Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
World J Urol ; 39(7): 2685-2690, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33078215

RESUMO

PURPOSE: Aging increases oxidative stress, which can have delirious effects on smooth and striated muscle resulting in bladder dysfunction. Consequently, in women aged over 60 years, urinary incontinence (UI) is a prevalent health problem. Despite the prevalence and consequences, UI continues to be undertreated simply because there are few therapeutic options. METHODS: Here we investigated whether 8-aminoguanine (8-AG), a purine nucleoside phosphorylase (PNPase inhibitor), would restore urethra and external sphincter (EUS) muscle morphology in the aged rat. Aged (> 25 months) female Fischer 344 rats were randomized to oral treatment with 8-AG (6 weeks) or placebo, and the urethra and EUS were evaluated by electron microscopy and protein expression (western immunoblotting). RESULTS: Aging was associated with mitochondrial degeneration in smooth and striated muscle cells as compared to young rats. We also observed a significant increase in biomarkers such as PARP, a downstream activator of oxidative/nitrosative stress. Treatment of aged rats with 8-AG normalized all abnormalities to that of a younger state. CONCLUSIONS: 8-AG, a potent inhibitor of PNPase, reverses age-related lower urinary tract morphological and biochemical changes. Our observations support the concept that 8-AG will reverse age-induced lower urinary tract disorders such as UI. These initial findings could have therapeutic implications for the prevention and treatment of age-related UI.


Assuntos
Guanina/análogos & derivados , Músculo Estriado/efeitos dos fármacos , Músculo Estriado/patologia , Uretra/efeitos dos fármacos , Uretra/patologia , Animais , Feminino , Guanina/farmacologia , Guanina/uso terapêutico , Distribuição Aleatória , Ratos , Ratos Endogâmicos F344
2.
Purinergic Signal ; 16(2): 187-211, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32367441

RESUMO

The goal of this study was to determine the validity of using N6-etheno-bridged adenine nucleotides to evaluate ecto-nucleotidase activity. We observed that the metabolism of N6-etheno-ATP versus ATP was quantitatively similar when incubated with recombinant CD39, ENTPD2, ENTPD3, or ENPP-1, and the quantitative metabolism of N6-etheno-AMP versus AMP was similar when incubated with recombinant CD73. This suggests that ecto-nucleotidases process N6-etheno-bridged adenine nucleotides similarly to endogenous adenine nucleotides. Four cell types rapidly (t1/2, 0.21 to 0.66 h) metabolized N6-etheno-ATP. Applied N6-etheno-ATP was recovered in the medium as N6-etheno-ADP, N6-etheno-AMP, N6-etheno-adenosine, and surprisingly N6-etheno-adenine; intracellular N6-etheno compounds were undetectable. This suggests minimal cellular uptake, intracellular metabolism, or deamination of these compounds. N6-etheno-ATP, N6-etheno-ADP, N6-etheno-AMP, N6-etheno-adenosine, and N6-etheno-adenine had little affinity for recombinant A1, A2A, or A2B receptors, for a subset of P2X receptors (3H-α,ß-methylene-ATP binding to rat bladder membranes), or for a subset of P2Y receptors (35S-ATP-αS binding to rat brain membranes), suggesting minimal pharmacological activity. N6-etheno-adenosine was partially converted to N6-etheno-adenine in four different cell types; this was blocked by purine nucleoside phosphorylase (PNPase) inhibition. Intravenous N6-etheno-ATP was quickly metabolized, with N6-etheno-adenine being the main product in naïve rats, but not in rats pretreated with a PNPase inhibitor. PNPase inhibition reduced the urinary excretion of endogenous adenine and attenuated the conversion of exogenous adenosine to adenine in the renal cortex. The N6-etheno-bridge method is a valid technique to assess extracellular metabolism of adenine nucleotides by ecto-nucleotidases. Also, rats express an enzyme with PNPase-like activity that metabolizes N6-etheno-adenosine to N6-etheno-adenine.


Assuntos
Nucleotídeos de Adenina/metabolismo , Adenosina Trifosfatases/metabolismo , Adenosina/metabolismo , Purina-Núcleosídeo Fosforilase/metabolismo , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/análogos & derivados , Trifosfato de Adenosina/metabolismo , Animais , Masculino , Nucleotidases/metabolismo , Ratos
3.
Sci Rep ; 14(1): 22652, 2024 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-39349636

RESUMO

The metabolic syndrome is characterized by obesity, insulin resistance, dyslipidemia and hypertension and predisposes to cardiorenal injury. Here, we tested our hypothesis that 8-aminoguanine, an endogenous purine, exerts beneficial effects in Zucker Diabetic-Sprague Dawley (ZDSD) rats, a preclinical model of the metabolic syndrome. ZDSD rats were instrumented for blood pressure radiotelemetry and randomized to vehicle or 8-aminoguanine (10 mg/kg/day, po). The protocol was divided into four phases: Phase 1: 17 days of tap water/normal diet; Phase 2: 30 days of 1% saline/normal diet; Phase 3: 28 days of 1% saline/diabetogenic diet; Phase 4: acute/terminal measurements. 8-Aminoguanine: (1) decreased mean arterial blood pressure (P = 0.0004; 119.5 ± 1.0 (vehicle) versus 116.3 ± 1.0 (treated) mmHg) throughout all three phases of the radiotelemetry study; (2) rebalanced the purine metabolome away from hypoxanthine (pro-inflammatory) and towards inosine (anti-inflammatory); (3) reduced by 71% circulating IL-1ß, a cytokine that contributes to hypertension-induced adverse cardiovascular events and type 2 diabetes; (4) attenuated renovascular responses to angiotensin II; (5) improved cardiac and renal histopathology; (6) attenuated diet-induced polydipsia/polyuria; and (7) reduced HbA1c. In the metabolic syndrome, 8-aminoguanine lowers blood pressure, improves diabetes and reduces organ damage, likely by rebalancing the purine metabolome leading to reductions in injurious cytokines such as IL-1ß.


Assuntos
Síndrome Metabólica , Ratos Zucker , Animais , Síndrome Metabólica/metabolismo , Síndrome Metabólica/tratamento farmacológico , Ratos , Masculino , Pressão Sanguínea/efeitos dos fármacos , Ratos Sprague-Dawley , Guanina/análogos & derivados , Guanina/metabolismo , Guanina/farmacologia , Modelos Animais de Doenças
4.
Hypertension ; 80(11): 2265-2279, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37503660

RESUMO

Screening of compounds comprising 8-substituted guanine revealed that 8-aminoguanosine and 8-aminoguanine cause diuresis/natriuresis/glucosuria, yet decrease potassium excretion. Subsequent investigations demonstrated that 8-aminoguanosine's effects are mediated by its metabolite 8-aminoguanine. The mechanism by which 8-aminoguanine causes diuresis/natriuresis/glucosuria involves inhibition of PNPase (purine nucleoside phosphorylase), which increases renal interstitial inosine levels. Additional evidence suggests that inosine, via indirect or direct adenosine A2B receptor activation, increases renal medullary blood flow which enhances renal excretory function. Likely, 8-aminoguanine has pleiotropic actions that also alter renal excretory function. Indeed, the antikaliuretic effects of 8-aminoguanine are independent of PNPase inhibition. 8-Aminoguanine is an endogenous molecule; nitrosative stress leads to production of biomolecules containing 8-nitroguanine moieties. Degradation of these biomolecules releases 8-nitroguanosine and 8-nitro-2'-deoxyguanosine which are converted to 8-aminoguanine. Also, guanosine and guanine per se may contribute to 8-aminoguanine formation. 8-Aminoinosine, 8-aminohypoxanthine, and 8-aminoxanthine likewise induce diuresis/natriuresis/glucosuria, yet do not reduce potassium excretion. Thus, there are several pharmacologically active 8-aminopurines with nuanced effects on renal excretory function. Chronic treatment with 8-aminoguanine attenuates hypertension in deoxycorticosterone/salt rats, prevents strokes, and increases lifespan in Dahl salt-sensitive rats on a high salt diet and attenuates the metabolic syndrome in rats; 8-aminoguanosine retards progression of pulmonary hypertension in rats and anemia and organ damage in sickle cell mice. 8-Aminoguanine reverses age-associated lower urinary tract dysfunction and retinal degeneration. 8-Aminopurines represent a new class of agents (and potentially endogenous factors) that have beneficial effects on the cardiovascular system and kidneys and may turn back the clock in age-associated diseases.


Assuntos
Sistema Cardiovascular , Guanina , Ratos , Camundongos , Animais , Ratos Endogâmicos Dahl , Guanina/metabolismo , Guanina/farmacologia , Natriurese , Sistema Cardiovascular/metabolismo , Potássio , Inosina/farmacologia
5.
Continence (Amst) ; 62023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37389026

RESUMO

This review summarises the presentations during a workshop session entitled "The Use of Soluble Guanylate Cyclase Activators to Treat Benign Prostatic Hyperplasia, Obstruction and Fibrosis - Mechanistic Concepts and Clinical Implications" at the International Continence Society (ICS) 2021 Melbourne Virtual meeting. Benign prostatic hyperplasia (BPH) is a highly prevalent condition that can result in bladder outflow obstruction (BOO) and development of lower urinary tract symptoms (LUTS), and by 80 years of age is present in about 75% of men. Current pharmacological therapies include α-adrenoceptor antagonists, 5α-reductase inhibitors, and the phosphodiesterase type 5 (PDE5) inhibitor, tadalafil. The efficacy of tadalafil suggests a role for nitric oxide (NO•) through activation of soluble guanylate cyclase (sGC) and production of cyclic guanosine 3'5'-monophosphate (cGMP), a cyclic nucleotide that relaxes smooth muscle, reduces neurotransmitter release and also acts as an antifibrotic agent. Patient refractoriness to tadalafil may be, for example, due to sGC inactivation due to oxidative stress. The workshop discussed the superiority of cinaciguat, an sGC activator that functions even when the enzyme is oxidised, over PDE5 inhibitors, and potentially its use in combination with agents that reduce formation of reactive oxygen species.

6.
Biochem Pharmacol ; 201: 115076, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35551915

RESUMO

BACKGROUND: 8-Aminoguanine exerts natriuretic and antihypertensive activity. Whether and how "free" 8-aminoguanine exists in vivo is unclear. Because 8-nitroguanosine is naturally occurring, we tested the hypothesis that 8-aminoguanine can arise from: pathway 1, 8-nitroguanosine â†’ 8-aminoguanosine â†’ 8-aminoguanine; and pathway 2, 8-nitroguanosine â†’ 8-nitroguanine â†’ 8-aminoguanine. METHODS: 8-Aminoguanine biosynthesis was explored in rats using renal microdialysis, mass spectrometry and enzyme kinetics. RESULTS: In Sprague-Dawley rats, 8-nitroguanosine infusions increased kidney levels of 8-nitroguanine, 8-aminoguanosine and 8-aminoguanine; 8-nitroguanine infusions increased 8-aminoguanine. Purine nucleoside phosphorylase (PNPase) converted 8-nitroguanosine to 8-nitroguanine and 8-aminoguanosine to 8-aminoguanine. Forodesine (PNPase inhibitor) reduced metabolism of 8-nitroguanosine by pathway 2 and shunted metabolism of 8-nitroguanosine to 8-aminoguanosine. In Dahl salt-sensitive rats, 8-nitroguanosine infusions increased kidney levels of 8-nitroguanine, 8-aminoguanosine and 8-aminoguanine. These results indicate that both pathways 1 and 2 participate in the biosynthesis of 8-aminoguanine in Sprague-Dawley and Dahl rats. Endogenous 8-aminoguanine in kidneys and urine were elevated many-fold in Dahl, compared to Sprague-Dawley, rats. The increased levels of 8-aminoguanine in Dahl rats were not due to alterations in pathways 1 and 2 but were associated with increased urine levels of endogenous 8-nitroguanosine suggesting that the "upstream" production of 8-nitroguanosine was increased in Dahl rats. Dahl rats are known to have high levels of peroxynitrite, and peroxynitrite is known to nitrate guanosine in biomolecules. Here we confirm that a peroxynitrite donor increases kidney levels of 8-aminoguanine. CONCLUSION: 8-Aminoguanine occurs naturally via two distinct pathways and kidney levels of 8-aminoguanine are increased in Dahl rats, likely due to increased production of 8-nitroguanosine, a by-product of peroxynitrite chemistry.


Assuntos
Hipertensão , Ácido Peroxinitroso , Animais , Anti-Hipertensivos , Guanina/análogos & derivados , Hipertensão/metabolismo , Rim/metabolismo , Ácido Peroxinitroso/metabolismo , Ratos , Ratos Endogâmicos Dahl , Ratos Sprague-Dawley
7.
Artigo em Inglês | MEDLINE | ID: mdl-34676378

RESUMO

Lower urinary tract (LUT) dysfunction is common in the older adult. Aging is associated with a number of both storage and voiding problems which are classified into syndromes with overlapping symptoms. Despite the prevalence and consequences of these syndromes, LUT disorders continue to be undertreated as few therapeutic options exist. Here, we propose that dysregulated metabolism of purine nucleotides results in an accumulation of uro-damaging hypoxanthine (a source of reactive oxygen species or ROS), which provides a mechanism for defects in sensory signaling and contractility, culminating in abnormal urodynamic behavior.

8.
J Am Heart Assoc ; 7(21): e010085, 2018 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-30608204

RESUMO

Background 8-Aminoguanosine and 8-aminoguanine are K+-sparing natriuretics that increase glucose excretion. Most effects of 8-aminoguanosine are due to its metabolism to 8-aminoguanine. However, the mechanism by which 8-aminoguanine affects renal function is unknown and is the focus of this investigation. Methods and Results Because 8-aminoguanine has structural similarities with inhibitors of the epithelial sodium channel (ENaC), Na+/H+ exchangers, and adenosine A1 receptors, we examined the effects of 8-aminoguanine on EN aC activity in mouse collecting duct cells, on intracellular pH of human proximal tubular epithelial cells, on responses to a selective A1-receptor agonist in vivo, and on renal excretory function in A1-receptor knockout rats. These experiments showed that 8-aminoguanine did not block EN aC, Na+/H+ exchangers, or A1 receptors. Because Rac1 enhances activity of mineralocorticoid receptors and some guanosine analogues inhibit Rac1, we examined the effects of 8-aminoguanine on Rac1 activity in mouse collecting duct cells. Rac1 activity was significantly inhibited by 8-aminoguanine. Because in vitro 8-aminoguanine is a purine nucleoside phosphorylase ( PNP ase) inhibitor, we examined the effects of a natriuretic dose of 8-aminoguanine on urinary excretion of PNP ase substrates and products. 8-Aminoguanine increased and decreased, respectively, urinary excretion of PNP ase substrates and products. Next we compared in rats the renal effects of intravenous doses of 9-deazaguanine ( PNP ase inhibitor) versus 8-aminoguanine. 8-Aminoguanine and 9-deazaguanine induced similar increases in urinary Na+ and glucose excretion, yet only 8-aminoguanine reduced K+ excretion. Nsc23766 (Rac1 inhibitor) mimicked the effects of 8-aminoguanine on K+ excretion. Conclusions 8-Aminoguanine increases Na+ and glucose excretion by blocking PNP ase and decreases K+ excretion by inhibiting Rac1.


Assuntos
Diurese/efeitos dos fármacos , Glicosúria Renal/induzido quimicamente , Guanina/análogos & derivados , Natriurese/efeitos dos fármacos , Potássio/urina , Purina-Núcleosídeo Fosforilase/antagonistas & inibidores , Proteínas rac1 de Ligação ao GTP/antagonistas & inibidores , Animais , Guanina/efeitos adversos , Guanina/farmacologia , Masculino , Ratos , Ratos Sprague-Dawley , Eliminação Renal
9.
Physiol Rep ; 2(5)2014 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-24872359

RESUMO

In cell culture, extracellular guanosine increases extracellular adenosine by attenuating the disposition of extracellular adenosine (American Journal of Physiology - Cell Physiology 304: C406-C421, 2013). The goal of this investigation was to determine whether this "guanosine-adenosine mechanism" is operative in an intact organ. Twenty-seven isolated, perfused mouse kidneys were subjected to metabolic poisons (iodoacetate plus 2,4-dinitrophenol) to cause energy depletion and thereby stimulate renal adenosine production. Adenosine levels in the renal venous perfusate increased from a baseline of 36 ± 8 to 499 ± 96, 258 ± 50, and 71 ± 13 nmol/L at 15, 30, and 60 min, respectively, after administering metabolic poisons (% of basal; 1366 ± 229, 715 ± 128, and 206 ± 33, respectively). Changes in renal venous levels of guanosine closely mirrored the time course of changes in adenosine: baseline of 15 ± 2 to 157 ± 13, 121 ± 8, and 50 ± 5 nmol/L at 15, 30, and 60 min, respectively (% of basal; 1132 ± 104, 871 ± 59, and 400 ± 51, respectively). Freeze-clamp experiments in 12 kidneys confirmed that metabolic poisons increased kidney tissue levels of adenosine and guanosine. In eight additional kidneys, we examined the ability of guanosine to reduce the renal clearance of exogenous adenosine; and these experiments revealed that guanosine significantly decreased the renal extraction of adenosine. Because guanosine is metabolized by purine nucleoside phosphorylase (PNPase), in another set of 16 kidneys we examined the effects of 8-aminoguanine (PNPase inhibitor) on renal venous levels of adenosine and inosine (adenosine metabolite). Kidneys treated with 8-aminoguanine showed a more robust increase in both adenosine and inosine in response to metabolic poisons. We conclude that in the intact kidney, guanosine regulates adenosine levels.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA