Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Neuropathology ; 43(6): 463-471, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37086019

RESUMO

A 57-year-old female chimpanzee presented with a brief history of increasing lethargy and rapidly progressive lower-limb weakness that culminated in loss of use. Postmortem examination revealed no significant gross lesions in the nervous system or other organ systems. Histological analysis revealed round, basophilic to amphophilic polyglucosan bodies (PGBs) in the white and gray matter of the cervical, thoracic, lumbar, and coccygeal regions of spinal cord. Only rare PGBs were observed in forebrain samples. The lesions in the spinal cord were polymorphic, and they were positively stained with hematoxylin, periodic acid Schiff, Alcian blue, toluidine blue, Bielschowsky silver, and Grocott-Gomori methenamine-silver methods, and they were negative for von Kossa and Congo Red stains. Immunohistochemical evaluation revealed reactivity with antibodies to ubiquitin, but they were negative for glial fibrillary acidic protein, neuron-specific enolase, neurofilaments, tau protein, and Aß protein. Electron microscopy revealed non-membrane-bound deposits composed of densely packed filaments within axons and in the extracellular space. Intra-axonal PGBs were associated with disruption of the axonal fine structure and disintegration of the surrounding myelin sheath. These findings are the first description of PGBs linked to neurological dysfunction in a chimpanzee. Clinicopathologically, the disorder resembled adult PGB disease in humans.


Assuntos
Pan troglodytes , Prata , Adulto , Feminino , Animais , Humanos , Idoso , Pessoa de Meia-Idade , Pan troglodytes/metabolismo , Axônios , Glucanos/metabolismo
2.
Biochem J ; 474(20): 3403-3420, 2017 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-28827282

RESUMO

Glycogen storage disorders (GSDs) are caused by excessive accumulation of glycogen. Some GSDs [adult polyglucosan (PG) body disease (APBD), and Tarui and Lafora diseases] are caused by intracellular accumulation of insoluble inclusions, called PG bodies (PBs), which are chiefly composed of malconstructed glycogen. We developed an APBD patient skin fibroblast cell-based assay for PB identification, where the bodies are identified as amylase-resistant periodic acid-Schiff's-stained structures, and quantified. We screened the DIVERSet CL 10 084 compound library using this assay in high-throughput format and discovered 11 dose-dependent and 8 non-dose-dependent PB-reducing hits. Approximately 70% of the hits appear to act through reducing glycogen synthase (GS) activity, which can elongate glycogen chains and presumably promote PB generation. Some of these GS inhibiting hits were also computationally predicted to be similar to drugs interacting with the GS activator protein phosphatase 1. Our work paves the way to discovering medications for the treatment of PB-involving GSD, which are extremely severe or fatal disorders.


Assuntos
Fibroblastos/enzimologia , Doença de Depósito de Glicogênio , Glicogênio Sintase/metabolismo , Doenças do Sistema Nervoso , Adulto , Avaliação Pré-Clínica de Medicamentos/métodos , Feminino , Doença de Depósito de Glicogênio/diagnóstico , Doença de Depósito de Glicogênio/tratamento farmacológico , Doença de Depósito de Glicogênio/enzimologia , Humanos , Masculino , Doenças do Sistema Nervoso/diagnóstico , Doenças do Sistema Nervoso/tratamento farmacológico , Doenças do Sistema Nervoso/enzimologia
3.
Neurotherapeutics ; 19(3): 982-993, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35347645

RESUMO

Adult polyglucosan body disease (APBD) and Lafora disease (LD) are autosomal recessive glycogen storage neurological disorders. APBD is caused by mutations in the glycogen branching enzyme (GBE1) gene and is characterized by progressive upper and lower motor neuron dysfunction and premature death. LD is a fatal progressive myoclonus epilepsy caused by loss of function mutations in the EPM2A or EPM2B gene. These clinically distinct neurogenetic diseases share a common pathology. This consists of time-dependent formation, precipitation, and accumulation of an abnormal form of glycogen (polyglucosan) into gradually enlarging inclusions, polyglucosan bodies (PBs) in ever-increasing numbers of neurons and astrocytes. The growth and spread of PBs are followed by astrogliosis, microgliosis, and neurodegeneration. The key defect in polyglucosans is that their glucan branches are longer than those of normal glycogen, which prevents them from remaining in solution. Since the lengths of glycogen branches are determined by the enzyme glycogen synthase, we hypothesized that downregulating this enzyme could prevent or hinder the generation of the pathogenic PBs. Here, we pursued an adeno-associated virus vector (AAV) mediated RNA-interference (RNAi) strategy. This approach resulted in approximately 15% reduction of glycogen synthase mRNA and an approximately 40% reduction of PBs across the brain in the APBD and both LD mouse models. This was accompanied by improvements in early neuroinflammatory markers of disease. This work represents proof of principle toward developing a single lifetime dose therapy for two fatal neurological diseases: APBD and LD. The approach is likely applicable to other severe and common diseases of glycogen storage.


Assuntos
Doença de Lafora , MicroRNAs , Animais , Modelos Animais de Doenças , Glucanos , Glicogênio , Doença de Depósito de Glicogênio , Glicogênio Sintase/genética , Doença de Lafora/genética , Doença de Lafora/patologia , Doença de Lafora/terapia , Camundongos , Doenças do Sistema Nervoso , Doenças Neuroinflamatórias
4.
Neurotherapeutics ; 18(2): 1414-1425, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33830476

RESUMO

Many adult and most childhood neurological diseases have a genetic basis. CRISPR/Cas9 biotechnology holds great promise in neurological therapy, pending the clearance of major delivery, efficiency, and specificity hurdles. We applied CRISPR/Cas9 genome editing in its simplest modality, namely inducing gene sequence disruption, to one adult and one pediatric disease. Adult polyglucosan body disease is a neurodegenerative disease resembling amyotrophic lateral sclerosis. Lafora disease is a severe late childhood onset progressive myoclonus epilepsy. The pathogenic insult in both is formation in the brain of glycogen with overlong branches, which precipitates and accumulates into polyglucosan bodies that drive neuroinflammation and neurodegeneration. We packaged Staphylococcus aureus Cas9 and a guide RNA targeting the glycogen synthase gene, Gys1, responsible for brain glycogen branch elongation in AAV9 virus, which we delivered by neonatal intracerebroventricular injection to one mouse model of adult polyglucosan body disease and two mouse models of Lafora disease. This resulted, in all three models, in editing of approximately 17% of Gys1 alleles and a similar extent of reduction of Gys1 mRNA across the brain. The latter led to approximately 50% reductions of GYS1 protein, abnormal glycogen accumulation, and polyglucosan bodies, as well as ameliorations of neuroinflammatory markers in all three models. Our work represents proof of principle for virally delivered CRISPR/Cas9 neurotherapeutics in an adult-onset (adult polyglucosan body) and a childhood-onset (Lafora) neurological diseases.


Assuntos
Encéfalo/metabolismo , Glucanos/metabolismo , Doença de Depósito de Glicogênio/genética , Glicogênio Sintase/genética , Glicogênio/metabolismo , Doença de Lafora/genética , Doenças do Sistema Nervoso/genética , Doenças Neuroinflamatórias/genética , RNA Mensageiro/metabolismo , Animais , Sistemas CRISPR-Cas , Modelos Animais de Doenças , Edição de Genes , Doença de Depósito de Glicogênio/metabolismo , Doença de Depósito de Glicogênio/terapia , Doença de Lafora/metabolismo , Doença de Lafora/terapia , Camundongos , Doenças do Sistema Nervoso/metabolismo , Doenças do Sistema Nervoso/terapia , Doenças Neuroinflamatórias/metabolismo , Doenças Neuroinflamatórias/terapia , Estudo de Prova de Conceito
5.
Cell Rep ; 27(5): 1334-1344.e6, 2019 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-31042462

RESUMO

Lafora disease (LD) and adult polyglucosan body disease (APBD) are glycogen storage diseases characterized by a pathogenic buildup of insoluble glycogen. Mechanisms causing glycogen insolubility are poorly understood. Here, in two mouse models of LD (Epm2a-/- and Epm2b-/-) and one of APBD (Gbe1ys/ys), the separation of soluble and insoluble muscle glycogen is described, enabling separate analysis of each fraction. Total glycogen is increased in LD and APBD mice, which, together with abnormal chain length and molecule size distributions, is largely if not fully attributed to insoluble glycogen. Soluble glycogen consists of molecules with distinct chain length distributions and differential corresponding solubility, providing a mechanistic link between soluble and insoluble glycogen in vivo. Phosphorylation states differ across glycogen fractions and mouse models, demonstrating that hyperphosphorylation is not a basic feature of insoluble glycogen. Lastly, model-specific variances in protein and activity levels of key glycogen synthesis enzymes suggest uninvestigated regulatory mechanisms.


Assuntos
Doença de Depósito de Glicogênio/metabolismo , Glicogênio/metabolismo , Doença de Lafora/metabolismo , Músculo Esquelético/metabolismo , Doenças do Sistema Nervoso/metabolismo , Animais , Feminino , Glicogênio/química , Sistema da Enzima Desramificadora do Glicogênio/genética , Doença de Depósito de Glicogênio/genética , Células HEK293 , Humanos , Doença de Lafora/genética , Masculino , Glicoproteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Músculo Esquelético/patologia , Doenças do Sistema Nervoso/genética , Fosforilação , Solubilidade
8.
Mol Genet Metab Rep ; 17: 31-37, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30228975

RESUMO

BACKGROUND: Glycogen storage disease type IV (GSD IV), caused by GBE1 mutations, has a quite wide phenotypic variation. While the classic hepatic form and the perinatal/neonatal neuromuscular forms result in early mortality, milder manifestations include non-progressive form (NP-GSD IV) and adult polyglucosan body disease (APBD). Thus far, only one clinical case of a patient with compound heterozygous mutations has been reported for the molecular analysis of NP-GSD IV. This study aimed to elucidate the molecular basis in a NP-GSD IV patient via protein expression analysis and to obtain a clearer genotype-phenotype relationship in GSD IV. CASE PRESENTATION: A Japanese boy presented hepatosplenomegaly at 2 years of age. Developmental delay, neurological symptoms, and cardiac dysfunction were not apparent. Observation of hepatocytes with periodic acid-Schiff-positive materials resistant to diastase, coupled with resolution of hepatosplenomegaly at 8 years of age, yielded a diagnosis of NP-GSD IV. Glycogen branching enzyme activity was decreased in erythrocytes. At 13 years of age, he developed epilepsy, which was successfully controlled by carbamazepine. MOLECULAR ANALYSIS: In this study, we identified compound heterozygous GBE1 mutations (p.Gln46Pro and p.Glu609Lys). The branching activities of the mutant proteins expressed using E. coli were examined in a reaction with starch. The result showed that both mutants had approximately 50% activity of the wild type protein. CONCLUSION: This is the second clinical report of a NP-GSD IV patient with a definite molecular elucidation. Based on the clinical and genotypic overlapping between NP-GSD IV and APBD, we suggest both are in a continuum.

9.
Neuromuscul Disord ; 25(3): 247-52, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25544507

RESUMO

We report the clinical, neuro-imaging, pathological and biochemical features of an Italian family in which two siblings have the Adult Polyglucosan Body Disease (APBD). APBD is a rare autosomal recessive disorder characterized by a gradually progressive involvement of both the central and peripheral nervous systems caused by the deficiency of the glycogen branching enzyme (GBE1). The two affected siblings, a 64-year-old man and his 67-year-old sister who had complained of urinary urgency and sporadic incontinence and also progressive gait difficulty for 6 and 7 years respectively, had severely impaired deep sensations on direct examination and a moderately severe symmetrical, axonal sensory-motor neuropathy on electrophysiological testing. GBE1 activity was below 25% of the normal rate in leukocytes and sural nerves. The siblings were homozygous for the novel GBE1 mutation p.N541D. All other members of the pedigree are heterozygous and manifest no symptoms, even in the very elderly. The affected siblings showed polyglucosan bodies (PBs) included within non-myelinating Schwann cells and within lymphocyte vesicles, which were positive for the autophagy markers P62 and LC3-II at immunofluorescence microscopy.


Assuntos
Sistema da Enzima Desramificadora do Glicogênio/genética , Doença de Depósito de Glicogênio/genética , Doença de Depósito de Glicogênio/fisiopatologia , Mutação , Doenças do Sistema Nervoso/genética , Doenças do Sistema Nervoso/fisiopatologia , Idoso , Encéfalo/patologia , Feminino , Seguimentos , Doença de Depósito de Glicogênio/patologia , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Doenças do Sistema Nervoso/patologia , Linhagem , Irmãos , Medula Espinal/patologia , Nervo Sural/patologia , População Branca/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA