Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Apoptosis ; 28(5-6): 783-795, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36881291

RESUMO

BACKGROUND: Prostate cancer (PCa) is one of the most common cancers in men worldwide. Actin-related protein 2/3 complex subunit 5 (ARPC5) has been validated as a critical regulator in several kinds of human tumors. However, whether ARPC5 is implicated in PCa progression remains largely unknown. METHODS: PCa specimens and PCa cell lines were obtained for detecting gene expressions using western blot and quantitative reverse transcriptase PCR (qRT-PCR). PCa cells transfected with ARPC5 shRNA or a disintegrin and metalloprotease 17 (ADAM17) overexpressed plasmids were harvested for assessing cell proliferation, migration and invasion by using cell counting kit-8 (CCK-8), colony formation and transwell assays, respectively. The interaction relationship between molecules was testified with chromatin immunoprecipitation and luciferase reporter assay. Xenograft mice model was conducted for confirming the role of ARPC5/ADAM17 axis in vivo. RESULTS: Upregulated ARPC5 was observed in PCa tissues and cells, as well as forecasted poor prognosis of PCa patients. Depletion of ARPC5 inhibited PCa cell proliferation, migration and invasion. Krüppel-like factor 4 (KLF4) was identified to be a transcriptional activator of ARPC5 via binding with its promoter region. Furthermore, ADAM17 served as a downstream effector of ARPC5. ADAM17 overexpression overturned ARPC5 knockdown-induced repressive impacts on PCa progression in vitro and in vivo. CONCLUSION: Collectively, ARPC5 was activated by KLF4 and upregulated ADAM17 to promote PCa progression, which might act as a promising therapeutic target and prognostic biomarker for PCa.


Assuntos
MicroRNAs , Neoplasias da Próstata , Masculino , Humanos , Animais , Camundongos , MicroRNAs/genética , Fator 4 Semelhante a Kruppel , Linhagem Celular Tumoral , Apoptose , Neoplasias da Próstata/patologia , Oncogenes , Movimento Celular/genética , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Proteína ADAM17/genética , Proteína ADAM17/metabolismo , Complexo 2-3 de Proteínas Relacionadas à Actina/genética , Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo
2.
BMC Cancer ; 23(1): 937, 2023 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-37789267

RESUMO

BACKGROUND: Gliomas are the most common malignant brain tumors, with powerful invasiveness and an undesirable prognosis. Actin related protein 2/3 complex subunit 5 (ARPC5) encodes a component of the Arp2/3 protein complex, which plays a significant role in regulating the actin cytoskeleton. However, the prognostic values and biological functions of ARPC5 in gliomas remain unclear. METHODS: Based on the TCGA, GEO, HPA, and UALCAN database, we determined the expression of ARPC5 in glioma. The results were verified by immunohistochemistry and Western blot analysis of glioma samples. Moreover, Kaplan-Meier curves, ROC curves, Cox regression analyses, and prognostic nomograms were used to observe the correlation between the ARPC5 expression and the prognosis of glioma patients. GO and KEGG enrichment analyses were conducted to identify immune-related pathways involved with the differential expression of ARPC5. Subsequently, the TCGA database was used to estimate the relationship between ARPC5 expression and immunity-related indexes, such as immune scores, infiltrating immune cells, and TMB. The TCIA database was used to assess the correlation between ARPC5 with immunotherapy. The association between ARPC5 and T cells marker CD3 was also evaluated through immunohistochemistry methods. The correlation between ARPC5 and T cell, as well as the prognosis of patients, was also evaluated using immunological methods. Moreover, the effect of ARPC5 on the biological characteristics of LN229 and U251 cells was determined by MTT, clone formation, and transwell migration assay. RESULTS: The high degree of ARPC5 was correlated with worse prognosis and unfavorable clinical characteristics of glioma patients. In the analysis of GO and KEGG, it is shown that ARPC5 was strongly correlated with multiple immune-related signaling pathways. The single-cell analysis revealed that ARPC5 expression was increased in astrocytes, monocytes and T cells. In addition, ARPC5 expression was strongly associated with immune scores, infiltrating immune cells, TMB, MSI, immune biomarkers, and immunotherapy. In experimental analysis, we found that ARPC5 was significantly overexpressed in gliomas and closely correlated with patient prognosis and CD3 expression. Functionally, the knockout of ARPC5 significantly reduced the proliferation and invasion of LN229 and U251 cells. CONCLUSIONS: Our study revealed that the high expression level of ARPC5 may serve as a promising prognostic biomarker and be associated with tumor immunity in glioma.


Assuntos
Neoplasias Encefálicas , Glioma , Humanos , Prognóstico , Proliferação de Células/genética , Glioma/genética , Neoplasias Encefálicas/genética , Citoesqueleto de Actina , Complexo 2-3 de Proteínas Relacionadas à Actina
3.
J Reprod Dev ; 69(3): 154-162, 2023 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-37081667

RESUMO

MicroRNA (miR)-145 is enriched in the follicular granulosa cells (GCs) of 3-week-old mice. Downregulating miR-145 inhibits the proliferation and differentiation of GCs and induces evident changes in their cytoskeleton. In this study, we examined how miR-145 induces cytoskeletal changes in mouse GCs and its potential mechanism in regulating GC steroidogenesis. We found that actin related protein 2/3 complex subunit 5 (Arpc5) is a target of miR-145. The miR-145 antagomir increased ARPC5 expression but not ß-ACTIN, ß-TUBULIN, and PAXILLIN expression. Arpc5 overexpression inhibited GC proliferation, differentiation, and progesterone synthesis. Furthermore, the expression of progesterone synthesis-associated enzymes was downregulated in the Arpc5 overexpression group, and the GC cytoskeleton exhibited evident changes. We conclude that Arpc5, a new target of miR-145, regulates primary GC proliferation and progesterone production by regulating the cytoskeleton remodeling.


Assuntos
MicroRNAs , Feminino , Animais , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Progesterona/metabolismo , Células da Granulosa/metabolismo , Proliferação de Células , Citoesqueleto/metabolismo
4.
Plant Cell Environ ; 37(7): 1548-60, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24372484

RESUMO

Multiple cellular events like dynamic actin reorganization and hydrogen peroxide (H(2)O(2)) production were demonstrated to be involved in abscisic acid (ABA)-induced stomatal closure. However, the relationship between them as well as the underlying mechanisms remains poorly understood. Here, we showed that H(2)O(2) generation is indispensable for ABA induction of actin reorganization in guard cells of Arabidopsis that requires the presence of ARP2/3 complex. H(2)O(2) -induced stomatal closure was delayed in the mutants of arpc4 and arpc5, and the rate of actin reorganization was slowed down in arpc4 and arpc5 in response to H(2)O(2), suggesting that ARP2/3-mediated actin nucleation is required for H(2)O(2) -induced actin cytoskeleton remodelling. Furthermore, the expression of H(2)O(2) biosynthetic related gene AtrbohD and the accumulation of H(2)O(2) was delayed in response to ABA in arpc4 and arpc5, demonstrating that misregulated actin dynamics affects H(2)O(2) production upon ABA treatment. These results support a possible causal relation between the production of H(2)O(2) and actin dynamics in ABA-mediated guard cell signalling: ABA triggers H(2)O(2) generation that causes the reorganization of the actin cytoskeleton partially mediated by ARP2/3 complex, and ARP2/3 complex-mediated actin dynamics may feedback regulate H(2)O(2) production.


Assuntos
Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Actinas/metabolismo , Arabidopsis/fisiologia , Peróxido de Hidrogênio/farmacologia , Estômatos de Plantas/fisiologia , Ácido Abscísico/farmacologia , Citoesqueleto de Actina/efeitos dos fármacos , Citoesqueleto de Actina/metabolismo , Arabidopsis/efeitos dos fármacos , Proteínas de Arabidopsis/metabolismo , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Depsipeptídeos/farmacologia , Modelos Biológicos , Mutação/genética , Estômatos de Plantas/citologia , Estômatos de Plantas/efeitos dos fármacos , Polimerização/efeitos dos fármacos , Subunidades Proteicas/metabolismo , Tiazolidinas/farmacologia
5.
Cell Signal ; 120: 111227, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38744388

RESUMO

PURPOSE: Pcancreatic cancer (PC) is a common tumor of the digestive tract with an insidious onset and high malignancy potential. Currently, surgery is the only effective treatment modality. Therefore, it is crucial to discover new targeted therapeutic modalities. We studied whether transgelin 2 (TAGLN2) targeted control of actin-related protein 2/3 complex subunit 5 (ARPC5)-mediated activation of the MEK/ERK signaling pathway to Influences the proliferation, invasion, and metastasis of pancreatic cancer cells. METHODS: The effects of TAGLN2 overexpression and knockdown on the proliferative viability and invasive metastatic ability of pancreatic cancer cells were verified through in vitro and in vivo assays via constructing a stable lentiviral transfection of human pancreatic cancer cell lines PANC-1 and SW1990. Bioinformatics analysis was used to predict the relationship between TAGLN2 and ARPC5. These findings were subsequently verified through protein profiling, immunofluorescence (IF), and coimmunoprecipitation (CO-IP) assays. In vitro experiments were also conducted to confirm the effect of TAGLN2 modulation on ARPC5 expression, which subsequently affects the proliferation and invasive metastatic ability of pancreatic cancer cells. The study analyzed the relationship between TAGLN2 and the MEK/ERK signaling pathway through bioinformatics and in vitro experiments with the MEK signaling pathway inhibitor U0126. RESULTS: TAGLN2 is expressed at high levels in pancreatic cancer cell lines, and its expression is positively correlated with poor prognosis of pancreatic cancer. ARPC5 is a direct target of TAGLN2 and is associated with the MEK/ERK signaling pathway. In vivo and ex vivo experiments confirmed that overexpression of TAGLN2 promoted the proliferation, invasion, and metastasis of pancreatic cancer cells, and silencing ARPC5 reversed these effect. CONCLUSION: Our research revealed that TAGLN2 protein binds to ARPC5 protein and contributes to increased ARPC5 expression and activation of the MEK/ERK signaling pathway. This activation promotes pancreatic cancer cell growth, infiltration, and spread. Hence, TAGLN2 is a potential viable therapeutic target in pancreatic cancer and represents a novel therapeutic approach.


Assuntos
Proliferação de Células , Sistema de Sinalização das MAP Quinases , Proteínas dos Microfilamentos , Proteínas Musculares , Invasividade Neoplásica , Neoplasias Pancreáticas , Animais , Humanos , Camundongos , Linhagem Celular Tumoral , Movimento Celular , Regulação Neoplásica da Expressão Gênica , Camundongos Endogâmicos BALB C , Camundongos Nus , Proteínas dos Microfilamentos/metabolismo , Proteínas dos Microfilamentos/genética , Proteínas Musculares/metabolismo , Proteínas Musculares/genética , Metástase Neoplásica , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/genética
6.
J Orthop Surg Res ; 18(1): 384, 2023 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-37231521

RESUMO

BACKGROUND: The process of multiple myeloma (MM) is the result of the combined action of multiple genes. This study aims to explore the role and mechanism of cytoplasmic polyadenylation element binding protein2 (CPEB2) in MM progression. METHODS: The mRNA and protein expression levels of CPEB2 and actin-related protein 2/3 complex subunit 5 (ARPC5) were assessed by quantitative real-time PCR and western blot analysis. Cell function was determined by cell counting kit 8 assay, soft-agar colony formation assay, flow cytometry and tube formation assay. Fluorescent in situ hybridization assay was used to analyze the co-localization of CPEB2 and ARPC5 in MM cells. Actinomycin D treatment and cycloheximide chase assay were performed to assess the stability of ARPC5. The interaction between CPEB2 and ARPC5 was confirmed by RNA immunoprecipitation assay. RESULTS: CPEB2 and ARPC5 mRNA and protein expression levels were upregulated in CD138+ plasma cells from MM patients and cells. CPEB2 downregulation reduced MM cell proliferation, angiogenesis, and increased apoptosis, while its overexpression had an opposite effect. CPEB2 and ARPC5 were co-localized at cell cytoplasm and could positively regulate ARPC5 expression by mediating its mRNA stability. ARPC5 overexpression reversed the suppressive effect of CPEB2 knockdown on MM progression, and it knockdown also abolished CPEB2-promoted MM progression. Besides, CPEB2 silencing also reduced MM tumor growth by decreasing ARPC5 expression. CONCLUSION: Our results indicated that CPEB2 increased ARPC5 expression through promoting its mRNA stability, thereby accelerating MM malignant process.


Assuntos
Mieloma Múltiplo , Humanos , Mieloma Múltiplo/genética , Mieloma Múltiplo/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Poliadenilação , Hibridização in Situ Fluorescente , Proliferação de Células/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Citoplasma/metabolismo , Complexo 2-3 de Proteínas Relacionadas à Actina/genética , Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo
8.
Front Immunol ; 13: 944898, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36148220

RESUMO

Background: Actin-related protein 2/3 complex subunit 5 (ARPC5) is one of the members of actin-related protein 2/3 complex and plays an important role in cell migration and invasion. However, little is known about the expression pattern, prognosis value, and biological function of ARPC5 in pan-cancer. Thus, we focus on ARPC5 as cut point to explore a novel prognostic and immunological biomarker for cancers. Methods: The public databases, including TCGA, GTEx, and UCEC, were used to analyze ARPC5 expression in pan-cancer. The Human Protein Atlas website was applied to obtain the expression of ARPC5 in different tissues, cell lines, and single-cell types. Univariate Cox regression analysis and Kaplan-Meier analysis were used to explore the prognosis value of ARPC5 in various cancers. Spearman's correlation analysis was performed to investigate the association between ARPC5 expression and tumor microenvironment scores, immune cell infiltration, immune-related genes, TMB, MSI, RNA modification genes, DNA methyltransferases, and tumor stemness. Moreover, qPCR, Western blot, and immunohistochemistry were carried out to examine the differential expression of ARPC5 in HCC tissues and cell lines. CCK8, EdU, flow cytometry, wound-healing assays, and transwell assays were conducted to explore its role in tumor proliferation, apoptosis, migration, and invasion among HCC cells. Results: ARPC5 expression was upregulated in most cancer types and significantly associated with worse prognosis in KIRC, KIRP, LGG, and LIHC. mRNA expression of ARPC5 showed low tissue and cell specificity in normal tissues, cell lines, and single-cell types. ARPC5 expression was positively correlated with the tumor microenvironment scores, immune infiltrating cells, immune checkpoint-related genes in most cancers. ARPC5 in STAD and BRCA was positively associated with TMB, MSI, and neoantigens. We also discovered that ARPC5 was correlated with the expression of m1A-related genes, m5C-related genes, m6A-related genes, and DNA methyltransferases. In experiment analyses, we found that ARPC5 was significantly highly expressed in HCC tissues and HCC cells. Functionally, silencing ARPC5 dramatically decreased proliferation, migration, and invasion ability of HCC cells. Conclusions: ARPC5 expression affects the prognosis of multiple tumors and is closely correlated to tumor immune infiltration and immunotherapy. Furthermore, ARPC5 may function as an oncogene and promote tumor progression in HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Proteína 2 Relacionada a Actina/genética , Proteína 2 Relacionada a Actina/metabolismo , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , DNA , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Hepáticas/patologia , Metiltransferases/genética , Prognóstico , RNA , RNA Mensageiro/genética , Microambiente Tumoral/genética
9.
Int J Biol Sci ; 9(2): 209-18, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23459330

RESUMO

Congenital hypothyroidism (CH) can lead to irreversible central nervous system (CNS) damage. However, the pathogenesis of the developmental brain disorders caused by CH has not been completely elucidated. ARPC5 and CRMP2 are closely associated with neurite outgrowth in brain development. Thus, the aim of the present study was to determine whether CRMP2B and ARPC5 expression is altered in the developing cerebral cortex of rats with CH. Control rats and rats with hypothyroidism were sacrificed at birth and at 15 days postpartum. We performed qRT-PCR to detect differences in the crmp2B and arpc5 mRNA expression in the right half of the frontal cortex of these rats. Western blotting was then used to detect differences in CRMP2B and ARPC5 protein expression. Furthermore, immunohistochemical analysis was performed on the left half of the frontal cortex to detect abnormal localization of CRMP2B and ARPC5. Results showed increased expression of the nuclear short isoform of CRMP2B and decreased expression of full-length CRMP2B and ARPC5 in cortical neurons of rats with hypothyroidism. These findings demonstrate that reduced levels of thyroid hormones can inhibit the expression of full-length CRMP2B and ARPC5 and promote nuclear transformation of the short isoform of CRMP2B. CRMP2B and ARPC5 may participate in CNS injury mediated by hypothyroidism by inducing neurite outgrowth inhibition and cytoskeletal protein disorganization.


Assuntos
Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Hipotireoidismo Congênito/metabolismo , Lobo Frontal/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Hormônios Tireóideos/metabolismo , Análise de Variância , Animais , Western Blotting , Primers do DNA/genética , Feminino , Lobo Frontal/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular , Neuritos/fisiologia , Ratos , Ratos Wistar , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA