasma/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA