RESUMO
We performed the first proteogenomic characterization of hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC) using paired tumor and adjacent liver tissues from 159 patients. Integrated proteogenomic analyses revealed consistency and discordance among multi-omics, activation status of key signaling pathways, and liver-specific metabolic reprogramming in HBV-related HCC. Proteomic profiling identified three subgroups associated with clinical and molecular attributes including patient survival, tumor thrombus, genetic profile, and the liver-specific proteome. These proteomic subgroups have distinct features in metabolic reprogramming, microenvironment dysregulation, cell proliferation, and potential therapeutics. Two prognostic biomarkers, PYCR2 and ADH1A, related to proteomic subgrouping and involved in HCC metabolic reprogramming, were identified. CTNNB1 and TP53 mutation-associated signaling and metabolic profiles were revealed, among which mutated CTNNB1-associated ALDOA phosphorylation was validated to promote glycolysis and cell proliferation. Our study provides a valuable resource that significantly expands the knowledge of HBV-related HCC and may eventually benefit clinical practice.
Assuntos
Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/virologia , Frutose-Bifosfato Aldolase/genética , Vírus da Hepatite B , Hepatite B Crônica/complicações , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/virologia , Proteogenômica/métodos , beta Catenina/genética , Animais , Proliferação de Células , Estudos de Coortes , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Células Hep G2 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Pessoa de Meia-Idade , Microambiente Tumoral/genéticaRESUMO
CCCTC-binding factor (CTCF) and cohesin are key players in three-dimensional chromatin organization. The topologically associating domains (TADs) demarcated by CTCF are remarkably well conserved between species, although genome-wide CTCF binding has diverged substantially following transposon-mediated motif expansions. Therefore, the CTCF consensus motif poorly predicts TADs, and additional factors must modulate CTCF binding and subsequent TAD formation. Here, we demonstrate that the ChAHP complex (CHD4, ADNP, HP1) competes with CTCF for a common set of binding motifs. In Adnp knockout cells, novel insulated regions are formed at sites normally bound by ChAHP, whereas proximal canonical boundaries are weakened. These data reveal that CTCF-mediated loop formation is modulated by a distinct zinc-finger protein complex. Strikingly, ChAHP-bound loci are mainly situated within less diverged SINE B2 transposable elements. This implicates ChAHP in maintenance of evolutionarily conserved spatial chromatin organization by buffering novel CTCF binding sites that emerged through SINE expansions.
Assuntos
Fator de Ligação a CCCTC/metabolismo , Cromatina/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , DNA Helicases/metabolismo , Células-Tronco Embrionárias/metabolismo , Proteínas de Homeodomínio/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Retroelementos , Animais , Sítios de Ligação , Linhagem Celular , Homólogo 5 da Proteína Cromobox , Células-Tronco Embrionárias/citologia , Camundongos , Ligação Proteica , Domínios ProteicosRESUMO
Bone metastasis is a frequent and incurable consequence of advanced prostate cancer (PC). An interplay between disseminated tumor cells and heterogeneous bone resident cells in the metastatic niche initiates this process. Melanoma differentiation associated gene-9 (mda-9/Syntenin/syndecan binding protein) is a prometastatic gene expressed in multiple organs, including bone marrow-derived mesenchymal stromal cells (BM-MSCs), under both physiological and pathological conditions. We demonstrate that PDGF-AA secreted by tumor cells induces CXCL5 expression in BM-MSCs by suppressing MDA-9-dependent YAP/MST signaling. CXCL5-derived tumor cell proliferation and immune suppression are consequences of the MDA-9/CXCL5 signaling axis, promoting PC disease progression. mda-9 knockout tumor cells express less PDGF-AA and do not develop bone metastases. Our data document a previously undefined role of MDA-9/Syntenin in the tumor and microenvironment in regulating PC bone metastasis. This study provides a framework for translational strategies to ameliorate health complications and morbidity associated with advanced PC.
Assuntos
Neoplasias Ósseas , Melanoma , Neoplasias da Próstata , Masculino , Humanos , Sinteninas/genética , Sinteninas/metabolismo , Melanoma/metabolismo , Neoplasias da Próstata/genética , Transdução de Sinais/genética , Neoplasias Ósseas/genética , Linhagem Celular Tumoral , Microambiente Tumoral , Metástase NeoplásicaRESUMO
The Lysinibacillus sphaericus proteins Tpp49Aa1 and Cry48Aa1 can together act as a toxin toward the mosquito Culex quinquefasciatus and have potential use in biocontrol. Given that proteins with sequence homology to the individual proteins can have activity alone against other insect species, the structure of Tpp49Aa1 was solved in order to understand this protein more fully and inform the design of improved biopesticides. Tpp49Aa1 is naturally expressed as a crystalline inclusion within the host bacterium, and MHz serial femtosecond crystallography using the novel nanofocus option at an X-ray free electron laser allowed rapid and high-quality data collection to determine the structure of Tpp49Aa1 at 1.62 Å resolution. This revealed the packing of Tpp49Aa1 within these natural nanocrystals as a homodimer with a large intermolecular interface. Complementary experiments conducted at varied pH also enabled investigation of the early structural events leading up to the dissolution of natural Tpp49Aa1 crystals-a crucial step in its mechanism of action. To better understand the cooperation between the two proteins, assays were performed on a range of different mosquito cell lines using both individual proteins and mixtures of the two. Finally, bioassays demonstrated Tpp49Aa1/Cry48Aa1 susceptibility of Anopheles stephensi, Aedes albopictus, and Culex tarsalis larvae-substantially increasing the potential use of this binary toxin in mosquito control.
Assuntos
Bacillaceae , Bacillus , Culex , Praguicidas , Animais , Bacillaceae/química , Bacillaceae/metabolismo , Controle de Mosquitos , Larva/metabolismoRESUMO
BACKGROUND: With the improvement of living standards, the quality of chicken has become a significant concern. Chinese Dagu Chicken (dual-purpose type) and Arbor Acres plus broiler (AA+ broiler) (meat-type) were selected as the research subjects in this study, the meat quality of the breast and leg muscles were measured. However, the molecular mechanism(s) underlying regulation of muscle development are not yet fully elucidated. Therefore, finding molecular markers or major genes that regulate muscle quality has become a crucial breakthrough in chicken breeding. Unraveling the molecular mechanism behind meat traits in chicken and other domestic fowl is facilitated by identifying the key genes associated with these developmental events. Here, a comparative transcriptomic analysis of chicken meat was conducted on breast muscles (BM) and leg muscles (LM) in AA+ broilers (AA) and Dagu chicken (DG) to explore the differences in their meat traits employing RNA-seq. RESULTS: Twelve cDNA libraries of BM and LM from AA and DG were constructed from four experimental groups, yielding 14,464 genes. Among them, Dagu chicken breast muscles (DGB) vs AA+ broilers breast muscles (AAB) showed 415 upregulated genes and 449 downregulated genes, Dagu chicken leg muscles (DGL) vs AA+ broilers leg muscles (AAL) exhibited 237 upregulated genes and 278 downregulated genes, DGL vs DGB demonstrated 391 upregulated genes and 594 downregulated genes, and AAL vs AAB displayed 122 upregulated genes and 154 downregulated genes. 13 genes, including nine upregulated genes (COX5A, COX7C, NDUFV1, UQCRFS1, UQCR11, BRT-1, FGF14, TMOD1, MYOZ2) and four downregulated genes (MYBPC3, MYO7B, MTMR7, and TNNC1), were found to be associated with the oxidative phosphorylation signaling pathway. Further analysis revealed that the differentially expressed genes (DEGs) from muscle were enriched in various pathways, such as metabolic pathways, oxidative phosphorylation, carbon metabolism, glycolysis, extracellular matrix-receptor interaction, biosynthesis of amino acids, focal adhesion, vascular smooth muscle contraction, and cardiac muscle contraction, all of which are involved in muscle development and metabolism. This study also measured the meat quality of the breast and leg muscles from the two breeds, which demonstrated superior overall meat quality in Chinese Dagu Chicken compared to the AA+ broiler. CONCLUSIONS: Our findings show that the meat quality of dual-purpose breeds (Chinese Dagu chicken) is higher than meat-type (AA+ broiler), which may be related to the DEGs regulating muscle development and metabolism. Our findings also provide transcriptomic insights for a comparative analysis of molecular mechanisms underlying muscle development between the two breeds, and have practical implications for the improvement of chicken breeding practices.
Assuntos
Galinhas , Perfilação da Expressão Gênica , Carne , Animais , Galinhas/genética , Galinhas/metabolismo , Galinhas/crescimento & desenvolvimento , Carne/normas , Carne/análise , Transcriptoma , Músculo Esquelético/metabolismo , Masculino , População do Leste AsiáticoRESUMO
Peptides and proteins encoded by noncanonical open reading frames (ORFs) of circRNAs have recently been recognized to play important roles in disease progression, but the biological functions and mechanisms of these peptides and proteins are largely unknown. Here, we identified a potential coding circular RNA, circTRIM1, that was upregulated in doxorubicin-resistant TNBC cells by intersecting transcriptome and translatome RNA-seq data, and its expression was correlated with clinicopathological characteristics and poor prognosis in patients with TNBC. CircTRIM1 possesses a functional IRES element along with an 810 nt ORF that can be translated into a novel endogenously expressed protein termed TRIM1-269aa. Functionally, we demonstrated that TRIM1-269aa, which is involved in the biological functions of circTRIM1, promoted chemoresistance and metastasis in TNBC cells both in vitro and in vivo. In addition, we found that TRIM1-269aa can be packaged into exosomes and transmitted between TNBC cells. Mechanistically, TRIM1-269aa enhanced the interaction between MARCKS and calmodulin, thus promoting the calmodulin-dependent translocation of MARCKS, which further initiated the activation of the PI3K/AKT/mTOR pathway. Overall, circTRIM1, which encodes TRIM1-269aa, promoted TNBC chemoresistance and metastasis by enhancing MARCKS translocation and PI3K/AKT/mTOR activation. Our investigation has yielded novel insights into the roles of protein-coding circRNAs and supported circTRIM1/TRIM1-269aa as a novel promising prognostic and therapeutic target for patients with TNBC.
Assuntos
Resistencia a Medicamentos Antineoplásicos , Proteínas Associadas aos Microtúbulos , Substrato Quinase C Rico em Alanina Miristoilada , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , RNA Circular , Serina-Treonina Quinases TOR , Fatores de Transcrição , Neoplasias de Mama Triplo Negativas , Animais , Feminino , Humanos , Camundongos , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Metástase Neoplásica , Fosfatidilinositol 3-Quinases/metabolismo , Prognóstico , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Circular/genética , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Proteínas com Motivo Tripartido/metabolismo , Proteínas com Motivo Tripartido/genética , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias de Mama Triplo Negativas/metabolismo , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Calmodulina/metabolismo , Substrato Quinase C Rico em Alanina Miristoilada/metabolismoRESUMO
Early-onset epilepsy following ischemic stroke is a severe neurological condition, the pathogenesis of which remains incompletely understood. Recent studies suggest that Neural stem/progenitor cells (NSPCs) play a crucial role in the disease process, yet the precise molecular mechanisms regulating NSPCs have not been thoroughly investigated. This study utilized single-cell transcriptome sequencing and bioinformatics analysis to identify disease-related genes, which were subsequently validated in both in vitro and in vivo experiments. The findings revealed that Hsp90aa1 (heat shock protein 90 kDa alpha, class A member 1), Jun proto-oncogene (JUN), and CC Motif Ligation 2 (Ccl2) constitute an important regulatory axis influencing the migration and differentiation of NSPCs, potentially impacting the onset and progression of early-onset epilepsy post-ischemic stroke. Additionally, the expression of Hsp90aa1 was found to influence the likelihood of seizure occurrence and the severity of brain ischemia.
Assuntos
Diferenciação Celular , Movimento Celular , Epilepsia , Proteínas de Choque Térmico HSP90 , AVC Isquêmico , Células-Tronco Neurais , Animais , Masculino , Camundongos , Diferenciação Celular/fisiologia , Movimento Celular/fisiologia , Progressão da Doença , Epilepsia/metabolismo , Epilepsia/genética , Proteínas de Choque Térmico HSP90/metabolismo , Proteínas de Choque Térmico HSP90/genética , AVC Isquêmico/metabolismo , AVC Isquêmico/patologia , Camundongos Endogâmicos C57BL , Células-Tronco Neurais/metabolismo , Proteínas Proto-Oncogênicas c-junRESUMO
Blepharophimosis with intellectual disability (BIS) is a recently recognized disorder distinct from Nicolaides-Baraister syndrome that presents with distinct facial features of blepharophimosis, developmental delay, and intellectual disability. BIS is caused by pathogenic variants in SMARCA2, that encodes the catalytic subunit of the superfamily II helicase group of the BRG1 and BRM-associated factors (BAF) forming the BAF complex, a chromatin remodeling complex involved in transcriptional regulation. Individuals bearing variants within the bipartite nuclear localization (BNL) signal domain of ADNP present with the neurodevelopmental disorder known as Helsmoortel-Van Der Aa Syndrome (HVDAS). Distinct DNA methylation profiles referred to as episignatures have been reported in HVDAS and BAF complex disorders. Due to molecular interactions between ADNP and BAF complex, and an overlapping craniofacial phenotype with narrowing of the palpebral fissures in a subset of patients with HVDAS and BIS, we hypothesized the possibility of a common phenotype-specific episignature. A distinct episignature was shared by 15 individuals with BIS-causing SMARCA2 pathogenic variants and 12 individuals with class II HVDAS caused by truncating pathogenic ADNP variants. This represents first evidence of a sensitive phenotype-specific episignature biomarker shared across distinct genetic conditions that also exhibit unique gene-specific episignatures.
RESUMO
This study tried to generate anti-idiotypic antibodies (Ab2s) which mimic Cry2Aa toxin using a phage-display antibody library (2.8 × 107 CFU/mL). The latter was constructed from a mouse immunized with F (ab')2 fragments digested from anti-Cry2Aa polyclonal antibodies. The F (ab')2 fragments and Plutella xylostella (P. xylostella) brush border membrane vesicles (BBMV) were utilized as targets for selection. Eight mouse phage-display single-chain variable fragments (scFvs) were isolated and identified by enzyme-linked immunoassay (ELISA), PCR and DNA sequencing after four rounds of biopanning. Among them, M3 exhibited the highest binding affinity with F (ab')2, while M4 bound the best with the toxin binding region of cadherin of P. xylostella (PxCad-TBR). Both of these two fragments were chosen for prokaryotic expression. The expressed M3 and M4 proteins with molecular weights of 30 kDa were purified. The M4 showed a binding affinity of 29.9 ± 2.4 nM with the PxCad-TBR and resulted in 27.8 ± 4.3 % larvae mortality against P. xylostella. Computer-assisted molecular modeling and docking analysis showed that mouse scFv M4 mimicked some Cry2Aa toxin binding sites when interacting with PxCad-TBR. Therefore, anti-idiotypic antibodies generated by BBMV-based screening could be useful for the development of new bio-insecticides as an alternative to Cry2Aa toxin for pest control.
Assuntos
Bacteriófagos , Inseticidas , Lepidópteros , Anticorpos de Cadeia Única , Animais , Camundongos , Biblioteca Gênica , Anticorpos de Cadeia Única/química , Endotoxinas/metabolismo , Anticorpos Anti-Idiotípicos , Biblioteca de PeptídeosRESUMO
Neutrophils are the most abundant vertebrate leukocytes and they are essential to host defense. Despite extensive investigation, the molecular network controlling neutrophil differentiation remains incompletely understood. GFI1 is associated with several myeloid disorders, but its role and the role of its co-regulators in granulopoiesis and pathogenesis are far from clear. Here, we demonstrate that zebrafish gfi1aa deficiency induces excessive neutrophil progenitor proliferation, accumulation of immature neutrophils from the embryonic stage, and some phenotypes similar to myelodysplasia syndrome in adulthood. Both genetic and epigenetic analyses demonstrate that immature neutrophil accumulation in gfi1aa-deficient mutants is due to upregulation of cebpa transcription. Increased transcription was associated with Lsd1-altered H3K4 methylation of the cebpa regulatory region. Taken together, our results demonstrate that Gfi1aa, Lsd1 and cebpa form a regulatory network that controls neutrophil development, providing a disease progression-traceable model for myelodysplasia syndrome. Use of this model could provide new insights into the molecular mechanisms underlying GFI1-related myeloid disorders as well as a means by which to develop targeted therapeutic approaches for treatment.
Assuntos
Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Proteínas de Ligação a DNA/metabolismo , Hematopoese/genética , Histona Desmetilases/metabolismo , Neutrófilos/citologia , Proteínas de Peixe-Zebra/metabolismo , Animais , Proteínas Estimuladoras de Ligação a CCAAT/genética , Diferenciação Celular , Proliferação de Células , Proteínas de Ligação a DNA/deficiência , Embrião não Mamífero , Epigênese Genética , Células Precursoras de Granulócitos/citologia , Células Precursoras de Granulócitos/metabolismo , Histona Desmetilases/genética , Neutrófilos/metabolismo , Peixe-Zebra , Proteínas de Peixe-Zebra/deficiência , Proteínas de Peixe-Zebra/genéticaRESUMO
Renal amyloid-associated (AA) amyloidosis is a harmful complication of familial Mediterranean fever (FMF). Its occurrence involves polymorphisms and mutations in the Serum Amyloid A1 (SAA1) and Mediterranean Fever (MEFV) genes, respectively. In Algeria, the association between SAA1 variants and FMF-related amyloidosis was not investigated, hence the aim of this case-control study. It included 60 healthy controls and 60 unrelated FMF patients (39 with amyloidosis, and 21 without amyloidosis). All were genotyped for the SAA1 alleles (SAA1.1, SAA1.5, and SAA1.3), and a subset of them for the - 13 C/T polymorphism by using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). Comparisons between genotype and allele frequencies were performed using Chi-square and Fisher tests. The SAA1.1/1.1 genotype was predominant in amyloid FMF patients, compared to non-amyloid FMF patients (p = 0.001) and controls (p < 0.0001). SAA1.1/1.5 was higher in non-amyloid patients (p = 0.0069) and in controls (p = 0.0082) than in patients with amyloidosis. Bivariate logistic regression revealed an increased risk of AA amyloidosis with three genotypes, SAA1.1/1.1 [odds ratio 7.589 (OR); 95% confidence interval (CI): 2.130-27.041] (p = 0.0018), SAA1.1/1.3 [OR 5.700; 95% CI: 1.435-22.644] (p = 0.0134), and M694I/M694I [OR 4.6; 95% CI: 1.400-15.117] (p = 0.0119). The SAA1.1/1.5 genotype [OR 0.152; 95% CI: 0.040-0.587] (p = 0.0062) was protective against amyloidosis. In all groups, the - 13 C/C genotype predominated, and was not related to renal complication [OR 0.88; 95% CI: 0.07-10.43] (p = 0.915). In conclusion, in contrast to the - 13 C/T polymorphism, the SAA1.1/1.1, SAA1.1/1.3 and M694I/M694I genotypes may increase the risk of developing renal AA amyloidosis in the Algerian population.
Assuntos
Amiloidose , Febre Familiar do Mediterrâneo , Humanos , Febre Familiar do Mediterrâneo/complicações , Febre Familiar do Mediterrâneo/genética , Estudos de Casos e Controles , Amiloidose/genética , Fatores de Risco , Pirina , Proteína Amiloide A SéricaRESUMO
BACKGROUND: Gastric cancer (GC) ranks fifth in global cancer incidence and third in mortality rate among all cancer types. Circular RNAs (circRNAs) have been extensively demonstrated to regulate multiple malignant biological behaviors in GC. Emerging evidence suggests that several circRNAs derived from FNDC3B play pivotal roles in cancer. However, the role of circFNDC3B in GC remains elusive. METHODS: We initially screened circFNDC3B with translation potential via bioinformatics algorithm prediction. Subsequently, Sanger sequencing, qRT-PCR, RNase R, RNA-FISH and nuclear-cytoplasmic fractionation assays were explored to assess the identification and localization of circ0003692, a circRNA derived from FNDC3B. qRT-PCR and ISH were performed to quantify expression of circ0003692 in human GC tissues and adjacent normal tissues. The protein-encoding ability of circ0003692 was investigated through dual-luciferase reporter assay and LC/MS. The biological behavior of circ0003692 in GC was confirmed via in vivo and in vitro experiments. Additionally, Co-IP and rescue experiments were performed to elucidate the interaction between the encoded protein and c-Myc. RESULTS: We found that circ0003692 was significantly downregulated in GC tissues. Circ0003692 had the potential to encode a novel protein FNDC3B-267aa, which was downregulated in GC cells. We verified that FNDC3B-267aa, rather than circ0003692, inhibited GC migration in vitro and in vivo. Mechanistically, FNDC3B-267aa directly interacted with c-Myc and promoted proteasomal degradation of c-Myc, resulting in the downregulation of c-Myc-Snail/Slug axis. CONCLUSIONS: Our study revealed that the novel protein FNDC3B-267aa encoded by circ0003692 suppressed GC metastasis through binding to c-Myc and enhancing proteasome-mediated degradation of c-Myc. The study offers the potential applications of circ0003692 or FNDC3B-267aa as therapeutic targets for GC.
Assuntos
Fibronectinas , Metástase Neoplásica , Complexo de Endopeptidases do Proteassoma , Proteínas Proto-Oncogênicas c-myc , RNA Circular , Neoplasias Gástricas , Neoplasias Gástricas/patologia , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Humanos , RNA Circular/genética , RNA Circular/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Linhagem Celular Tumoral , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Animais , Fibronectinas/metabolismo , Regulação Neoplásica da Expressão Gênica , Masculino , Proteólise , Camundongos Nus , Sequência de Bases , Movimento Celular/genética , Feminino , CamundongosRESUMO
RATIONALE & OBJECTIVE: Outcomes of kidney transplantation for patients with renal AA amyloidosis are uncertain, with reports of poor survival and high rates of disease recurrence. However, the data are inconclusive and mostly based on studies from the early 2000s and earlier. STUDY DESIGN: Retrospective multicenter cohort study. SETTING & PARTICIPANTS: We searched the French national transplant database to identify all patients with renal AA amyloidosis who underwent kidney transplantation between 2008 and 2018. EXPOSURES: Age, cause of amyloidosis, use of biotherapies, and C-reactive protein levels. OUTCOMES: Outcomes were all-cause mortality and allograft loss. We also reported amyloidosis allograft recurrence, occurrence of acute rejection episodes, as well as infectious, cardiovascular, and neoplastic disease events. ANALYTICAL APPROACH: Kaplan-Meier estimator for mortality and cumulative incidence function method for allograft loss. Factors associated with patient and allograft survival were investigated using a Cox proportional hazards model and a cause-specific hazards model, respectively. RESULTS: 86 patients who received kidney transplants for AA amyloidosis at 26 French centers were included. The median age was 49.4 years (IQR, 39.7-61.1). The main cause of amyloidosis was familial Mediterranean fever (37 cases; 43%). 16 (18.6%) patients received biotherapy after transplantation. Patient survival rates were 94.0% (95% CI, 89.1-99.2) at 1 year and 85.5% (77.8-94.0) at 5 years after transplantation. Cumulative incidences of allograft loss were 10.5% (4.0-17.0) at 1 year and 13.0% (5.8-20.1) at 5 years after transplantation. Histologically proven AA amyloidosis recurrence occurred in 5 transplants (5.8%). An infection requiring hospitalization developed in 55.8% of cases, and there was a 27.9% incidence of acute allograft rejection. Multivariable analysis showed that C-reactive protein concentration at the time of transplantation was associated with patient survival (HR, 1.01; 95% CI, 1.00-1.02; P=0.01) and allograft survival (HR, 1.68; 95% CI, 1.10-2.57; P=0.02). LIMITATIONS: The study lacked a control group, and the effect of biotherapies on transplantation outcomes could not be explored. CONCLUSIONS: This relatively contemporary cohort of patients who received a kidney transplant for AA amyloidosis experienced favorable rates of survival and lower recurrence rates than previously reported. These data support the practice of treating these patients with kidney transplantation for end-stage kidney disease. PLAIN-LANGUAGE SUMMARY: AA amyloidosis is a severe and rare disease. Kidney involvement is frequent and leads to end-stage kidney disease. Because of the involvement of other organs, these patients are often frail, which has raised concerns about their suitability for kidney transplantation. We reviewed all patients with AA amyloidosis nephropathy who underwent kidney transplantation in France in the recent era (2008-2018) and found that the outcomes after kidney transplantation were favorable, with 85.5% of patients still alive 5 years after transplantation, a survival rate that is comparable to the outcomes of patients receiving a transplant for other forms of kidney diseases. Recurrence of amyloidosis in the transplanted kidney was infrequent (5.8%). These data support the practice of kidney transplantation for patients with AA amyloidosis who experience kidney failure.
Assuntos
Amiloidose , Nefropatias , Falência Renal Crônica , Transplante de Rim , Humanos , Pessoa de Meia-Idade , Transplante de Rim/métodos , Estudos de Coortes , Proteína C-Reativa , Estudos Retrospectivos , Amiloidose/cirurgia , Amiloidose/complicações , Falência Renal Crônica/cirurgia , Falência Renal Crônica/complicações , Nefropatias/etiologia , Estudos Multicêntricos como Assunto , Proteína Amiloide A SéricaRESUMO
OBJECTIVES: This study aimed to evaluate the clinical, laboratory and genetic characteristics and outcomes of patients with AA amyloidosis. METHODS: Patients followed up in a tertiary referral centre in Turkey with the diagnosis of inflammatory rheumatic diseases and immunohistologically proven AA amyloidosis were included in the study and retrospectively analysed. RESULTS: Among 184 patients with the diagnosis of AA amyloidosis, 174 (83 female, 91 male) were included in the analysis. The most common cause of AA amyloidosis was FMF (78.7%), and 91% of FMF-AA amyloidosis patients were carrying the p.M694V variant (74.1% homozygous). AA amyloidosis was identified earlier in patients with homozygous or compound heterozygous MEFV exon 10 variants compared with the heterozygous patients (27, 30 and 41 years, respectively). Patients with an estimated glomerular filtration rate <60 ml/min at admission had a higher frequency of progression to end-stage renal disease (P < 0.001). The overall mortality rate was 15.3% and it increased gradually in association with the amyloid burden (10% in patients with renal, 15% in renal + gastrointestinal and 43% in those with additional cardiac involvement). Renal findings responded completely to treatment in 31% of the patients, a partial response was observed in 4%, a stable course in 23.6% and progression in 38.5%. Amyloid storm was identified in nine patients and was found to be associated with increased mortality within 1 year. CONCLUSION: FMF patients still constitute the majority of AA amyloidosis patients in Turkey. The MEFV genotype and associated inflammatory load may affect the age of onset of AA amyloidosis, and earlier diagnosis and stricter follow-up and treatment may delay progression of the disease.
Assuntos
Amiloidose , Febre Familiar do Mediterrâneo , Humanos , Masculino , Feminino , Febre Familiar do Mediterrâneo/diagnóstico , Febre Familiar do Mediterrâneo/genética , Febre Familiar do Mediterrâneo/complicações , Estudos Retrospectivos , Turquia/epidemiologia , Pirina/genética , Mutação , Proteína Amiloide A SéricaRESUMO
INTRODUCTION: Familial Mediterranean fever (FMF) is the most common monogenic autoinflammatory disease characterized by recurrent fever and serosal inflammation. Although colchicine is the primary treatment, around 10% of FMF patients do not respond to it, necessitating alternative therapies. Biologic treatments, such as interleukin-1ß (IL-1ß), TNF-α, and interleukin-6 (IL-6) inhibitors, have been considered. However, the accessibility and cost of IL-1ß inhibitors may limit their use in certain regions. Tocilizumab (TCZ), an IL-6 receptor inhibitor, offers an alternative, but its efficacy in FMF is not well-documented. OBJECTIVE: To evaluate the efficacy and safety of tocilizumab in the treatment of FMF. METHODS: Following PRISMA guidelines, we identified 237 articles on the use of TCZ in FMF. RESULTS: After selection, 14 articles were included: 2 double-blind RCTs, 2 retrospective studies, and 10 case reports. Multicentre double-blind RCTs reported mixed results in FMF patients without AA amyloidosis due to genetic/classification heterogeneity of the available studies, possible misdiagnosed FMF patients and study design. Retrospective studies suggest that TCZ may benefit FMF patients with established renal AA amyloidosis, potentially preventing progression and managing flares more effectively. TCZ showed a safe profile with no specific adverse events, but data on its use during pregnancy or breastfeeding are lacking. There was no available data on the use of TCZ in pediatric FMF. CONCLUSION: This review summarizes the current state of research, safety and efficacy of TCZ in FMF. While IL1ß inhibitors remain the first choice for colchicine-resistant or intolerant FMF patients, TCZ might be of interest in some selected FMF patients with established AA amyloidosis and resistance to colchicine and interleukin 1 inhibitors.
RESUMO
Owing to their excellent photoelectric properties, donor-acceptor (D-A) type photocatalytic covalent organic frameworks (COFs) have attracted significant research interest in recent years. However, the limited D-A structural units of existing COFs restrict the development of novel and efficient photocatalytic COF materials. To solve this problem, we developed a series of D-A-A-type COFs utilizing a Lewis acid regulation strategy, in which Lewis acids act as the coordination centers, and pyridine and cyano groups act as ligands. Lewis acid sites in COFs serve as electron acceptors, facilitating the separation and transfer of photogenerated electron-hole pairs. This process is crucial for photocatalysis because it significantly increases the efficiency of the catalytic reaction by reducing the recombination rate of charge carriers. The developed Lewis acid-activated D-A-A COFs efficiently catalyzed the hydroxylation of various phenylboronic acid compounds under visible light. The developed catalysts are expected to contribute to increasing the fabrication efficiency of industrially important organic materials.
RESUMO
Hypochlorite and ascorbic acid (AA), play an indispensable role in numerous physiological activities. Herein, a ratiometric colorimetric sensing strategy for the determination of hypochlorite and AA was developed via the catalytic oxidation and reduction of 3,3',5,5'-tetramethylbenzidine (TMB). Interestingly, in the presence of Fe3O4-MOF-5(Fe) and hypochlorite, TMB complexes in acidic environments were oxidized to blue oxidized TMB and further diazotized to produce yellow-green diazotized TMB, resulting in the hypochlorite concentration-dependent ratiometric variation for the absorbance at 652 and 450 nm (A450/A652). Moreover, the diazotized TMB was restored to colorless TMB due to the reducibility of AA, and the detection limit of hypochlorite and AA were 0.027 and 0.677 µM, respectively. The ratiometric colorimetric sensing platform offered higher sensitivity and better selectivity because of the specific hypochlorite-induced reaction and the excellent peroxidase-like activity of Fe3O4-MOF-5(Fe). The proposed novel strategy provided the guidance to develop sensors for successive detection of hypochlorite and AA in complicated samples.
RESUMO
The neurodevelopmental disorder known as Helsmoortel-van der Aa syndrome (HVDAS, MIM#616580) or ADNP syndrome (Orphanet, ORPHA:404448) is a multiple congenital anomaly (MCA) condition, reported as a syndrome in 2014, associated with deleterious variants in the ADNP gene (activity-dependent neuroprotective protein; MIM*611386) in several children. First reported in the turn of the century, ADNP is a protein with crucial functions for the normal development of the central nervous system and with pleiotropic effects, explaining the multisystemic character of the syndrome. Affected individuals present with striking facial dysmorphic features and variable congenital defects. Herein, we describe a novel case series of HVDAS Italian patients, illustrating their clinical findings and the related genotype-phenotype correlations. Interestingly, the cutaneous manifestations are also extensively expanded, giving an important contribution to the clinical characterization of the condition, and highlighting the relation between skin abnormalities and ADNP defects.
Assuntos
Anormalidades Múltiplas , Transtorno Autístico , Deficiência Intelectual , Anormalidades Musculoesqueléticas , Transtornos do Neurodesenvolvimento , Criança , Humanos , Mutação , Deficiência Intelectual/genética , Anormalidades Múltiplas/diagnóstico , Anormalidades Múltiplas/genética , Transtorno Autístico/genética , Transtornos do Neurodesenvolvimento/genética , Proteínas de Homeodomínio/genética , SíndromeRESUMO
Cardiovascular diseases (CVDs) are the leading cause of death worldwide, and morbidity and mortality rates continue to rise. Atherosclerosis constitutes the principal etiology of CVDs. Endothelial injury, inflammation, and dysfunction are the initiating factors of atherosclerosis. Recently, we reported that endothelial adenosine receptor 2â¯A (ADORA2A), a G protein-coupled receptor (GPCR), plays critical roles in neovascularization disease and cerebrovascular disease. However, the precise role of endothelial ADORA2A in atherosclerosis is still not fully understood. Here, we showed that ADORA2A expression was markedly increased in the aortic endothelium of humans with atherosclerosis or Apoe-/- mice fed a high-cholesterol diet. In vivo studies unraveled that endothelial-specific Adora2a deficiency alleviated endothelial-to-mesenchymal transition (EndMT) and prevented the formation and instability of atherosclerotic plaque in Apoe-/- mice. Moreover, pharmacologic inhibition of ADORA2A with KW6002 recapitulated the anti-atherogenic phenotypes observed in genetically Adora2a-deficient mice. In cultured human aortic endothelial cells (HAECs), siRNA knockdown of ADORA2A or KW6002 inhibition of ADORA2A decreased EndMT, whereas adenoviral overexpression of ADORA2A induced EndMT. Mechanistically, ADORA2A upregulated ALK5 expression via a cAMP/PKA/CREB axis, leading to TGFß-Smad2/3 signaling activation, thereby promoting EndMT. In conclusion, these findings, for the first time, demonstrate that blockade of ADORA2A attenuated atherosclerosis via inhibition of EndMT induced by the CREB1-ALK5 axis. This study discloses a new link between endothelial ADORA2A and EndMT and indicates that inhibiting endothelial ADORA2A could be an effective novel strategy for the prevention and treatment of atherosclerotic CVDs.
Assuntos
Aterosclerose , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico , Transição Epitelial-Mesenquimal , Camundongos Endogâmicos C57BL , Receptor A2A de Adenosina , Receptor do Fator de Crescimento Transformador beta Tipo I , Animais , Humanos , Masculino , Camundongos , Antagonistas do Receptor A2 de Adenosina/farmacologia , Aterosclerose/metabolismo , Aterosclerose/patologia , Aterosclerose/genética , Células Cultivadas , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Células Endoteliais/metabolismo , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/patologia , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Camundongos Knockout , Receptor A2A de Adenosina/metabolismo , Receptor A2A de Adenosina/genética , Receptor do Fator de Crescimento Transformador beta Tipo I/genética , Receptor do Fator de Crescimento Transformador beta Tipo I/metabolismo , Transdução de SinaisRESUMO
Bivalves are a high-quality source of animal protein for human consumption. In recent years, the demand for bivalve proteins has increased dramatically, leading to a sharp increase in global production of marine bivalves. To date, although the amino acid profiles of many bivalves have been reported, such information has not been well organized. Therefore, there is an urgent need for a comprehensive scientific review of the protein quality of bivalves, especially commercially important edible bivalves. In this context, this study was conducted to evaluate the protein quality of commercially important edible bivalves. In general, most bivalves are rich in protein (> 50% of their dry weight) and amino acids (> 30 g/100g protein). Although most species of bivalves are rich in essential amino acids (EAA) (up to 50 g/100g protein), some species of edible bivalves have very low levels of EAA (< 5 g/100g protein). Based on the AA score, almost all bivalves have at least two limiting AAs. Most bivalve proteins provides delicious flavors with unami, sweetness and a hint of bitterness. The findings of this study not only serve as a a guide for selecting appropriate bivalves based on consumer preferences for specific AAs or AA scores, but also provide information on potential bivalve species for aquaculture to produce higher protein quality to meet the growing demand for high quality animal protein.