Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(23)2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36499419

RESUMO

Sugar transport and distribution plays an important role in lily bulb development and resistance to abiotic stresses. In this study, a member of the Sugar Will Eventually be Exported Transporters (SWEET) gene family, LoSWEET14, from Oriental hybrid lily 'Sorbonne' was identified. LoSWEET14 encodes a protein of 278 amino acids and is capable of transporting sucrose and some types of hexoses. The transcript level of the LoSWEET14 gene was significantly increased under various stress conditions including drought, cold, salt stresses, and abscisic acid (ABA) treatment. Overexpression of LoSWEET14 in tobacco (Nicotiana tabacum) showed that the transgenic lines had larger leaves, accumulated more soluble sugars, and were more resistant to drought, cold, and salt stresses, while becoming more sensitive to ABA compared with wild-type lines. Promoter analysis revealed that multiple stress-related cis-acting elements were found in the promoter of LoSWEET14. According to the distribution of cis-acting elements, different lengths of 5'-deletion fragments were constructed and the LoSWEET14-pro3(-540 bp) was found to be able to drive GUS gene expression in response to abiotic stresses and ABA treatment. Furthermore, a yeast one hybrid (Y1H) assay proved that the AREB/ABF (ABRE-binding protein/ABRE-binding factor) from lilies (LoABF2) could bind to the promoter of LoSWEET14. These findings indicated that LoSWEET14 is induced by LoABF2 to participate in the ABA signaling pathway to promote soluble sugar accumulation in response to multiple abiotic stresses.


Assuntos
Lilium , Nicotiana , Nicotiana/genética , Nicotiana/metabolismo , Lilium/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Ácido Abscísico/farmacologia , Ácido Abscísico/metabolismo , Secas , Estresse Fisiológico , Transdução de Sinais , Açúcares/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA