Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Plant J ; 117(5): 1344-1355, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38011587

RESUMO

Kinases are major components of cellular signaling pathways, regulating key cellular activities through phosphorylation. Kinase inhibitors are efficient tools for studying kinase targets and functions, however assessing their kinase specificity in vivo is essential. The identification of resistant kinase mutants has been proposed to be the most convincing approach to achieve this goal. Here, we address this issue in plants via a pharmacogenetic screen for mutants resistant to the ATP-competitive TOR inhibitor AZD-8055. The eukaryotic TOR (Target of Rapamycin) kinase is emerging as a major hub controlling growth responses in plants largely thanks to the use of ATP-competitive inhibitors. We identified a dominant mutation in the DFG motif of the Arabidopsis TOR kinase domain that leads to very strong resistance to AZD-8055. This resistance was characterized by measuring root growth, photosystem II (PSII) activity in leaves and phosphorylation of YAK1 (Yet Another Kinase 1) and RPS6 (Ribosomal protein S6), a direct and an indirect target of TOR respectively. Using other ATP-competitive TOR inhibitors, we also show that the dominant mutation is particularly efficient for resistance to drugs structurally related to AZD-8055. Altogether, this proof-of-concept study demonstrates that a pharmacogenetic screen in Arabidopsis can be used to successfully identify the target of a kinase inhibitor in vivo and therefore to demonstrate inhibitor specificity. Thanks to the conservation of kinase families in eukaryotes, and the possibility of creating amino acid substitutions by genome editing, this work has great potential for extending studies on the evolution of signaling pathways in eukaryotes.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Sirolimo/farmacologia , Transdução de Sinais/fisiologia , Fosforilação , Mutação , Trifosfato de Adenosina/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo
2.
Invest New Drugs ; 40(6): 1206-1215, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36063263

RESUMO

Dual mTORC1/2 inhibitors may be more effective than mTORC1 inhibitor rapamycin. Nevertheless, their metabolic effects on breast cancer cells have not been reported. We compared the anti-proliferative capacity of rapamycin and a novel mTORC1/2 dual inhibitor (AZD8055) in two breast cancer cell lines (MDA-MB-231 and MDA-MB-453) and analyzed their metabolic effects using proton nuclear magnetic resonance (1H NMR) spectroscopy-based metabolomics. We found that AZD8055 more strongly inhibited breast cancer cell proliferation than rapamycin. The half-inhibitory concentration of AZD8055 in breast cancer cells was almost one-tenth that of rapamycin. We identified 22 and 23 metabolites from the 1H NMR spectra of MDA-MB-231 and MDA-MB-453 cells. The patterns of AZD8055- and rapamycin-treated breast cancer cells differed significantly; we then selected the metabolites that contributed to these differences. For inhibiting glycolysis and reducing glucose consumption, AZD8055 was likely to be more potent than rapamycin. For amino acids metabolism, although AZD8055 has a broad effect as rapamycin, their effects in degrees were not exactly the same. AZD8055 and rapamycin displayed cell-specific metabolic effects on breast cancer cells, a finding that deserves further study. These findings help fill the knowledge gap concerning dual mTORC1/2 inhibitors and provide a theoretical basis for their development.


Assuntos
Neoplasias da Mama , Sirolimo , Humanos , Feminino , Alvo Mecanístico do Complexo 1 de Rapamicina , Alvo Mecanístico do Complexo 2 de Rapamicina , Prótons , Serina-Treonina Quinases TOR/metabolismo , Espectroscopia de Prótons por Ressonância Magnética , Neoplasias da Mama/tratamento farmacológico , Ensaios Antitumorais Modelo de Xenoenxerto , Linhagem Celular Tumoral , Proliferação de Células
3.
Int J Mol Sci ; 23(13)2022 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-35806454

RESUMO

Target of rapamycin (TOR) is a serine/threonine protein kinase that plays a central regulating role in cell proliferation, growth, and metabolism, but little is known about the TOR signaling pathway in Chlorella sorokiniana. In this study, a Chlorella sorokiniana DP-1 strain was isolated and identified, and its nutritional compositions were analyzed. Based on homologous sequence analysis, the conserved CsTOR protein was found in the genome of Chlorella sorokiniana. In addition, the key components of TOR complex 1 (TORC1) were present, but the components of TORC2 (RICTOR and SIN1) were absent in Chlorella sorokiniana. Pharmacological assays showed that Chlorella sorokiniana DP-1 was insensitive to rapamycin, Torin1 and KU0063794, whereas AZD8055 could significantly inhibit the growth of Chlorella sorokiniana. RNA-seq analysis showed that CsTOR regulated various metabolic processes and signal transduction pathways in AZD8055-treated Chlorella sorokiniana DP-1. Most genes involved in photosynthesis and carbon fixation in Chlorella sorokiniana DP-1 were significantly downregulated under CsTOR inhibition, indicating that CsTOR positively regulated the photosynthesis in Chlorella sorokiniana. Furthermore, CsTOR controlled protein synthesis and degradation by positively regulating ribosome synthesis and negatively regulating autophagy. These observations suggested that CsTOR plays an important role in photosynthesis and cellular metabolism, and provide new insights into the function of CsTOR in Chlorella sorokiniana.


Assuntos
Chlorella , Chlorella/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Fotossíntese , Transdução de Sinais , Sirolimo/farmacologia
4.
Int J Mol Sci ; 23(19)2022 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-36232611

RESUMO

Auxenochlorella pyrenoidosa is an efficient photosynthetic microalga with autotrophic growth and reproduction, which has the advantages of rich nutrition and high protein content. Target of rapamycin (TOR) is a conserved protein kinase in eukaryotes both structurally and functionally, but little is known about the TOR signalling in Auxenochlorella pyrenoidosa. Here, we found a conserved ApTOR protein in Auxenochlorella pyrenoidosa, and the key components of TOR complex 1 (TORC1) were present, while the components RICTOR and SIN1 of the TORC2 were absent in Auxenochlorella pyrenoidosa. Drug sensitivity experiments showed that AZD8055 could effectively inhibit the growth of Auxenochlorella pyrenoidosa, whereas rapamycin, Torin1 and KU0063794 had no obvious effect on the growth of Auxenochlorella pyrenoidosaa. Transcriptome data results indicated that Auxenochlorella pyrenoidosa TOR (ApTOR) regulates various intracellular metabolism and signaling pathways in Auxenochlorella pyrenoidosa. Most genes related to chloroplast development and photosynthesis were significantly down-regulated under ApTOR inhibition by AZD8055. In addition, ApTOR was involved in regulating protein synthesis and catabolism by multiple metabolic pathways in Auxenochlorella pyrenoidosa. Importantly, the inhibition of ApTOR by AZD8055 disrupted the normal carbon and nitrogen metabolism, protein and fatty acid metabolism, and TCA cycle of Auxenochlorella pyrenoidosa cells, thus inhibiting the growth of Auxenochlorella pyrenoidosa. These RNA-seq results indicated that ApTOR plays important roles in photosynthesis, intracellular metabolism and cell growth, and provided some insights into the function of ApTOR in Auxenochlorella pyrenoidosa.


Assuntos
Fotossíntese , Sirolimo , Carbono , Ácidos Graxos , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Nitrogênio , Proteínas Quinases/metabolismo , Sirolimo/farmacologia
5.
Nanomedicine ; 35: 102391, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33794371

RESUMO

Uveal melanoma (UM) is an intraocular tumor which is almost lethal at the metastatic stage due to the lack of effective treatments. In this regard, we have developed an albumin-based nanostructure (ABN) containing AZD8055 (ABN-AZD), which is a potent mTOR kinase inhibitor, for its efficient delivery to the tumors. The drug has been conjugated to ABN using tailored linkers that have a disulfide moiety, allowing its release selectively and effectively in the presence of an elevated concentration of glutathione, such as inside the tumoral cells. Our therapeutic approach induced significant cellular toxicity in uveal melanoma cells, but not in non-tumoral keratinocytes, highlighting the excellent selectivity of the system. In addition, these nanostructures showed excellent activity in vivo, decreasing the tumor surface compared to the free AZD8055 in mice models. Remarkably, the results obtained were achieved employing a dose 23 times lower than those used in previous reports.


Assuntos
Melanoma/tratamento farmacológico , Morfolinas , Nanoestruturas , Albumina Sérica Humana , Neoplasias Uveais/tratamento farmacológico , Animais , Células Alimentadoras , Humanos , Melanoma/enzimologia , Camundongos , Camundongos Nus , Morfolinas/química , Morfolinas/farmacologia , Nanoestruturas/química , Nanoestruturas/uso terapêutico , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/metabolismo , Albumina Sérica Humana/química , Albumina Sérica Humana/farmacologia , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/metabolismo , Neoplasias Uveais/enzimologia , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Int J Mol Sci ; 22(21)2021 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-34769253

RESUMO

Protein synthesis is important for maintaining cellular homeostasis under various stress responses. In this study, we screened an anticancer drug library to select compounds with translational repression functions. AZD8055, an ATP-competitive mechanistic target of rapamycin complex 1/2 (mTORC1/2) inhibitor, was selected as a translational suppressor. AZD8055 inhibited protein synthesis in mouse embryonic fibroblasts and hepatocellular carcinoma HepG2 cells. Extracellular signal-regulated kinase (ERK) and p38 mitogen-activated protein kinase (MAPK) were activated during the early phase of mTORC1/2 inhibition by AZD8055 treatment. Combined treatment of AZD8055 with the MAPK kinase1/2 (MEK1/2) inhibitor refametinib or the p38 inhibitor SB203580 markedly decreased translation in HepG2 cells. Thus, the inhibition of ERK1/2 or p38 may enhance the efficacy of AZD8055-mediated inhibition of protein synthesis. In addition, AZD8055 down-regulated the phosphorylation of eukaryotic initiation factor 4E-binding protein 1 (4E-BP1), and AZD8055-induced phosphorylation of ERK1/2 and p38 had no effect on phosphorylation status of 4E-BP1. Interestingly, AZD8055 modulated the 4E-BP1 mRNA pool by up-regulating ERK1/2 and p38 pathways. Together, these results suggest that AZD8055-induced activation of MAPKs interferes with inhibition of protein synthesis at an early stage of mTORC1/2 inhibition, and that it may contribute to the development of resistance to mTORC1/2 inhibitors.


Assuntos
Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , Sistema de Sinalização das MAP Quinases , Morfolinas/farmacologia , Proteínas de Neoplasias/metabolismo , Biossíntese de Proteínas/efeitos dos fármacos , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Carcinoma Hepatocelular/patologia , Ativação Enzimática/efeitos dos fármacos , Células Hep G2 , Humanos , Neoplasias Hepáticas/patologia
7.
New Phytol ; 221(1): 247-260, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30040123

RESUMO

Target of rapamycin (TOR) kinase is a conserved regulator of cell growth whose activity is modulated in response to nutrients, energy and stress. Key proteins involved in the pathway are conserved in the model photosynthetic microalga Chlamydomonas reinhardtii, but the substrates of TOR kinase and downstream signaling network have not been elucidated. Our study provides a new resource for investigating the phosphorylation networks governed by the TOR kinase pathway in Chlamydomonas. We used quantitative phosphoproteomics to investigate the effects of inhibiting Chlamydomonas TOR kinase on dynamic protein phosphorylation. Wild-type and AZD-insensitive Chlamydomonas strains were treated with TOR-specific chemical inhibitors (rapamycin, AZD8055 and Torin1), after which differentially affected phosphosites were identified. Our quantitative phosphoproteomic dataset comprised 2547 unique phosphosites from 1432 different proteins. Inhibition of TOR kinase caused significant quantitative changes in phosphorylation at 258 phosphosites, from 219 unique phosphopeptides. Our results include Chlamydomonas homologs of TOR signaling-related proteins, including a site on RPS6 with a decrease in phosphorylation. Additionally, phosphosites on proteins involved in translation and carotenoid biosynthesis were identified. Follow-up experiments guided by these phosphoproteomic findings in lycopene beta/epsilon cyclase showed that carotenoid levels are affected by TORC1 inhibition and carotenoid production is under TOR control in algae.


Assuntos
Chlamydomonas reinhardtii/metabolismo , Fosfoproteínas/metabolismo , Proteínas de Plantas/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Serina-Treonina Quinases TOR/antagonistas & inibidores , Carotenoides/metabolismo , Chlamydomonas reinhardtii/efeitos dos fármacos , Chlamydomonas reinhardtii/genética , Análise por Conglomerados , Alvo Mecanístico do Complexo 1 de Rapamicina/antagonistas & inibidores , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Morfolinas , Mutação , Naftiridinas , Fosforilação/efeitos dos fármacos , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/metabolismo
8.
J Exp Bot ; 70(8): 2313-2323, 2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30753668

RESUMO

The growth and development of organisms must be tightly controlled and adjusted to nutrient availability and metabolic activities. The Target of Rapamycin (TOR) network is a major control mechanism in eukaryotes and influences processes such as translation, mitochondrial activity, production of reactive oxygen species, and the cytoskeleton. In Arabidopsis thaliana, inhibition of the TOR kinase causes changes in cell wall architecture and suppression of phenotypic defects of the cell wall formation mutant lrx1 (leucine-rich repeat extensin 1). The rol17 (repressor of lrx1 17) mutant was identified as a new suppressor of lrx1 that induces also a short root phenotype. The ROL17 locus encodes isopropylmalate synthase 1, a protein involved in leucine biosynthesis. Dependent on growth conditions, mutations in ROL17 do not necessarily alter the level of leucine, but always cause development of the rol17 mutant phenotypes, suggesting that the mutation does not only influence leucine biosynthesis. Changes in the metabolome of rol17 mutants are also found in plants with inhibited TOR kinase activity. Furthermore, rol17 mutants show reduced sensitivity to the TOR kinase inhibitor AZD-8055, indicating a modified TOR network. Together, these data suggest that suppression of lrx1 by rol17 is the result of an alteration of the TOR network.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Glucosiltransferases/genética , Fosfatidilinositol 3-Quinases , Proteínas de Arabidopsis/metabolismo , Leucina/biossíntese , Mutação , Organogênese Vegetal , Fenótipo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Raízes de Plantas/metabolismo , Transdução de Sinais
9.
BMC Cancer ; 19(1): 917, 2019 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-31519159

RESUMO

BACKGROUND: Renal cell carcinomas (RCC) harboring a TFE3 gene fusion (TfRCC) represent an aggressive subset of kidney tumors. Key signaling pathways of TfRCC are unknown and preclinical in vivo data are lacking. We investigated Akt/mTOR pathway activation and the preclinical efficacy of dual mTORC1/2 versus selective mTORC1 inhibition in TfRCC. METHODS: Levels of phosphorylated Akt/mTOR pathway proteins were compared by immunoblot in TfRCC and clear cell RCC (ccRCC) cell lines. Effects of the mTORC1 inhibitor, sirolimus, and the dual mTORC1/2 inhibitor, AZD8055, on Akt/mTOR activation, cell cycle progression, cell viability and cytotoxicity were compared in TfRCC cells. TfRCC xenograft tumor growth in mice was evaluated after 3-week treatment with oral AZD8055, intraperitoneal sirolimus and respective vehicle controls. RESULTS: The Akt/mTOR pathway was activated to a similar or greater degree in TfRCC than ccRCC cell lines and persisted partly during growth factor starvation, suggesting constitutive activation. Dual mTORC1/2 inhibition with AZD8055 potently inhibited TfRCC viability (IC50 = 20-50 nM) due at least in part to cell cycle arrest, while benign renal epithelial cells were relatively resistant (IC50 = 400 nM). Maximal viability reduction was greater with AZD8055 than sirolimus (80-90% versus 30-50%), as was the extent of Akt/mTOR pathway inhibition, based on significantly greater suppression of P-Akt (Ser473), P-4EBP1, P-mTOR and HIF1α. In mouse xenograft models, AZD8055 achieved significantly better tumor growth inhibition and prolonged mouse survival compared to sirolimus or vehicle controls. CONCLUSIONS: Akt/mTOR activation is common in TfRCC and a promising therapeutic target. Dual mTORC1/2 inhibition suppresses Akt/mTOR signaling more effectively than selective mTORC1 inhibition and demonstrates in vivo preclinical efficacy against TFE3-fusion renal cell carcinoma.


Assuntos
Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Carcinoma de Células Renais/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/antagonistas & inibidores , Alvo Mecanístico do Complexo 2 de Rapamicina/antagonistas & inibidores , Morfolinas/farmacologia , Animais , Carcinoma de Células Renais/tratamento farmacológico , Carcinoma de Células Renais/metabolismo , Carcinoma de Células Renais/patologia , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Humanos , Camundongos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
10.
FASEB J ; : fj201701422R, 2018 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-29757673

RESUMO

We investigated whether rapamycin-insensitive mechanistic target of rapamycin (mTOR) signaling plays a role in regulating resistance exercise-induced muscle protein synthesis. We used a rodent model of resistance exercise and compared the effect of rapamycin, an allosteric mTOR inhibitor, with the effect of AZD8055, an ATP-competitive mTOR kinase inhibitor. The right gastrocnemius muscle of male Sprague-Dawley rats age 11 wk was contracted isometrically via percutaneous electrical stimulation (100 Hz, 5 sets of ten 3-s contractions, 7 s of rest between contractions, 3 min of rest between sets), and the left gastrocnemius muscle served as control. Vehicle, rapamycin, or AZD8055 were intraperitoneally injected 1 h before resistance exercise. Results indicated that both rapamycin and AZD8055 inhibited mTOR complex 1 (mTORC1)/70-kDa ribosomal protein S6 kinase signaling similarly, whereas mTORC1/eukaryotic translation initiation factor 4E-binding protein 1 signaling was greatly inhibited by AZD8055. Moreover, only AZD8055 inhibited the phosphorylation of Akt at Ser473, a downstream target of mTORC2. AZD8055, but not rapamycin, completely inhibited the resistance exercise-induced increase in muscle protein synthesis. We conclude that the resistance exercise-induced increase in muscle protein synthesis is an mTOR signaling-dependent process. Furthermore, both rapamycin-sensitive and -insensitive mTOR signaling regulate this event.-Ogasawara, R., Suginohara, T. Rapamycin-insensitive mechanistic target of rapamycin regulates basal and resistance exercise-induced muscle protein synthesis.

11.
Biogerontology ; 20(3): 359-371, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30741380

RESUMO

Cellular senescence has been shown to be sufficient for the development of multiple age-related pathologies. Senescent cells adopt a secretory phenotype (the SASP) which comprises a large number of pro-inflammatory cytokines, chemokines and proteases. The SASP itself is thought to be causative in many pathologies of age-related diseases, and there is growing interest in developing seno-modifying agents that can suppress the SASP. However, in order to identify new agents, it is necessary to conduct moderate to high throughput screening with robust assays for the required outcome. Here, we describe optimisation and validation of a cell-based biosensor HEK cell line for measurement of IL-6 concentrations within the range secreted into conditioned medium by primary senescent fibroblasts, adapted for a 384 well plate format suitable for library screening applications. We further show that the assay can measure changes in IL-6 secretion dependent on cell population age, and that the assay is responsive to mTOR inhibition in the senescent cells, which reduces the SASP, including IL-6. Hence, we propose that this optimised biosensor, which we term HEK-SASP, may prove of value in studies requiring robust, renewable and relatively inexpensive assays for measuring SASP factors.


Assuntos
Senescência Celular/fisiologia , Inflamação/metabolismo , Interleucina-6/metabolismo , Transdução de Sinais , Técnicas Biossensoriais , Ensaio de Imunoadsorção Enzimática , Células HEK293 , Humanos
12.
Exp Cell Res ; 365(2): 177-184, 2018 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-29499203

RESUMO

Neuroblastoma (NB) is one of the most common solid tumors in children. High-risk NB remains lethal in about 50% of patients despite comprehensive and intensive treatments. Activation of PI3K/Akt/mTOR signaling pathway correlates with oncogenesis, poor prognosis and chemotherapy resistance in NB. Due to its central role in growth and metabolism, mTOR seems to be an important factor in NB, making it a possible target for NB. In this study, we investigated the effect of AZD8055, a potent dual mTORC1-mTORC2 inhibitor, in NB cell lines. Our data showed that mTOR signaling was extensively activated in NB cells. The activity of mTOR and downstream molecules were down-regulated in AZD8055-treated NB cells. Significantly, AZD8055 effectively inhibited cell growth and induced cell cycle arrest, autophagy and apoptosis in NB cells. Moreover, AZD8055 significantly reduced tumor growth in mice xenograft model without apparent toxicity. Taken together, our results highlight the potential of mTOR as a promising target for NB treatment. Therefore, AZD8055 may be further investigated for treatment in clinical trials for high risk NB.


Assuntos
Antineoplásicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Morfolinas/farmacologia , Neuroblastoma/tratamento farmacológico , Neuroblastoma/patologia , Animais , Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Feminino , Humanos , Camundongos , Camundongos Nus , Morfolinas/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
13.
Biochem Biophys Res Commun ; 499(3): 425-432, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29571732

RESUMO

Mammalian target of rapamycin (mTOR) complex (mTORC) is frequently activated in diverse cancers. Although dual mTORC1/2 inhibitors are currently under development to treat various malignancies, the emergence of drug resistance has proven to be a major complication. AZD8055 is a novel, potent ATP-competitive and specific inhibitor of mTOR kinase activity, which blocks both mTORC1 and mTORC2 activation. In this study, we acquired AZD8055-resistant neuroblastoma (NB) cell sublines by using prolonged stepwise escalation of AZD8055 exposure (4-12 weeks). Here we demonstrate that the AZD8055-resistant sublines (TGW-R and SMS-KAN-R) exhibited marked resistance to AZD8055 compared to the parent cells (TGW and SMS-KAN). The cell cycle G1/S transition was advanced in resistant cells. In addition, the resistance against AZD8055 correlated with over-activation of MEK/ERK signaling pathway. Furthermore, combination of AZD8055 and MEK inhibitor U0126 enhanced the growth inhibition of resistant cells significantly in vitro and in vivo. In conclusion, these data show that targeting mTOR kinase and MEK/ERK signaling simultaneously might help to overcome AZD8055 resistance in NB.


Assuntos
Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Morfolinas/farmacologia , Neuroblastoma/enzimologia , Neuroblastoma/patologia , Animais , Antineoplásicos/farmacologia , Butadienos/farmacologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Indução Enzimática/efeitos dos fármacos , Feminino , Fase G1/efeitos dos fármacos , Humanos , Camundongos Nus , Nitrilas/farmacologia , Fase S/efeitos dos fármacos , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/metabolismo
14.
Acta Pharmacol Sin ; 39(8): 1338-1346, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29345254

RESUMO

Tamoxifen, an important endocrine therapeutic agent, is widely used for the treatment of estrogen receptor positive (ER+) breast cancer. However, de novo or acquired resistance prevents patients from benefitting from endocrine approaches and necessitates alternative treatments. In this study, we report that small heat protein beta-8 (HSPB8) may serve as an important molecule in tamoxifen resistance. HSPB8 expression is enhanced in MCF-7 cells resistant to tamoxifen (MCF-7/R) compared to parent cells. Moreover, high expression of HSPB8 associates with poor prognosis in ER+ breast cancer patients but not in patients without classification. Stimulating ER signaling by heterogeneous expression of ERa or 17ß-estradiol promotes HSPB8 expression and reduces the cell population in G1 phase. In contrast, blockage of ER signaling by tamoxifen down-regulates the expression of HSPB8. In addition, knocking down HSPB8 by specific siRNAs induces significant cell cycle arrest at G1 phase. AZD8055 was found to be more potent against the proliferation of MCF-7/R cells than that of parent cells, which was associated with down-regulation of HSPB8. We found that the anti-proliferative activity of AZD8055 was positively correlated with the HSPB8 expression level in ER+ breast cancer cells. Thus, AZD8055 was able to overcome tamoxifen resistance in breast cancer cells, and the expression of HSPB8 may predict the efficacy of AZD8055 in ER+ breast cancer. This hypothesis deserves further investigation.


Assuntos
Antineoplásicos/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Proteínas de Choque Térmico/genética , Morfolinas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/genética , Serina-Treonina Quinases TOR/antagonistas & inibidores , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/genética , Linhagem Celular Tumoral , Regulação para Baixo , Receptor alfa de Estrogênio/metabolismo , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos dos fármacos , Proteínas de Choque Térmico/metabolismo , Humanos , Chaperonas Moleculares , Prognóstico , Proteínas Serina-Treonina Quinases/metabolismo , Tamoxifeno/farmacologia
15.
Biochem Biophys Res Commun ; 478(4): 1515-20, 2016 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-27565731

RESUMO

We here tested the anti-colorectal cancer (CRC) activity by a first-in-class small molecule TRAIL inducer ONC201. The potential effect of mTOR on ONC201's actions was also examined. ONC201 induced moderate cytotoxicity against CRC cell lines (HT-29, HCT-116 and DLD-1) and primary human CRC cells. Significantly, AZD-8055, a mTOR kinase inhibitor, sensitized ONC201-induced cytotoxicity in CRC cells. Meanwhile, ONC201-induced TRAIL/death receptor-5 (DR-5) expression, caspase-8 activation and CRC cell apoptosis were also potentiated with AZD-8055 co-treatment. Reversely, TRAIL sequestering antibody RIK-2 or the caspase-8 specific inhibitor z-IETD-fmk attenuated AZD-8055 plus ONC201-induced CRC cell death. Further, mTOR kinase-dead mutation (Asp-2338-Ala) or shRNA knockdown significantly sensitized ONC201's activity in CRC cells, leading to profound cell death and apoptosis. On the other hand, expression of a constitutively-active S6K1 (T389E) attenuated ONC201-induced CRC cell apoptosis. For the mechanism study, we showed that ONC201 blocked Akt, but only slightly inhibited mTOR in CRC cells. Co-treatment with AZD-8055 also concurrently blocked mTOR activation. These results suggest that mTOR could be a primary resistance factor of ONC201 in CRC cells.


Assuntos
Antineoplásicos/uso terapêutico , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/patologia , Compostos Heterocíclicos de 4 ou mais Anéis/uso terapêutico , Serina-Treonina Quinases TOR/antagonistas & inibidores , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Neoplasias Colorretais/enzimologia , Ativação Enzimática/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Inativação Gênica/efeitos dos fármacos , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Humanos , Imidazóis , Morfolinas/farmacologia , Mutação/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Piridinas , Pirimidinas , Serina-Treonina Quinases TOR/metabolismo
16.
Tumour Biol ; 37(1): 479-89, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26224474

RESUMO

This study aimed to investigate the correlations of stearoyl-coenzyme A desaturase 1 (SCD-1) with clear cell renal cell carcinoma (ccRCC) severity and PI3K-AKT-mTOR signaling pathway. From 2004 to 2006, tumor tissue and normal pericarcinomatous tissue from ccRCC samples were collected from ccRCC patients at Renji Hospital of Shanghai Jiaotong University. The expression of SCD-1 in the collected ccRCC samples and four cell lines (A498, 769-P, 786-O, and CAKI) was detected by Western blot. The correlation between SCD-1 expression and ccRCC severity was also analyzed by immunohistochemistry. Stable 786-O and 769-P ccRCC cells expressing SCD-1 short hairpin RNA (shRNA) were constructed, and the expression of proteins in the PI3K-AKT-mTOR signaling pathway was also detected. Finally, the inhibitory effect of PI3K-AKT-mTOR inhibitors (PI103, MK2206, rapamycin, AZD8055, and RAD001) on ccRCC cells stably expressing SCD-1 shRNA was also measured. Higher SCD-1 expression level was observed in ccRCC tissues compared with normal tissues. SCD-1 expression level was the highest in 786-O. SCD-1 expression was positively correlated with the tumor-node-metastasis (TNM) stage, grade of tumor cells, and lymphatic metastasis. There were no changes in the expression of AKT, ERK, PI3K, and PDK1. Significant differences were observed in the expression of p-AKT (at the Ser473 and Thr308 site), p-ERK, and two mTOR downstream molecules (4E-BP1 and p-P70S6K1) in cells stably expressing SCD-1 shRNA. PI103 and AZD8055 could enhance the inhibitory effect of SCD-1 interference on proliferation and migration of 786-O and 769-P cells. AZD8055 is recommended for the combined ccRCC treatment with shRNA interference.


Assuntos
Carcinoma de Células Renais/metabolismo , Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Neoplasias Renais/metabolismo , Estearoil-CoA Dessaturase/metabolismo , Carcinoma de Células Renais/tratamento farmacológico , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Everolimo/química , Feminino , Furanos/química , Perfilação da Expressão Gênica , Compostos Heterocíclicos com 3 Anéis/química , Humanos , Concentração Inibidora 50 , Neoplasias Renais/tratamento farmacológico , Metástase Linfática , Masculino , Morfolinas/química , Piridinas/química , Pirimidinas/química , Interferência de RNA , Transdução de Sinais
17.
Tumour Biol ; 37(8): 11039-48, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26897748

RESUMO

Aberrant activation of mammalian target of rapamycin (mTOR) plays pivotal roles in promoting hepatocellular carcinoma (HCC) tumorigenesis and chemoresistance. Here, we tested the potential anti-HCC activity by a novel mTOR complex 1/2 (mTORC1/2) dual inhibitor AZD-8055 and, more importantly, the potential AZD-8055 sensitization effect by a cell-permeable short-chain ceramide (C6). We showed that AZD-8055 mainly exerted moderate cytotoxic effect against a panel of HCC cell lines (HepG2, Hep3B, and SMMC-7721). Co-treatment of C6 ceramide remarkably augmented AZD-8055-induced HCC cytotoxicity. Meanwhile, C6 ceramide dramatically potentiated AZD-8055-induced HCC cell apoptotic death. Further studies demonstrated that AZD-8055 and C6 ceramide synergistically induced anti-survival and pro-apoptotic activity in primary cultured human HCC cells, but not in the non-cancerous human hepatocytes. Signaling studies showed that AZD-8055 and C6 ceramide synergistically suppressed Akt-mTOR complex 1/2 cascade activation. In vivo, AZD-8055 oral administration suppressed HepG2 hepatoma xenograft growth in nude mice, while moderately improving mice survival. Its anti-tumor activity was dramatically potentiated with co-administration of a liposome-packed C6 ceramide. Together, these results demonstrate that concurrent targeting mTORC1/2 by AZD-8055 exerts anti-tumor ability in preclinical HCC models, and its activity is further sensitized with co-administration of C6 ceramide.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Carcinoma Hepatocelular/patologia , Ceramidas/administração & dosagem , Neoplasias Hepáticas/patologia , Morfolinas/administração & dosagem , Animais , Apoptose/efeitos dos fármacos , Western Blotting , Linhagem Celular Tumoral , Sinergismo Farmacológico , Feminino , Citometria de Fluxo , Humanos , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina , Alvo Mecanístico do Complexo 2 de Rapamicina , Camundongos , Camundongos Nus , Pessoa de Meia-Idade , Complexos Multiproteicos/antagonistas & inibidores , Serina-Treonina Quinases TOR/antagonistas & inibidores , Ensaios Antitumorais Modelo de Xenoenxerto
18.
BMC Cancer ; 16: 531, 2016 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-27461218

RESUMO

BACKGROUND: The use of targeted agents to impel dual inhibition of anti-apoptotic mechanisms and mTOR-mediated pro-survival signaling in colorectal carcinoma (CRC) cell lines with KRAS or BRAF mutation has been shown to induce apoptosis, a timely result given CRC entities harboring such mutations are in need of new therapies. Since CRC comprises heterogeneous tumors with predominant hypoxic components, we investigated effects of an inhibitor of anti-apoptotic Bcl-2 family proteins (ABT-737) in combination with an mTOR inhibitor (AZD8055)-collectively referred to as combo-Rx, in hypoxic CRC cell lines. METHODS: Cell viability measures, expression of proteins implicated in apoptosis and MAPK/PI3K-AKT/mTOR pathway signaling, and profiling of composite kinase activities were undertaken in a panel of 14 cell lines. RESULTS: In hypoxic conditions, combo-Rx suppressed viability of 13 of the cell lines, albeit ABT-737 did not significantly potentiate the inhibitory effect of single-agent AZD8055 in six of the models. Hypoxic KRAS/PIK3CA-mutant HCT-116 and HCT-15 cell lines (both with low endogenous expression of the anti-apoptotic Mcl-1 protein and showing augmented inhibition of viability following the addition of ABT-737 to AZD8055) responded to combo-Rx by induction of apoptosis but with the simultaneous strong Mcl-1 up-regulation and activation of MAPK/PI3K-conducted signaling. In contrast, in hypoxic KRAS-mutant LoVo (devoid of PIK3CA mutation), BRAF/PIK3CA-mutant RKO, and wild-type Colo320DM cell lines (all with high endogenous Mcl-1 expression and being resistant to the additional effect of ABT-737 to AZD8055), combo-Rx did not elicit apoptotic or pro-survival responses. CONCLUSIONS: The concurrent inhibition of anti-apoptotic proteins and mTOR-mediated signaling in hypoxic KRAS/PIK3CA-mutant CRC cell lines resulted in pro-survival responses in parallel with the intended anti-proliferative effects, a finding that should be of note if considering combinatory targeting of multiple pathways in this CRC entity.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Compostos de Bifenilo/farmacologia , Neoplasias Colorretais/metabolismo , Inibidores Enzimáticos/farmacologia , Morfolinas/farmacologia , Nitrofenóis/farmacologia , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Sulfonamidas/farmacologia , Serina-Treonina Quinases TOR/antagonistas & inibidores , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Classe I de Fosfatidilinositol 3-Quinases/genética , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Humanos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Mutação , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Piperazinas/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Hipóxia Tumoral , Regulação para Cima
19.
Br J Haematol ; 166(3): 336-51, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24842496

RESUMO

Since the discovery of rapamycin in Easter Island soil in 1975, more has been learnt about the relevance and importance of the mammalian target of rapamycin (mTOR) pathway in cell signalling, proliferation and ultimately tumourigenesis. Rapamycin targets the mTORC1 complex alone. Despite initial excitement, rapamycin and its analogues, everolimus and temsirolimus, have displayed limited efficacy in the treatment of lymphoid malignancies. This review highlights the important and well-described aspects of the critical phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)/AKT/mTOR pathway and discusses the mechanisms of action of rapamycin, its clinical efficacy in lymphoid malignancies, and the mechanisms of resistance. Renewed interest in targeting the pathway has evolved through the discovery of mTORC2, a protein complex associated with a key mechanism of resistance to first generation mTOR inhibitors. As such, novel dual inhibitors of mTORC1 and mTORC2 have been developed, along with other dual inhibitors of the mTOR pathway. The evolution in the development of dual inhibitors is described herein, along with the burgeoning in vitro, pre-clinical data and the early phase clinical data available. Although historically mTOR inhibitors have been used extensively in haematopoietic and solid organ transplant prophylaxis, this review will focus on developments of their use in lymphoid malignancies.


Assuntos
Leucemia de Células T/metabolismo , Linfoma de Células T/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Humanos , Leucemia de Células T/tratamento farmacológico , Linfoma de Células T/tratamento farmacológico , Alvo Mecanístico do Complexo 1 de Rapamicina , Alvo Mecanístico do Complexo 2 de Rapamicina , Complexos Multiproteicos/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Transdução de Sinais/efeitos dos fármacos
20.
EBioMedicine ; 103: 105099, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38604089

RESUMO

BACKGROUND: Hepatocellular carcinoma (HCC) is a highly prevalent and deadly type of cancer, and although pharmacotherapy remains the cornerstone of treatment, therapeutic outcomes are often unsatisfactory. Pharmacological inhibition of mammalian target of rapamycin (mTOR) has been closely associated with HCC regression. METHODS: Herein, we covalently conjugated AZD8055, a potent mTORC1/2 blocker, with a small panel of unsaturated fatty acids via a dynamically activating linkage to enable aqueous self-assembly of prodrug conjugates to form mTOR nanoblockers. Cell-based experiments were carried out to evaluate the effects of the nanoblocker against hepatocellular carcinoma (HCC) cells. The orthotopic and subcutaneous HCC mouse models were established to examine its antitumour activity. FINDINGS: Among several fatty acids as promoieties, linoleic acid-conjugated self-assembling nanoblocker exhibited optimal size distribution and superior physiochemical properties. Compared with free agents, PEGylated AZD8055 nanoblocker (termed AZD NB) was pharmacokinetically optimized after intravenous administration. In vivo investigations confirmed that AZD NB significantly suppressed tumour outgrowth in subcutaneous HCCLM3 xenograft, Hepatoma-22, and orthotopic Hepa1-6 liver tumour models. Strikingly, treatment with AZD NB, but not free agent, increased intratumour infiltration of IFN-γ+CD8+ T cells and CD8+ memory T cells, suggesting a potential role of the mTOR nanoblocker to remodel the tumour microenvironment. Overall, a single conjugation with fatty acid transformed a hydrophobic mTOR blocker into a systemically injectable nanomedicine, representing a facile and generalizable strategy for improving the therapeutic index of mTOR inhibition-based cancer therapy. INTERPRETATION: The mTOR inhibition by chemically engineered nanoblocker presented here had enhanced efficacy against tumours compared with the pristine drug and thus has the potential to improve the survival outcomes of patients with HCC. Additionally, this new nanosystem derived from co-assembling of small-molecule prodrug entities can serve as a delivery platform for the synergistic co-administration of distinct pharmaceutical agents. FUNDING: This work was supported by the National Natural Science Foundation of China (32171368,81721091), the Zhejiang Provincial Natural Science Foundation of China (LZ21H180001), the Jinan Provincial Laboratory Research Project of Microecological Biomedicine (JNL-2022039c and JNL-2022010B), State Key Laboratory for Diagnosis and Treatment of Infectious Diseases (zz202310), and Natural Science Foundation of Shandong Province (ZR2023ZD59).


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Nanopartículas , Serina-Treonina Quinases TOR , Ensaios Antitumorais Modelo de Xenoenxerto , Animais , Humanos , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/metabolismo , Nanopartículas/química , Camundongos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Antineoplásicos/farmacologia , Antineoplásicos/química , Morfolinas/química , Morfolinas/farmacologia , Inibidores de MTOR/farmacologia , Inibidores de MTOR/química , Modelos Animais de Doenças
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA