Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.335
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Annu Rev Biochem ; 88: 551-576, 2019 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-30485755

RESUMO

Energy-coupling factor (ECF)-type ATP-binding cassette (ABC) transporters catalyze membrane transport of micronutrients in prokaryotes. Crystal structures and biochemical characterization have revealed that ECF transporters are mechanistically distinct from other ABC transport systems. Notably, ECF transporters make use of small integral membrane subunits (S-components) that are predicted to topple over in the membrane when carrying the bound substrate from the extracellular side of the bilayer to the cytosol. Here, we review the phylogenetic diversity of ECF transporters as well as recent structural and biochemical advancements that have led to the postulation of conceptually different mechanistic models. These models can be described as power stroke and thermal ratchet. Structural data indicate that the lipid composition and bilayer structure are likely to have great impact on the transport function. We argue that study of ECF transporters could lead to generic insight into membrane protein structure, dynamics, and interaction.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Transportadores de Cassetes de Ligação de ATP/química , Transportadores de Cassetes de Ligação de ATP/genética , Trifosfato de Adenosina/metabolismo , Animais , Archaea/metabolismo , Proteínas Arqueais/química , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Bactérias/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Transporte Biológico , Cristalografia por Raios X , Humanos , Modelos Moleculares , Filogenia , Conformação Proteica
2.
EMBO J ; 40(19): e108482, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34459010

RESUMO

Sarco/endoplasmic reticulum Ca2+ -ATPase (SERCA) 2b is a ubiquitous SERCA family member that conducts Ca2+ uptake from the cytosol to the ER. Herein, we present a 3.3 Å resolution cryo-electron microscopy (cryo-EM) structure of human SERCA2b in the E1·2Ca2+ state, revealing a new conformation for Ca2+ -bound SERCA2b with a much closer arrangement of cytosolic domains than in the previously reported crystal structure of Ca2+ -bound SERCA1a. Multiple conformations generated by 3D classification of cryo-EM maps reflect the intrinsically dynamic nature of the cytosolic domains in this state. Notably, ATP binding residues of SERCA2b in the E1·2Ca2+ state are located at similar positions to those in the E1·2Ca2+ -ATP state; hence, the cryo-EM structure likely represents a preformed state immediately prior to ATP binding. Consistently, a SERCA2b mutant with an interdomain disulfide bridge that locks the closed cytosolic domain arrangement displayed significant autophosphorylation activity in the presence of Ca2+ . We propose a novel mechanism of ATP binding to SERCA2b.


Assuntos
Trifosfato de Adenosina/química , Microscopia Crioeletrônica , Modelos Moleculares , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/química , Trifosfato de Adenosina/metabolismo , Sítios de Ligação , Cristalografia por Raios X , Humanos , Hidrólise , Conformação Molecular , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Relação Estrutura-Atividade
3.
Circ Res ; 133(10): 861-876, 2023 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-37818671

RESUMO

BACKGROUND: The membrane components of cardiomyocytes are rich in polyunsaturated fatty acids, which are easily oxidized. Thus, an efficient glutathione-based lipid redox system is essential for maintaining cellular functions. However, the relationship between disruption of the redox system during ischemia-reperfusion (IR), oxidized lipid production, and consequent cell death (ferroptosis) remains unclear. We investigated the mechanisms underlying the disruption of the glutathione-mediated reduction system related to ferroptosis during IR and developed intervention strategies to suppress ferroptosis. METHODS: In vivo fluctuations of both intra- and extracellular metabolite levels during IR were explored via microdialysis and tissue metabolome analysis. Oxidized phosphatidylcholines were assessed using liquid chromatography high-resolution mass spectrometry. The areas at risk following IR were assessed using triphenyl-tetrazolium chloride/Evans blue stain. RESULTS: Metabolomic analysis combined with microdialysis revealed a significant release of glutathione from the ischemic region into extracellular spaces during ischemia and after reperfusion. The release of glutathione into extracellular spaces and a concomitant decrease in intracellular glutathione concentrations were also observed during anoxia-reperfusion in an in vitro cardiomyocyte model. This extracellular glutathione release was prevented by chemical inhibition or genetic suppression of glutathione transporters, mainly MRP1 (multidrug resistance protein 1). Treatment with MRP1 inhibitor reduced the intracellular reactive oxygen species levels and lipid peroxidation, thereby inhibiting cell death. Subsequent in vivo evaluation of endogenously oxidized phospholipids following IR demonstrated the involvement of ferroptosis, as levels of multiple oxidized phosphatidylcholines were significantly elevated in the ischemic region 12 hours after reperfusion. Inhibition of the MRP1 transporter also alleviated intracellular glutathione depletion in vivo and significantly reduced the generation of oxidized phosphatidylcholines. Administration of MRP1 inhibitors significantly attenuated infarct size after IR injury. CONCLUSIONS: Glutathione was released continuously during IR, primarily in an MRP1-dependent manner, and induced ferroptosis. Suppression of glutathione release attenuated ferroptosis and reduced myocardial infarct size following IR.


Assuntos
Ferroptose , Miócitos Cardíacos , Humanos , Miócitos Cardíacos/metabolismo , Reperfusão , Isquemia/metabolismo , Glutationa/metabolismo , Fosfolipídeos/metabolismo , Fosfatidilcolinas
4.
Traffic ; 23(7): 360-373, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35510564

RESUMO

The endocytic protein EHD1 controls primary ciliogenesis by facilitating fusion of the ciliary vesicle and by removal of CP110 from the mother centriole. EHD3, the closest EHD1 paralog, has a similar regulatory role, but initial evidence suggested that the other two more distal paralogs, EHD2 and EHD4 may be dispensable for ciliogenesis. Herein, we define a novel role for EHD4, but not EHD2, in regulating primary ciliogenesis. To better understand the mechanisms and differential functions of the EHD proteins in ciliogenesis, we first demonstrated a requirement for EHD1 ATP-binding to promote ciliogenesis. We then identified two sequence motifs that are entirely conserved between EH domains of EHD1, EHD3 and EHD4, but display key amino acid differences within the EHD2 EH domain. Substitution of either P446 or E470 in EHD1 with the aligning S451 or W475 residues from EHD2 was sufficient to prevent rescue of ciliogenesis in EHD1-depleted cells upon reintroduction of EHD1. Overall, our data enhance the current understanding of the EHD paralogs in ciliogenesis, demonstrate a need for ATP-binding and identify conserved sequences in the EH domains of EHD1, EHD3 and EHD4 that regulate EHD1 binding to proteins and its ability to rescue ciliogenesis in EHD1-depleted cells.


Assuntos
Proteínas de Transporte , Vesículas Citoplasmáticas , Trifosfato de Adenosina , Animais , Proteínas de Transporte/metabolismo , Vesículas Citoplasmáticas/metabolismo , Mamíferos/metabolismo
5.
J Biol Chem ; 299(3): 103001, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36764524

RESUMO

The VanRS two-component system regulates the resistance phenotype of vancomycin-resistant enterococci. VanS is a sensor histidine kinase that responds to the presence of vancomycin by autophosphorylating and subsequently transferring the phosphoryl group to the response regulator, VanR. The phosphotransfer activates VanR as a transcription factor, which initiates the expression of resistance genes. Structural information about VanS proteins has remained elusive, hindering the molecular-level understanding of their function. Here, we present X-ray crystal structures for the catalytic and ATP-binding (CA) domains of two VanS proteins, derived from vancomycin-resistant enterococci types A and C. Both proteins adopt the canonical Bergerat fold that has been observed for CA domains of other prokaryotic histidine kinases. We attempted to determine structures for the nucleotide-bound forms of both proteins; however, despite repeated efforts, these forms could not be crystallized, prompting us to measure the proteins' binding affinities for ATP. Unexpectedly, both CA domains displayed low affinities for the nucleotide, with KD values in the low millimolar range. Since these KD values are comparable to intracellular ATP concentrations, this weak substrate binding could reflect a way of regulating expression of the resistance phenotype.


Assuntos
Enterococos Resistentes à Vancomicina , Enterococos Resistentes à Vancomicina/metabolismo , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Fatores de Transcrição/metabolismo , Histidina Quinase/genética , Histidina Quinase/metabolismo , Nucleotídeos , Trifosfato de Adenosina , Antibacterianos/metabolismo
6.
J Biol Chem ; 299(5): 104614, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36931393

RESUMO

N-retinylidene-phosphatidylethanolamine (N-Ret-PE), the Schiff-base conjugate formed through the reversible reaction of retinal (Vitamin A-aldehyde) and phosphatidylethanolamine, plays a crucial role in the visual cycle and visual pigment photoregeneration. However, N-Ret-PE can react with another molecule of retinal to form toxic di-retinoids if not removed from photoreceptors through its transport across photoreceptor membranes by the ATP-binding-cassette transporter ABCA4. Loss-of-function mutations in ABCA4 are known to cause Stargardt disease (STGD1), an inherited retinal degenerative disease associated with the accumulation of fluorescent di-retinoids and severe loss in vision. A larger assessment of retinal-phospholipid Schiff-base conjugates in photoreceptors is needed, along with further investigation of ABCA4 residues important for N-Ret-PE binding. In this study we show that N-Ret-PE formation is dependent on pH and phospholipid content. When retinal is added to liposomes or photoreceptor membranes, 40 to 60% is converted to N-Ret-PE at physiological pH. Phosphatidylserine and taurine also react with retinal to form N-retinylidene-phosphatidylserine and N-retinylidene-taurine, respectively, but at significantly lower levels. N-retinylidene-phosphatidylserine is not a substrate for ABCA4 and reacts poorly with retinal to form di-retinoids. Additionally, amino acid residues within the binding pocket of ABCA4 that contribute to its interaction with N-Ret-PE were identified and characterized using site-directed mutagenesis together with functional and binding assays. Substitution of arginine residues and hydrophobic residues with alanine or residues implicated in STGD1 significantly reduced or eliminated substrate-activated ATPase activity and substrate binding. Collectively, this study provides important insight into conditions which affect retinal-phospholipid Schiff-base formation and mechanisms underlying the pathogenesis of STGD1.


Assuntos
Fosfolipídeos , Doença de Stargardt , Humanos , Transportadores de Cassetes de Ligação de ATP/metabolismo , Fosfatidilserinas , Retinoides/metabolismo , Doença de Stargardt/metabolismo
7.
Proteins ; 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39012208

RESUMO

The ATP-dependent phosphorylation activity of cyclin-dependent kinase 1 (CDK1), an essential enzyme for cell cycle progression, is regulated by interactions with Cyclin-B, substrate, and Cks proteins. We have recently shown that active site acetylation in CDK1 abrogated binding to Cyclin-B which posits an intriguing long-range communication between the catalytic site and the protein-protein interaction (PPI) interface. Now, we demonstrate a general allosteric link between the CDK1 active site and all three of its PPI interfaces through atomistic molecular dynamics (MD) simulations. Specifically, we examined ATP binding free energies to CDK1 in native nonacetylated (K33wt) and acetylated (K33Ac) forms as well as the acetyl-mimic K33Q and the acetyl-null K33R mutant forms, which are accessible in vitro. In agreement with experiments, ATP binding is stronger in K33wt relative to the other three perturbed states. Free energy decomposition reveals, in addition to expected local changes, significant and selective nonlocal entropic responses to ATP binding/perturbation of K33 from the αC $$ \alpha C $$ -helix, activation loop (A-loop), and αG $$ \alpha G $$ - α $$ \alpha $$ H segments in CDK1 which interface with Cyclin-B, substrate, and Cks proteins, respectively. Statistical analysis reveals that while entropic responses of protein segments to active site perturbations are on average correlated with their dynamical changes, such correlations are lost in about 9%-48% of the dataset depending on the segment. Besides proving the bi-directional communication between the active site and the CDK1:Cyclin-B interface, our study uncovers a hitherto unknown mode of ATP binding regulation by multiple PPI interfaces in CDK1.

8.
BMC Genomics ; 25(1): 315, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38532362

RESUMO

Transcriptome-wide survey divulged a total of 181 ABC transporters in G. glabra which were phylogenetically classified into six subfamilies. Protein-Protein interactions revealed nine putative GgABCBs (-B6, -B14, -B15, -B25, -B26, -B31, -B40, -B42 &-B44) corresponding to five AtABCs orthologs (-B1, -B4, -B11, -B19, &-B21). Significant transcript accumulation of ABCB6 (31.8 folds), -B14 (147.5 folds), -B15 (17 folds), -B25 (19.7 folds), -B26 (18.31 folds), -B31 (61.89 folds), -B40 (1273 folds) and -B42 (51 folds) was observed under the influence of auxin. Auxin transport-specific inhibitor, N-1-naphthylphthalamic acid, showed its effectiveness only at higher (10 µM) concentration where it down regulated the expression of ABCBs, PINs (PIN FORMED) and TWD1 (TWISTED DWARF 1) genes in shoot tissues, while their expression was seen to enhance in the root tissues. Further, qRT-PCR analysis under various growth conditions (in-vitro, field and growth chamber), and subjected to abiotic stresses revealed differential expression implicating role of ABCBs in stress management. Seven of the nine genes were shown to be involved in the stress physiology of the plant. GgABCB6, 15, 25 and ABCB31 were induced in multiple stresses, while GgABCB26, 40 & 42 were exclusively triggered under drought stress. No study pertaining to the ABC transporters from G. glabra is available till date. The present investigation will give an insight to auxin transportation which has been found to be associated with plant growth architecture; the knowledge will help to understand the association between auxin transportation and plant responses under the influence of various conditions.


Assuntos
Glycyrrhiza , Transcriptoma , Transportadores de Cassetes de Ligação de ATP/genética , Ácidos Indolacéticos/metabolismo , Glycyrrhiza/genética , Glycyrrhiza/metabolismo , Estresse Fisiológico/genética , Trifosfato de Adenosina , Regulação da Expressão Gênica de Plantas , Filogenia
9.
Apoptosis ; 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39190205

RESUMO

5-Aminolevulinic acid (ALA) is an intraoperative imaging agent approved for protoporphyrin IX (PpIX) fluorescence-guided resection of glioblastoma (GBM). It is currently under clinical evaluation for photodynamic therapy (PDT) after the completion of GBM surgery. We previously showed that lapatinib, a clinical kinase inhibitor of epidermal growth factor receptor 1 & 2 (EGFR and HER2), enhanced PpIX fluorescence in a panel of GBM cell lines by blocking ABCG2 (ATP-binding cassette super-family G member 2)-mediated PpIX efflux, which suggests its potential for improving ALA for GBM surgery and PDT. Here we show that lapatinib enhanced PDT-induced cytotoxicity by promoting GBM cell death with the induction of apoptosis followed by necrosis. While the induction of tumor cell apoptosis was massive and rapid in the H4 cell line with no detectable Bcl-2 and a low level of Bcl-xL, it was delayed and much less in extent in A172, U-87 and U-118 cell lines with higher levels of pro-survival Bcl-2 family proteins. Lapatinib treatment alone neither reduced GBM cell viability nor had any significant effect on EGFR downstream signaling. Its enhancement of ALA-PDT was largely due to the increase of intracellular PpIX particularly in the mitochondria, resulting in the activation of mitochondria-mediated apoptosis in H4 cells. Our present study demonstrates that lapatinib inhibits ABCG2-mediated PpIX efflux and sensitizes GBM cells to ALA-PDT by inducing tumor cell death.

10.
Br J Haematol ; 204(4): 1483-1494, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38031970

RESUMO

Primary immune thrombocytopenia (ITP) is an acquired autoimmune disease. Cellular and systemic lipid metabolism plays a significant role in the regulation of immune cell activities. However, the role of lipoprotein lipids and apolipoproteins in ITP remains elusive. The automatic biochemistry analyser was used to measure the levels of serum total cholesterol (TC), triglyceride (TG), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), apolipoprotein A-I (apoA-I), apoB, apoE and lipoprotein a [LP(a)]. Genetic variants strongly associated with circulating lipoprotein lipids and apolipoproteins (LDL-C, apoB, TG, HDL-C and apoA-I) were extracted to perform Mendelian randomization (MR) analyses. Finally, drug-target MR and passive ITP mice model was used to investigate the potential druggable targets of ITP. Levels of HDL-C, apoA-I, decreased and LP(a) increased in ITP patients compared with healthy controls. Low HDL-C was causally associated with ITP susceptibility. Through drug-target MR and animal modelling, ABCA1 was identified as a potential target to design drugs for ITP. Our study found that lipid metabolism is related to ITP. The causative association between HDL-C and the risk of ITP was also established. The study provided new evidence of the aetiology of ITP. ABCA1 might be a potential drug target for ITP.


Assuntos
Apolipoproteína A-I , Púrpura Trombocitopênica Idiopática , Animais , Camundongos , Humanos , Apolipoproteína A-I/genética , LDL-Colesterol , Lipídeos , Análise da Randomização Mendeliana , Púrpura Trombocitopênica Idiopática/tratamento farmacológico , Púrpura Trombocitopênica Idiopática/genética , Apolipoproteínas/genética , Triglicerídeos , HDL-Colesterol
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA