Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.393
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 187(7): 1685-1700.e18, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38503280

RESUMO

The reciprocal coordination between cholesterol absorption in the intestine and de novo cholesterol synthesis in the liver is essential for maintaining cholesterol homeostasis, yet the mechanisms governing the opposing regulation of these processes remain poorly understood. Here, we identify a hormone, Cholesin, which is capable of inhibiting cholesterol synthesis in the liver, leading to a reduction in circulating cholesterol levels. Cholesin is encoded by a gene with a previously unknown function (C7orf50 in humans; 3110082I17Rik in mice). It is secreted from the intestine in response to cholesterol absorption and binds to GPR146, an orphan G-protein-coupled receptor, exerting antagonistic downstream effects by inhibiting PKA signaling and thereby suppressing SREBP2-controlled cholesterol synthesis in the liver. Therefore, our results demonstrate that the Cholesin-GPR146 axis mediates the inhibitory effect of intestinal cholesterol absorption on hepatic cholesterol synthesis. This discovered hormone, Cholesin, holds promise as an effective agent in combating hypercholesterolemia and atherosclerosis.


Assuntos
Colesterol , Hormônios , Proteínas de Ligação a RNA , Animais , Humanos , Camundongos , Colesterol/metabolismo , Hormônios/genética , Hormônios/metabolismo , Hipercolesterolemia/metabolismo , Fígado/metabolismo , Transdução de Sinais , Proteínas de Ligação a RNA/metabolismo
2.
Proc Natl Acad Sci U S A ; 121(10): e2320763121, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38416680

RESUMO

Bacterial spores have outstanding properties from the materials science perspective, which allow them to survive extreme environmental conditions. Recent work by [S. G. Harrellson et al., Nature 619, 500-505 (2023)] studied the mechanical properties of Bacillus subtilis spores and the evolution of these properties with the change of humidity. The experimental measurements were interpreted assuming that the spores behave as water-filled porous solids, subjected to hydration forces. Here, we revisit their experimental data using literature data on vapor sorption on spores and ideas from polymer physics. We demonstrate that upon the change of humidity, the spores behave like rubber with respect to their swelling, elasticity, and relaxation times. This picture is consistent with the knowledge of the materials comprising the bacterial cell walls-cross-linked peptidoglycan. Our results provide an interpretation of the mechanics of bacterial spores and can help in developing synthetic materials mimicking the mechanical properties of the spores.


Assuntos
Hidrogéis , Esporos Bacterianos , Umidade , Elasticidade , Fenômenos Químicos , Bacillus subtilis
3.
Proc Natl Acad Sci U S A ; 121(14): e2318978121, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38536755

RESUMO

Pressure-induced transformations in an archetypal chalcogenide glass (GeSe2) have been investigated up to 157 GPa by X-ray absorption spectroscopy (XAS) and molecular dynamics (MD) simulations. Ge and Se K-edge XAS data allowed simultaneous tracking of the correlated local structural and electronic changes at both Ge and Se sites. Thanks to the simultaneous analysis of extended X-ray absorption fine structure (EXAFS) signals of both edges, reliable quantitative information about the evolution of the first neighbor Ge-Se distribution could be obtained. It also allowed to account for contributions of the Ge-Ge and Se-Se bond distributions (chemical disorder). The low-density to high-density amorphous-amorphous transformation was found to occur within 10 to 30 GPa pressure range, but the conversion from tetrahedral to octahedral coordination of the Ge sites is completed above [Formula: see text] 80 GPa. No convincing evidence of another high-density amorphous state with coordination number larger than six was found within the investigated pressure range. The number of short Ge-Ge and Se-Se "wrong" bonds was found to increase upon pressurization. Experimental XAS results are confirmed by MD simulations, indicating the increase of chemical disorder under high pressure.

4.
Proc Natl Acad Sci U S A ; 121(4): e2316724121, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38232284

RESUMO

Photoelectrochemical (PEC) carbon dioxide (CO2) reduction (CO2R) holds the potential to reduce the costs of solar fuel production by integrating CO2 utilization and light harvesting within one integrated device. However, the CO2R selectivity on the photocathode is limited by the lack of catalytic active sites and competition with the hydrogen evolution reaction. On the other hand, serious parasitic light absorption occurs on the front-side-illuminated photocathode due to the poor light transmittance of CO2R cocatalyst films, resulting in extremely low photocurrent density at the CO2R equilibrium potential. This paper describes the design and fabrication of a photocathode consisting of crystal phase-modulated Ag nanocrystal cocatalysts integrated on illumination-reaction decoupled heterojunction silicon (Si) substrate for the selective and efficient conversion of CO2. Ag nanocrystals containing unconventional hexagonal close-packed phases accelerate the charge transfer process in CO2R reaction, exhibiting excellent catalytic performance. Heterojunction Si substrate decouples light absorption from the CO2R catalyst layer, preventing the parasitic light absorption. The obtained photocathode exhibits a carbon monoxide (CO) Faradaic efficiency (FE) higher than 90% in a wide potential range, with the maximum FE reaching up to 97.4% at -0.2 V vs. reversible hydrogen electrode. At the CO2/CO equilibrium potential, a CO partial photocurrent density of -2.7 mA cm-2 with a CO FE of 96.5% is achieved in 0.1 M KHCO3 electrolyte on this photocathode, surpassing the expensive benchmark Au-based PEC CO2R system.

5.
Proc Natl Acad Sci U S A ; 121(18): e2320844121, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38652751

RESUMO

Although water is almost transparent to visible light, we demonstrate that the air-water interface interacts strongly with visible light via what we hypothesize as the photomolecular effect. In this effect, transverse-magnetic polarized photons cleave off water clusters from the air-water interface. We use 14 different experiments to demonstrate the existence of this effect and its dependence on the wavelength, incident angle, and polarization of visible light. We further demonstrate that visible light heats up thin fogs, suggesting that this process can impact weather, climate, and the earth's water cycle and that it provides a mechanism to resolve the long-standing puzzle of larger measured clouds absorption to solar radiation than theory could predict based on bulk water optical constants. Our study suggests that the photomolecular effect should happen widely in nature, from clouds to fogs, ocean to soil surfaces, and plant transpiration and can also lead to applications in energy and clean water.

6.
Proc Natl Acad Sci U S A ; 121(2): e2307836121, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38170749

RESUMO

High-harmonic generation from a gas target exhibits sharp spectral features and rapid phase variation near the Cooper minimum. By applying spectral filtering, shaped isolated attosecond pulses can be generated where the pulse is split into two in the time domain. Using such shaped extreme-ultraviolet (XUV) pulses, we theoretically study attosecond transient absorption (ATA) spectra of helium [Formula: see text] autoionizing state which is resonantly coupled to the [Formula: see text] dark state by a time-delayed infrared laser. Our simulations show that the asymmetric [Formula: see text] Fano line shape can be readily tuned into symmetric Lorentzian within the time delay of a few tens of attoseconds. Such efficient control is due to the destructive interference in the generation of the [Formula: see text] state when it is excited by a strongly shaped XUV pulse. This is to be compared to prior experiments where tuning the line shape of a Fano resonance would take tens of femtoseconds. We also show that the predicted ATA spectral line shape can be observed experimentally after propagation in a gas medium. Our results suggest that strongly shaped attosecond XUV pulses offer the opportunity for controlling and probing fine features of narrow resonances on the few-ten attoseconds timescale.

7.
Plant J ; 118(3): 696-716, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38193347

RESUMO

The root system is important for the absorption of water and nutrients by plants. Cultivating and selecting a root system architecture (RSA) with good adaptability and ultrahigh productivity have become the primary goals of agricultural improvement. Exploring the correlation between the RSA and crop yield is important for cultivating crop varieties with high-stress resistance and productivity. In this study, 277 cucumber varieties were collected for root system image analysis and yield using germination plates and greenhouse cultivation. Deep learning tools were used to train ResNet50 and U-Net models for image classification and segmentation of seedlings and to perform quality inspection and productivity prediction of cucumber seedling root system images. The results showed that U-Net can automatically extract cucumber root systems with high quality (F1_score ≥ 0.95), and the trained ResNet50 can predict cucumber yield grade through seedling root system image, with the highest F1_score reaching 0.86 using 10-day-old seedlings. The root angle had the strongest correlation with yield, and the shallow- and steep-angle frequencies had significant positive and negative correlations with yield, respectively. RSA and nutrient absorption jointly affected the production capacity of cucumber plants. The germination plate planting method and automated root system segmentation model used in this study are convenient for high-throughput phenotypic (HTP) research on root systems. Moreover, using seedling root system images to predict yield grade provides a new method for rapidly breeding high-yield RSA in crops such as cucumbers.


Assuntos
Cucumis sativus , Aprendizado Profundo , Raízes de Plantas , Plântula , Cucumis sativus/crescimento & desenvolvimento , Cucumis sativus/fisiologia , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/anatomia & histologia , Raízes de Plantas/fisiologia , Plântula/crescimento & desenvolvimento , Plântula/fisiologia , Processamento de Imagem Assistida por Computador/métodos , Produtos Agrícolas/crescimento & desenvolvimento
8.
Nano Lett ; 24(25): 7578-7583, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38742810

RESUMO

Material absorption is a key limitation in nanophotonic systems; however, its characterization is often obscured by scattering and diffraction. Here we show that nanomechanical frequency spectroscopy can be used to characterize material absorption at the parts per million level and use it to characterize the extinction coefficient κ of stoichiometric silicon nitride (Si3N4). Specifically, we track the frequency shift of a high-Q Si3N4 trampoline in response to laser photothermal heating and infer κ from a model including stress relaxation and both conductive and radiative heat transfer. A key insight is the presence of two thermalization time scales: rapid radiative cooling of the Si3N4 film and slow parasitic heating of the Si chip. We infer κ ∼ 0.1-1 ppm for Si3N4 in the 532-1550 nm wavelength range, matching bounds set by waveguide resonators. Our approach is applicable to diverse photonic materials and may offer new insights into their potential.

9.
Nano Lett ; 24(11): 3369-3377, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38373202

RESUMO

Microwave-absorbing materials with regulatable absorption frequency and optical camouflage hold great significance in intelligent electronic devices and advanced stealth technology. Herein, we present an innovative microwave-absorbing foam that can dynamically tune microwave absorption frequencies via a simple mechanical compression while in parallel enabling optical camouflage over broad spectral ranges by adjusting the structural colors. The vivid colors spanning different color categories generated from thin-film interference can be precisely regulated by adjusting the thickness of the conformal TiO2 coatings on Ni/melamine foam. Enhanced interfacial and defect-induced polarizations resulting from the introduction of TiO2 coating synergistically contribute to the dielectric attenuation performance. Consequently, such a foam exhibits exceptional microwave absorption capabilities, and the absorption frequency can be dynamically tuned from the S band to the Ku band by manipulating its compression ratio. Additionally, simulation calculations validate the adjustable electromagnetic wave loss behavior, offering valuable insights for the development of next-generation intelligent electromagnetic devices across diverse fields.

10.
Nano Lett ; 24(29): 8988-8995, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-38985015

RESUMO

Exciton-polaritons, hybrid quasiparticles from the strong coupling of excitons and cavity photons in semiconductor microcavities, offer a platform for exploring quantum coherence and nonlinear optical properties. The unique polariton parametric scattering (PPS) laser is of interest for its potential in quantum technologies and nonlinear devices. However, direct resonant excitation of polaritons in strong-coupling microcavities is challenging. This study proposes an innovative two-photon absorption (TPA) pump mechanism to address this. We observe TPA-driven PPS lasing in a strongly coupled microcavity at room temperature. High K-value exciton injections promote coherent stimulated emission of polariton scattering through intermode channels. Angle-resolved spectra confirm a TPA process, showing evolution from pump-state to signal-state. Hanbury Brown-Twiss measurement of second-order correlation g2(τ) of signal state indicates a phase transition from a classical thermal state to a quantum coherent state. Theoretical modeling provides insights into the physical mechanisms of PPS. Our work advances nonlinear phenomena exploration in strongly coupled light-matter systems, contributing to quantum polaritonics and nonlinear optics.

11.
Nano Lett ; 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39158185

RESUMO

Intersubband transition was recently discovered in colloidal nanoplatelets, but the associated intersubband carrier relaxation dynamics remains poorly understood. In particular, it is crucial to selectively excite the intersubband transition and to follow the hot electron dynamics in the absence of valence-band holes. This is achieved herein by exciting the predoped electrons in CdSe/ZnS nanoplatelets using near-infrared femtosecond pulses and monitoring nonequilibrium electron dynamics using broad-band visible pulses. We find that the n = 2 electrons relax to the n = 1 subband and establish a Fermi-Dirac distribution within 200 fs, and finally reach an equilibrium with the lattice within a few ps. The cooling dynamics depend mainly on the excitation fluence but weakly on the doping density and the lattice temperature. These characteristics are well captured by our numerical simulation that explicitly accounts for the state occupation effect and optical phonon scattering.

12.
Nano Lett ; 24(26): 7934-7940, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38885197

RESUMO

Concentric lateral CdSe/CdTe/CdSe heterostructures show bicolor photoluminescence from both a red charge transfer band of the CdSe/CdTe interface and a green fluorescence from CdSe. This work uses visible and near-infrared transient spectroscopy measurements to demonstrate that the deviation from Kasha's rule arises from a hole relaxation bottleneck from CdSe to CdTe. Hole transfer can take up to 1 ns, which permits radiative relaxation of excitons remaining in CdSe. Simulations indicate that the hole relaxation bottleneck arises due to the sparse density of states and poor spatial overlap of hole states at energies near the CdSe band edge. The divergent kinetics of transfer for band edge and hot holes is exploited to vary the ratio of green and red photoluminescence with excitation wavelength, providing another knob to control emission color. These findings support the use of lateral heterojunctions as a method for slowing carrier relaxation in two-dimensional materials.

13.
Nano Lett ; 24(11): 3525-3531, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38466128

RESUMO

Variegation and complexity of polarization relaxation loss in many heterostructured materials provide available mechanisms to seek a strong electromagnetic wave (EMW) absorption performance. Here we construct a unique heterostructured compound that bonds α-Fe2O3 nanosheets of the (110) plane on carbon microtubes (CMTs). Through effective alignment between the Fermi energy level of CMTs and the conduction band position of α-Fe2O3 nanosheets at the interface, we attain substantial polarization relaxation loss via novel atomic valence reversal between Fe(III) ↔ Fe(III-) induced with periodic electron injection from conductive CMTs under EMW irradiation to give α-Fe2O3 nanosheets. Such heterostructured materials possess currently reported minimum reflection loss of -84.01 dB centered at 10.99 GHz at a thickness of 3.19 mm and an effective absorption bandwidth (reflection loss ≤ -10 dB) of 7.17 GHz (10.83-18 GHz) at 2.65 mm. This work provides an effective strategy for designing strong EMW absorbers by combining highly efficient electron injection and atomic valence reversal.

14.
Nano Lett ; 24(8): 2652-2660, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38364102

RESUMO

Ideal radar absorbing materials (RAMs) require instantaneous, programmable, and spontaneous adaptability to cope with a complex electromagnetic (EM) environment across the full working frequency. Despite various material systems and adaptive mechanisms having been demonstrated, it remains a formidable challenge to integrate these benefits simultaneously. Here, we present a pneumatic matrix that couples morphable MXene/elastomer conductors with dielectric spacers, which leverages controllable airflow to reconfigure the spatial structure between a flat sheet and a hemispherical crown while maintaining resistance stability via wrinkle folding and unfolding. The interdimensional reconfigurations drastically induce multiple resonance behavior, enabling the matrix remarkable frequency tunability (144.5%), ultrawide bandwidth (15 GHz), weak angular dependence (45° incidence), ultrafast responsiveness (∼30 ms), and excellent reproducibility (1000 cycles). With multichannel fluidic and conceptual automated control systems, the final pneumatic device demonstrates a multiplexed, programmable, and autonomous transformable mode that builds a promising platform for smart radar cloaking.

15.
Nano Lett ; 24(22): 6797-6804, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38775795

RESUMO

It is a huge challenge to increase the photoluminescence (PL) of lead-free halide perovskites, and understanding the mechanism behind exciton dynamics can provide a valuable solution. Herein, we achieved enhanced broad-band emission at ambient conditions in Cs2AgInCl6 by tuning self-trapped excitons (STEs) through Al3+ doping. Cryogenic measurements showed an inhomogeneous nature of STE emission due to the presence of defect states and is subject to thermal quenching. An increased Huang-Rhys factor (S-factor) resulted in better electron-phonon coupling and high-density STE states post Al3+ doping. Femtosecond transient absorption (fs-TA) results provided insights into the distribution dynamics of excitons, which occurs through gradient energy levels from free excitons (FE) to STEs, where each STE state potentially possesses higher quantized energy states. Overall, this study aims to comprehend the origins of self-trapping and decay of STEs in Cs2AgInCl6:Al3+ and emphasizes the potential of compositional engineering to mitigate self-trapping in this material.

16.
Nano Lett ; 24(20): 6017-6022, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38723148

RESUMO

The photoluminescence spectrum of a single-layer boron nitride remains elusive, marked by enigmatic satellites that hint at significant but unidentified exciton-phonon coupling. Here, by employing a first-principles approach based on the many-body cumulant expansion of the charge response, we calculate the optical absorption and photoluminescence of a single-layer boron nitride. We identify the specific exciton-phonon scattering channels and unravel their impact on the optical absorption and photoluminescence spectra, thereby providing an interpretation of the experimental features. Finally, we show that, even in a strongly polar material such as h-BN monolayer, the electron-hole interaction responsible for the excitonic effect results in the cancellation of the Frölich interaction at small phonon momenta. This effect is captured only if the invariance of the exciton-phonon matrix elements under unitary transformations in the Bloch function manifold is preserved in the calculation.

17.
Nano Lett ; 24(20): 5975-5983, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38726841

RESUMO

In the emerging two-dimensional organic-inorganic hybrid perovskites, the electronic structures and carrier behaviors are strongly impacted by intrinsic electron-phonon interactions, which have received inadequate attention. In this study, we report an intriguing phenomenon of negative carrier diffusion induced by electron-phonon coupling in (2T)2PbI4. Theoretical calculations reveal that the electron-phonon coupling drives the band alignment in (2T)2PbI4 to alternate between type I and type II heterostructures. As a consequence, photoexcited holes undergo transitions between the organic ligands and inorganic layers, resulting in abnormal carrier transport behavior compared to other two-dimensional hybrid perovskites. These findings provide valuable insights into the role of electron-phonon coupling in shaping the band alignments and carrier behaviors in two-dimensional hybrid perovskites. They also open up exciting avenues for designing and fabricating functional semiconductor heterostructures with tailored properties.

18.
Nano Lett ; 24(23): 7033-7039, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38805193

RESUMO

Graphullerene is a novel two-dimensional carbon allotrope with unique optoelectronic properties. Despite significant experimental characterization and prior density functional theory calculations, unanswered questions remain as to the nature, energy, and intensity of the electronic and optical excitations. Here, we present first-principles calculations of the quasiparticle band structure, neutral excitations, and absorption spectra of monolayer graphullerene and bulk graphullerite, employing the GW-Bethe-Salpeter equation (GW-BSE) approach. We show that strongly bound excitons dominate the absorption spectrum of monolayer graphullerene with binding energies up to 0.8 eV, while graphullerite exhibits less pronounced excitonic effects. Our calculations also reveal a strong linear polarization anisotropy, reflecting the in-plane structural anisotropy from intermolecular coupling between neighboring C60 units. We further show that the presence of Mg atoms, crucial to the synthesis process, induces structural modifications and polarizability effects, resulting in a ∼1 eV quasiparticle gap renormalization and a reduction in the exciton binding energy to ∼0.6 eV.

19.
Nano Lett ; 24(33): 10348-10354, 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39109804

RESUMO

Carrier transport capacity with high mobility and long-range diffusion length holds particular significance for the advancement of modern optoelectronic devices. Herein, we have unveiled the carrier dynamics and transport properties of a pristine violet phosphorus (VP) nanosheet by a transient absorption microscopy. Under the excitation (2.41 eV) above the exciton band, two photoinduced absorption peaks with the energy difference of approximately 520 meV emerge within a broadband transient absorption background which originates from the prompt generation of free carriers and the concomitant formation of excitons (lifetime of 467.21 ps). This observation is consistent with the established band-edge model of VP. Intriguingly, we have determined the ambipolar diffusion coefficient and mobility of VP to be approximately 47.32 cm2·s-1 and 1798 cm2·V-1·s-1, respectively, which further indicate a long-range carrier transport of approximately 2.10 µm. This work unveils the significant carrier transport capacity of VP, highlighting its potential for future optoelectronic and excitonic applications.

20.
Nano Lett ; 24(3): 881-889, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38198246

RESUMO

Cellulose nanofiber (CNF) possesses excellent intrinsic properties, and many CNF-based high-performance structural and functional materials have been developed recently. However, the coordination of the mechanical properties and functionality is still a considerable challenge. Here, a CNF-based structural material is developed by a bioinspired gradient structure design using hollow magnetite nanoparticles and the phosphorylation-modified CNF as building blocks, which simultaneously achieves a superior mechanical performance and electromagnetic wave absorption (EMA) ability. Benefiting from the gradient design, the flexural strength of the structural material reached ∼205 MPa. Meanwhile, gradient design improves impedance matching, contributing to the high EMA ability (-59.5 dB) and wide effective absorption width (5.20 GHz). Besides, a low coefficient of thermal expansion and stable storage modulus was demonstrated as the temperature changes. The excellent mechanical, thermal, and EMA performance exhibited great potential for application in stealth equipment and electromagnetic interference protecting electronic packaging materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA