Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 207
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
J Biol Chem ; 300(7): 107479, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38879006

RESUMO

Glucoselysine (GL) is an unique advanced glycation end-product derived from fructose. The main source of fructose in vivo is the polyol pathway, and an increase in its activity leads to diabetic complications. Here, we aimed to demonstrate that GL can serve as an indicator of the polyol pathway activity. Additionally, we propose a novel approach for detecting GL in peripheral blood samples using liquid chromatography-tandem mass spectrometry and evaluate its clinical usefulness. We successfully circumvent interference from fructoselysine, which shares the same molecular weight as GL, by performing ultrafiltration and hydrolysis without reduction, successfully generating adequate peaks for quantification in serum. Furthermore, using immortalized aldose reductase KO mouse Schwann cells, we demonstrate that GL reflects the downstream activity of the polyol pathway and that GL produced intracellularly is released into the extracellular space. Clinical studies reveal that GL levels in patients with type 2 diabetes are significantly higher than those in healthy participants, while Nδ-(5-hydro-5-methyl-4-imidazolon-2-yl)ornithine (MG-H1) levels are significantly lower. Both GL and MG-H1 show higher values among patients with vascular complications; however, GL varies more markedly than MG-H1 as well as hemoglobin A1c, fasting plasma glucose, and estimated glomerular filtration rate. Furthermore, GL remains consistently stable under various existing drug treatments for type 2 diabetes, whereas MG-H1 is impacted. To the best of our knowledge, we provide important insights in predicting diabetic complications caused by enhanced polyol pathway activity via assessment of GL levels in peripheral blood samples from patients.


Assuntos
Diabetes Mellitus Tipo 2 , Produtos Finais de Glicação Avançada , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/complicações , Humanos , Animais , Produtos Finais de Glicação Avançada/metabolismo , Camundongos , Masculino , Pessoa de Meia-Idade , Feminino , Lisina/metabolismo , Ornitina/metabolismo , Ornitina/sangue , Ornitina/análogos & derivados , Aldeído Redutase/metabolismo , Angiopatias Diabéticas/metabolismo , Angiopatias Diabéticas/sangue , Polímeros/química , Idoso , Camundongos Knockout , Imidazóis
2.
FASEB J ; 38(15): e23871, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39109498

RESUMO

Type 2 diabetes mellitus (T2DM) can lead to multiple complications. T2DM-related bone damage has been linked to abnormal bone turnover, but it cannot fully explain the mechanisms of T2DM bone disease. This study attempts to elucidate the underlying mechanisms of poor bone quality in T2DM. Hence, T2DM model was induced by a high-fat diet combined with a single streptozotocin injection in 7-week-old male SD rats. Osteoblasts derived from SD rats were cultured in high glucose to mimic hyperglycemia. Low bone turnover was observed in T2DM bone with elevated levels of advanced glycation end-products (AGEs) and receptor for AGEs (RAGE). Additionally, higher levels of oxidative stress and inflammatory factors were found in T2DM bone. AGEs content in bone was pairwise correlated with RAGE, hydrogen peroxide, and inflammatory factors. Serum levels of RAGE, oxidative stress, and inflammatory factors were higher in T2DM, while AGEs content tended to be lower. Besides, 35 differentially expressed metabolites were screened in T2DM serum. Osteoblasts exposed to high glucose displayed analogous abnormal changes in these biomarkers. Thus, low bone turnover in T2DM might be partially due to excess oxidative stress and inflammation induced by AGE-RAGE signaling. Furthermore, these biomarker levels in serum were mostly consistent with bone, demonstrating their possibility for predicting bone quality in T2DM.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Produtos Finais de Glicação Avançada , Inflamação , Estresse Oxidativo , Ratos Sprague-Dawley , Receptor para Produtos Finais de Glicação Avançada , Animais , Produtos Finais de Glicação Avançada/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Masculino , Ratos , Inflamação/metabolismo , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Diabetes Mellitus Experimental/metabolismo , Osteoblastos/metabolismo , Remodelação Óssea
3.
Biochem J ; 481(1): 33-44, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38112318

RESUMO

Advanced glycation end products (AGEs) are non-enzymatic post-translational modifications of amino acids and are associated with diabetic complications. One proposed pathomechanism is the impaired processing of AGE-modified proteins or peptides including prohormones. Two approaches were applied to investigate whether substrate modification with AGEs affects the processing of substrates like prohormones to the active hormones. First, we employed solid-phase peptide synthesis to generate unmodified as well as AGE-modified protease substrates. Activity of proteases towards these substrates was quantified. Second, we tested the effect of AGE-modified proinsulin on the processing to insulin. Proteases showed the expected activity towards the unmodified peptide substrates containing arginine or lysine at the C-terminal cleavage site. Indeed, modification with Nε-carboxymethyllysine (CML) or methylglyoxal-hydroimidazolone 1 (MG-H1) affected all proteases tested. Cysteine cathepsins displayed a reduction in activity by ∼50% towards CML and MG-H1 modified substrates. The specific proteases trypsin, proprotein convertases subtilisin-kexins (PCSKs) type proteases, and carboxypeptidase E (CPE) were completely inactive towards modified substrates. Proinsulin incubation with methylglyoxal at physiological concentrations for 24 h resulted in the formation of MG-modified proinsulin. The formation of insulin was reduced by up to 80% in a concentration-dependent manner. Here, we demonstrate the inhibitory effect of substrate-AGE modifications on proteases. The finding that PCSKs and CPE, which are essential for prohormone processing, are inactive towards modified substrates could point to a yet unrecognized pathomechanism resulting from AGE modification relevant for the etiopathogenesis of diabetes and the development of obesity.


Assuntos
Diabetes Mellitus , Produtos Finais de Glicação Avançada , Humanos , Aldeído Pirúvico/metabolismo , Proinsulina , Peptídeos/química , Endopeptidases
4.
Am J Physiol Cell Physiol ; 326(4): C1080-C1093, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38314727

RESUMO

Advanced glycation end-products (AGEs) stochastically accrue in skeletal muscle and on collagen over an individual's lifespan, stiffening the muscle and modifying the stem cell (MuSC) microenvironment while promoting proinflammatory, antiregenerative signaling via the receptor for advanced glycation end-products (RAGEs). In the present study, a novel in vitro model was developed of this phenomenon by cross linking a 3-D collagen scaffold with AGEs and investigating how myoblasts responded to such an environment. Briefly, collagen scaffolds were incubated with d-ribose (0, 25, 40, 100, or 250 mM) for 5 days at 37°C. C2C12 immortalized mouse myoblasts were grown on the scaffolds for 6 days in growth conditions for proliferation, and 12 days for differentiation and fusion. Human primary myoblasts were also used to confirm the C2C12 data. AGEs aberrantly extended the DNA production stage of C2C12s (but not in human primary myoblasts) which is known to delay differentiation in myogenesis, and this effect was prevented by RAGE inhibition. Furthermore, the differentiation and fusion of myoblasts were disrupted by AGEs, which were associated with reductions in integrins and suppression of RAGE. The addition of S100b (RAGE agonist) recovered the differentiation and fusion of myoblasts, and the addition of RAGE inhibitors (FPS-ZM1 and Azeliragon) inhibited the differentiation and fusion of myoblasts. Our results provide novel insights into the role of the AGE-RAGE axis in skeletal muscle aging, and future work is warranted on the potential application of S100b as a proregenerative factor in aged skeletal muscle.NEW & NOTEWORTHY Collagen cross-linked by advanced glycation end-products (AGEs) induced myoblast proliferation but prevented differentiation, myotube formation, and RAGE upregulation. RAGE inhibition occluded AGE-induced myoblast proliferation, while the delivery of S100b, a RAGE ligand, recovered fusion deficits.


Assuntos
Reação de Maillard , Músculo Esquelético , Camundongos , Humanos , Animais , Idoso , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Músculo Esquelético/metabolismo , Mioblastos/metabolismo , Diferenciação Celular/fisiologia , Colágeno , Desenvolvimento Muscular , Produtos Finais de Glicação Avançada , Subunidade beta da Proteína Ligante de Cálcio S100
5.
Pflugers Arch ; 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39042141

RESUMO

Advanced glycation endproducts (AGEs) contribute to cellular damage of various pathologies, including kidney diseases. Acute kidney injury (AKI) represents a syndrome seldom characterized by a single, distinct pathophysiological cause. Rhabdomyolysis-induced acute kidney injury (RIAKI) constitutes roughly 15% of AKI cases, yet its underlying pathophysiology remains poorly understood. Using a murine model of RIAKI induced by muscular glycerol injection, we observed elevated levels of AGEs and the AGE receptor galectin-3 (LGALS3) in the kidney. Immunofluorescence localized LGALS3 to distal nephron segments. According to transcriptomic profiling via next-generation sequencing, RIAKI led to profound changes in kidney metabolism, oxidative stress, and inflammation. Cellular stress was evident in both proximal and distal tubules, as shown by kidney injury markers KIM-1 and NGAL. However, only proximal tubules exhibited overt damage and apoptosis, as detected by routine morphology, active Caspase-3, and TUNEL assay, respectively. In vitro, distal convoluted tubule (DCT) cells challenged with AGEs underwent apoptosis, which was markedly enhanced by Lgals3 siRNA treatment. Thus, in RIAKI, the upregulation of LGALS3 may protect the distal nephron from AGE-mediated damage, while proximal tubules lacking LGALS3 stay at risk. Thus, stimulating LGALS3 in the proximal nephron, if achievable, may attenuate RIAKI.

6.
Int J Cancer ; 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39057841

RESUMO

Advanced glycation end-products (AGEs), formed endogenously or obtained exogenously from diet, may contribute to chronic inflammation, intracellular signaling alterations, and pathogenesis of several chronic diseases including colorectal cancer (CRC). However, the role of AGEs in CRC survival is less known. The associations of pre-diagnostic circulating AGEs and their soluble receptor (sRAGE) with CRC-specific and overall mortality were estimated using multivariable-adjusted Cox proportional hazards regression among 1369 CRC cases in the European Prospective Investigation into Cancer and Nutrition (EPIC) study. Concentrations of major plasma AGEs, Nε-[carboxy-methyl]lysine (CML), Nε-[carboxy-ethyl]lysine (CEL) and Nδ-[5-hydro-5-methyl-4-imidazolon-2-yl]-ornithine (MG-H1), were measured using ultra-performance liquid chromatography mass-spectrometry. sRAGE was assessed by enzyme-linked immunosorbent assay. Over a mean follow-up period of 96 months, 693 deaths occurred of which 541 were due to CRC. Individual and combined AGEs were not statistically significantly associated with CRC-specific or overall mortality. However, there was a possible interaction by sex for CEL (Pinteraction = .05). Participants with higher sRAGE had a higher risk of dying from CRC (HRQ5vs.Q1 = 1.67, 95% CI: 1.21-2.30, Ptrend = .02) or any cause (HRQ5vs.Q1 = 1.38, 95% CI: 1.05-1.83, Ptrend = .09). These associations tended to be stronger among cases with diabetes (Pinteraction = .03) and pre-diabetes (Pinteraction <.01) before CRC diagnosis. Pre-diagnostic AGEs were not associated with CRC-specific and overall mortality in individuals with CRC. However, a positive association was observed for sRAGE. Our findings may stimulate further research on the role of AGEs and sRAGE in survival among cancer patients with special emphasis on potential effect modifications by sex and diabetes.

7.
Biochem Biophys Res Commun ; 738: 150536, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39146619

RESUMO

S100 calcium-binding protein P (S100P) is a secretory protein that is expressed in various healthy tissues and tumors. Megakaryocyte-secreted S100P promotes osteoclast differentiation and function; however, its receptor and cellular signaling in osteoclasts remain unclear. Receptor for advanced glycation end products (RAGE), which is the receptor for S100P on cancer cells, was expressed in osteoclast precursors, and S100P-RAGE binding was confirmed through co-immunoprecipitation. Additionally, the phosphorylation of ERK and NF-κB was increased in S100P-stimulated osteoclast precursors but was inhibited by addition of the RAGE antagonistic peptide (RAP). S100P-induced osteoclast differentiation and excessive bone resorption activity were also reduced by the addition of RAP. This study demonstrates that S100P, upon binding with RAGE, activates the ERK and NF-κB signaling pathways in osteoclasts, leading to increased cell differentiation and bone resorption activity.

8.
Cardiovasc Diabetol ; 23(1): 32, 2024 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-38218857

RESUMO

Chen et al. recently related the skin autofluorescence (SAF) of Advanced Glycation End-products to subclinical cardiovascular disease in the 3001 participants from the general population (Rotterdam study), with a particularly close relationship for the 413 subjects with diabetes. Because conventional vascular risk factors do not capture the risk in diabetes very well, this relationship may help to select high-risk individuals for the screening of silent myocardial ischemia, which has yet to prove its benefit in randomized controlled trials. Among 477 patients with uncontrolled and/or complicated Type 2 Diabetes, we measured the SAF ten years ago, and we registered new revascularizations during a 54-months follow-up. The patients with SAF > 2.6 Arbitrary units (AUs), the median population value, experienced more revascularizations of the coronary (17/24) and lower-limb arteries (13/17) than patients with a lower SAF, adjusted for age, sex, diabetes duration, vascular complications, and smoking habits: HR 2.17 (95% CI: 1.05-4.48), p = 0.035. The SAF has already been reported to predict cardiovascular events in three cohorts of people with diabetes. We suggest that its measurement may help to improve the performance of the screening before vascular explorations and revascularizations.


Assuntos
Diabetes Mellitus Tipo 2 , Humanos , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/diagnóstico , Pele , Fatores de Risco , Produtos Finais de Glicação Avançada , Fumar
9.
Cardiovasc Diabetol ; 23(1): 235, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38965604

RESUMO

BACKGROUND: Despite improved glycemic treatment, the impact of glycation on pathological consequences may persist and contribute to adverse clinical outcomes in diabetes. In the present study we investigated the association between serum protein glycation products and progression of kidney disease as well as incident major adverse cardiovascular events (MACE) in type 1 diabetes. METHODS: Fructosamine, advanced glycation end products (AGEs), and methylglyoxal-modified hydro-imidazolone (MG-H1) were measured from baseline serum samples in the FinnDiane study (n = 575). Kidney disease progression was defined as steep eGFR decline (> 3 mL/min/1.73 m2/year) or progression of albuminuria (from lower to higher stage of albuminuria). MACE was defined as acute myocardial infarction, coronary revascularization, cerebrovascular event (stroke), and cardiovascular death. RESULTS: Fructosamine was independently associated with steep eGFR decline (OR 2.15 [95% CI 1.16-4.01], p = 0.016) in the fully adjusted model (age, sex, baseline eGFR). AGEs were associated with steep eGFR decline (OR 1.58 per 1 unit of SD [95% CI 1.07-2.32], p = 0.02), progression to end-stage kidney disease (ESKD) (HR 2.09 per 1 unit of SD [95% CI 1.43-3.05], p < 0.001), and pooled progression (to any stage of albuminuria) (HR 2.72 per 1 unit of SD [95% CI 2.04-3.62], p < 0.001). AGEs (HR 1.57 per 1 unit of SD [95% CI 1.23-2.00], p < 0.001) and MG-H1 (HR 4.99 [95% CI 0.98-25.55], p = 0.054) were associated with incident MACE. MG-H1 was also associated with pooled progression (HR 4.19 [95% CI 1.11-15.89], p = 0.035). Most AGEs and MG-H1 associations were no more significant after adjusting for baseline eGFR. CONCLUSIONS: Overall, these findings suggest that protein glycation products are an important risk factor for target organ damage in type 1 diabetes. The data provide further support to investigate a potential causal role of serum protein glycation in the progression of diabetes complications.


Assuntos
Biomarcadores , Doenças Cardiovasculares , Diabetes Mellitus Tipo 1 , Nefropatias Diabéticas , Progressão da Doença , Frutosamina , Taxa de Filtração Glomerular , Produtos Finais de Glicação Avançada , Humanos , Diabetes Mellitus Tipo 1/diagnóstico , Diabetes Mellitus Tipo 1/sangue , Diabetes Mellitus Tipo 1/complicações , Feminino , Masculino , Produtos Finais de Glicação Avançada/sangue , Pessoa de Meia-Idade , Fatores de Risco , Adulto , Nefropatias Diabéticas/diagnóstico , Nefropatias Diabéticas/sangue , Nefropatias Diabéticas/epidemiologia , Biomarcadores/sangue , Incidência , Doenças Cardiovasculares/diagnóstico , Doenças Cardiovasculares/epidemiologia , Doenças Cardiovasculares/sangue , Medição de Risco , Frutosamina/sangue , Rim/fisiopatologia , Fatores de Tempo , Albuminúria/diagnóstico , Albuminúria/epidemiologia , Albuminúria/sangue , Prognóstico , Estudos Prospectivos , Imidazóis , Ornitina/análogos & derivados
10.
Scand J Immunol ; 100(3): e13389, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38816907

RESUMO

Non-enzymatic glycation and oxidation of self-proteins, causing formation and accumulation of advanced glycation end products (AGEs), have been reported in an array of pathologies, including systemic lupus erythematosus (SLE). Such modifications may generate neo-epitopes, break immunological tolerance, and induce antibody response. In this study, we have first analysed the structural modifications of whole histone in the presence of deoxyribose followed by oxidation with hydroxyl radicals. Changes in the secondary and tertiary structure of the whole histone were determined by spectroscopic techniques and biochemical assays. Fluorescence spectroscopy and UPLC-MS showed the generation of AGEs such as carboxymethyl lysine and pentosidine, while DLS and TEM indicated the presence of amorphous AGE-aggregates. Moreover, rabbits immunized with these histone-AGEs exhibited enhanced immunogenicity and ELISA and western immunoblot of IgG antibodies from SLE patients' sera showed a significantly higher specificity towards modified histone-AGEs than the native histone.


Assuntos
Autoanticorpos , Produtos Finais de Glicação Avançada , Histonas , Lúpus Eritematoso Sistêmico , Oxirredução , Histonas/imunologia , Histonas/metabolismo , Lúpus Eritematoso Sistêmico/imunologia , Lúpus Eritematoso Sistêmico/sangue , Humanos , Coelhos , Autoanticorpos/imunologia , Autoanticorpos/sangue , Animais , Produtos Finais de Glicação Avançada/imunologia , Imunoglobulina G/imunologia , Imunoglobulina G/sangue , Lisina/análogos & derivados , Lisina/imunologia , Lisina/química , Glicosilação , Feminino , Arginina/imunologia , Arginina/análogos & derivados , Agregados Proteicos/imunologia
11.
Respir Res ; 25(1): 85, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38336742

RESUMO

BACKGROUND: Chronic obstructive pulmonary disease (COPD) and asthma associate with high morbidity and mortality. High levels of advanced glycation end products (AGEs) were found in tissue and plasma of COPD patients but their role in COPD and asthma is unclear. METHODS: In the Rotterdam Study (n = 2577), AGEs (by skin autofluorescence (SAF)), FEV1 and lung diffusing capacity (DLCOc and DLCOc /alveolar volume [VA]) were measured. Associations of SAF with asthma, COPD, GOLD stage, and lung function were analyzed using logistic and linear regression adjusted for covariates, followed by interaction and stratification analyses. sRAGE and EN-RAGE associations with COPD prevalence were analyzed by logistic regression. RESULTS: SAF associated with COPD prevalence (OR = 1.299 [1.060, 1.591]) but not when adjusted for smoking (OR = 1.106 [0.89, 1.363]). SAF associated with FEV1% predicted (ß=-3.384 [-4.877, -1.892]), DLCOc (ß=-0.212 [-0.327, -0.097]) and GOLD stage (OR = 4.073, p = 0.001, stage 3&4 versus 1). Stratified, the association between SAF and FEV1%predicted was stronger in COPD (ß=-6.362 [-9.055, -3.670]) than non-COPD (ß=-1.712 [-3.306, -0.118]). Association of SAF with DLCOc and DLCOc/VA were confined to COPD (ß=-0.550 [-0.909, -0.191]; ß=-0.065 [-0.117, -0.014] respectively). SAF interacted with former smoking and COPD prevalence for associations with lung function. Lower sRAGE and higher EN-RAGE associated with COPD prevalence (OR = 0.575[0.354, 0.931]; OR = 1.778[1.142, 2.768], respectively). CONCLUSIONS: Associations between SAF, lung function and COPD prevalence were strongly influenced by smoking. SAF associated with COPD severity and its association with lung function was more prominent within COPD. These results fuel further research into interrelations and causality between SAF, smoking and COPD. TAKE-HOME MESSAGE: Skin AGEs associated with prevalence and severity of COPD and lung function in the general population with a stronger effect in COPD, calling for further research into interrelations and causality between SAF, smoking and COPD.


Assuntos
Asma , Doença Pulmonar Obstrutiva Crônica , Humanos , Doença Pulmonar Obstrutiva Crônica/diagnóstico , Doença Pulmonar Obstrutiva Crônica/epidemiologia , Fumar/efeitos adversos , Fumar/epidemiologia , Fumar Tabaco , Pele , Produtos Finais de Glicação Avançada
12.
Exp Dermatol ; 33(4): e15065, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38563644

RESUMO

The advanced glycation end-products (AGEs) are produced through non-enzymatic glycation between reducing sugars and free amino groups, such as proteins, lipids or nucleic acids. AGEs can enter the body through daily dietary intake and can also be generated internally via normal metabolism and external stimuli. AGEs bind to cell surface receptors for AGEs, triggering oxidative stress and inflammation responses that lead to skin ageing and various diseases. Evidence shows that AGEs contribute to skin dysfunction and ageing. This review introduces the basic information, the sources, the metabolism and absorption of AGEs. We also summarise the detrimental mechanisms of AGEs to skin ageing and other chronic diseases. For the potential strategies for counteracting AGEs to skin and other organs, we summarised the pathways that could be utilised to resist glycation. Chemical and natural-derived anti-glycation approaches are overviewed. This work offers an understanding of AGEs to skin ageing and other chronic diseases and may provide perspectives for the development of anti-glycation strategies.


Assuntos
Reação de Maillard , Pele , Humanos , Estresse Oxidativo , Doença Crônica
13.
Arch Biochem Biophys ; 753: 109911, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38280562

RESUMO

Diabetes is a metabolic illness that increases protein glycosylation in hyperglycemic conditions, which can have an impact on almost every organ system in the body. The role of vitamin D in the etiology of diabetes under RAGE (receptor for advanced glycation end products) stress has recently received some attention on a global scale. Vitamin D's other skeletal benefits have generated a great deal of research. Vitamin D's function in the development of type 1 and type 2 diabetes is supported by the discovery of 1,25 (OH)2D3 and 1-Alpha-Hydroylase expression in immune cells, pancreatic beta cells, and several other organs besides the bone system. A lower HBA1c level, metabolic syndrome, and diabetes mellitus all seems to be associated with vitamin D insufficiency. Most of the cross-sectional and prospective observational studies that were used to gather human evidence revealed an inverse relationship between vitamin D level and the prevalence or incidence of elevated HBA1c in type 2 diabetes. Several trials have reported on the impact of vitamin D supplementation for glycemia or incidence of type 2 diabetes, with varying degrees of success. The current paper examines the available data for a relationship between vitamin D supplementation and HBA1c level in diabetes and discusses the biological plausibility of such a relationship.


Assuntos
Diabetes Mellitus Tipo 2 , Deficiência de Vitamina D , Humanos , Hemoglobinas Glicadas , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/complicações , Deficiência de Vitamina D/complicações , Deficiência de Vitamina D/tratamento farmacológico , Deficiência de Vitamina D/epidemiologia , Estudos Transversais , Vitamina D/uso terapêutico , Vitaminas , Suplementos Nutricionais , Estudos Observacionais como Assunto
14.
Calcif Tissue Int ; 115(3): 298-314, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39012489

RESUMO

Obesity and type 2 diabetes (T2D) are risk factors for fragility fractures. It is unknown whether this elevated risk is due to a diet favoring obesity or the diabetes that often occurs with obesity. Therefore, we hypothesized that the fracture resistance of bone is lower in mice fed with a high fat diet (45% kcal; HFD) than in mice that fed on a similar, control diet (10% kcal; LFD), regardless of whether the mice developed overt T2D. Sixteen-week-old, male NON/ShiLtJ mice (resistant to T2D) and age-matched, male NONcNZO10/LtJ (prone to T2D) received a control LFD or HFD for 21 weeks. HFD increased the bodyweight to a greater extent in the ShiLtJ mice compared to the NZO10 mice, while blood glucose levels were significantly higher in NZO10 than in ShiLtJ mice. As such, the glycated hemoglobin A1c (HbA1c) levels exceeded 10% in NZO10 mice, but it remained below 6% in ShiLtJ mice. Diet did not affect HbA1c. HFD lowered trabecular number and bone volume fraction of the distal femur metaphysis (micro-computed tomography or µCT) in both strains. For the femur mid-diaphysis, HFD significantly reduced the yield moment (mechanical testing by three-point bending) in both strains but did not affect cross-sectional bone area, cortical thickness, nor cortical tissue mineral density (µCT). Furthermore, the effect of diet on yield moment was independent of the structural resistance of the femur mid-diaphysis suggesting a negative effect of HFD on characteristics of the bone matrix. However, neither Raman spectroscopy nor assays of advanced glycation end-products identified how HFD affected the matrix. HFD also lowered the resistance of cortical bone to crack growth in only the diabetic NZO10 mice (fracture toughness testing of other femur), while HFD reduced the ultimate force of the L6 vertebra in both strains (compression testing). In conclusion, the HFD-related decrease in bone strength can occur in mice resistant and prone to diabetes indicating that a diet high in fat deleteriously affects bone without necessarily causing hyperglycemia.


Assuntos
Densidade Óssea , Diabetes Mellitus Tipo 2 , Dieta Hiperlipídica , Obesidade , Animais , Diabetes Mellitus Tipo 2/metabolismo , Dieta Hiperlipídica/efeitos adversos , Obesidade/metabolismo , Masculino , Camundongos , Densidade Óssea/fisiologia , Fraturas Ósseas/etiologia , Osso e Ossos/metabolismo , Osso e Ossos/patologia
15.
Glycoconj J ; 41(1): 35-46, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38498243

RESUMO

Advanced glycation end products (AGE) in complex with their receptors (RAGE) cause a chronic inflammatory state in the body, which is the major mechanism in cancer development. This study aimed to conduct a systematic review and meta-analysis on the observational studies investigating the association between AGEs / sRAGE and cancer incidence. The PubMed, Scopus, and Web of Science databases were comprehensively searched to identify papers focused on the associations of sRAGE and AGEs with cancer incidence up to May 2023. Eight studies with a total of 7690 participants were included in the analysis to evaluate the association between circulating sRAGE and cancer incidence. The results indicated that circulating sRAGE (per 100 ng/L) had a significant inverse association with cancer incidence (RR 0.977; 95% CI 0.956, 0.999; p = 0.036; I 2 = 73.3%). The association between AGEs and cancer incidence was evaluated in 8 studies with a total of 3718 individuals. Serum concentrations of AGEs (per 100 µg/L) were not associated with the risk of cancer incidence (RR 0.988; 95% CI 0.974, 1.002; p = 0.08; I2 = 78.8%). Our findings revealed that a higher circulating sRAGE may have a protective effect against cancer incidence.


Assuntos
Produtos Finais de Glicação Avançada , Neoplasias , Humanos , Biomarcadores , Inflamação , Neoplasias/epidemiologia , Estudos Observacionais como Assunto , Receptor para Produtos Finais de Glicação Avançada
16.
Cell Commun Signal ; 22(1): 182, 2024 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-38491522

RESUMO

BACKGROUND: Diabetic angiogenesis is closely associated with disabilities and death caused by diabetic microvascular complications. Advanced glycation end products (AGEs) are abnormally accumulated in diabetic patients and are a key pathogenic factor for diabetic angiogenesis. The present study focuses on understanding the mechanisms underlying diabetic angiogenesis and identifying therapeutic targets based on these mechanisms. METHODS: In this study, AGE-induced angiogenesis serves as a model to investigate the mechanisms underlying diabetic angiogensis. Mouse aortic rings, matrigel plugs, and HUVECs or 293T cells were employed as research objects to explore this pathological process by using transcriptomics, gene promoter reporter assays, virtual screening and so on. RESULTS: Here, we found that AGEs activated Wnt/ß-catenin signaling pathway and enhanced the ß-catenin protein level by affecting the expression of ß-catenin degradation-related genes, such as FZDs (Frizzled receptors), LRPs (LDL Receptor Related Proteins), and AXIN1. AGEs could also mediate ß-catenin Y142 phosphorylation through VEGFR1 isoform5. These dual effects of AGEs elevated the nuclear translocation of ß-catenin and sequentially induced the expression of KDR (Kinase Insert Domain Receptor) and HDAC9 (Histone Deacetylase 9) by POU5F1 and NANOG, respectively, thus mediating angiogenesis. Finally, through virtual screening, Bioymifi, an inhibitor that blocks VEGFR1 isoform5-ß-catenin complex interaction and alleviates AGE-induced angiogenesis, was identified. CONCLUSION: Collectively, this study offers insight into the pathophysiological functions of ß-catenin in diabetic angiogenesis.


Assuntos
Complicações do Diabetes , Diabetes Mellitus , Animais , Humanos , Camundongos , Angiogênese , beta Catenina/metabolismo , Histona Desacetilases/metabolismo , Fosforilação , Proteínas Repressoras/metabolismo , Regulação para Cima , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Via de Sinalização Wnt
17.
Crit Rev Toxicol ; 54(8): 485-617, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39150724

RESUMO

The term "glycation compounds" comprises a wide range of structurally diverse compounds that are formed endogenously and in food via the Maillard reaction, a chemical reaction between reducing sugars and amino acids. Glycation compounds produced endogenously are considered to contribute to a range of diseases. This has led to the hypothesis that glycation compounds present in food may also cause adverse effects and thus pose a nutritional risk to human health. In this work, the Senate Commission on Food Safety (SKLM) of the German Research Foundation (DFG) summarized data on formation, occurrence, exposure and toxicity of glycation compounds (Part A) and systematically assessed potential associations between dietary intake of defined glycation compounds and disease, including allergy, diabetes, cardiovascular and renal disease, gut/gastrotoxicity, brain/cognitive impairment and cancer (Part B). A systematic search in Pubmed (Medline), Scopus and Web of Science using a combination of keywords defining individual glycation compounds and relevant disease patterns linked to the subject area of food, nutrition and diet retrieved 253 original publications relevant to the research question. Of these, only 192 were found to comply with previously defined quality criteria and were thus considered suitable to assess potential health risks of dietary glycation compounds. For each adverse health effect considered in this assessment, however, only limited numbers of human, animal and in vitro studies were identified. While studies in humans were often limited due to small cohort size, short study duration, and confounders, experimental studies in animals that allow for controlled exposure to individual glycation compounds provided some evidence for impaired glucose tolerance, insulin resistance, cardiovascular effects and renal injury in response to oral exposure to dicarbonyl compounds, albeit at dose levels by far exceeding estimated human exposures. The overall database was generally inconsistent or inconclusive. Based on this systematic review, the SKLM concludes that there is at present no convincing evidence for a causal association between dietary intake of glycation compounds and adverse health effects.


Considering the implication of endogenous glycation compounds in aging and disease, dietary exposure via consumption of an "AGE (advanced glycation end product) rich diet" is increasingly suggested to pose a potential health risk. However, studies attempting to assess an association between dietary glycation compounds and adverse health effects frequently suffer from insufficient chemical analysis of glycation compounds, including inadequate structural characterization and limited quantitative data. The Senate Commission on Food Safety (SKLM) of the German Research Foundation (DFG) previously defined quality criteria for studies designed to assess the effects of dietary glycation compounds on human health. The aim of the present work is to summarize data on formation, occurrence, exposure and toxicity of glycation compounds (Part A) and to systematically evaluate if the currently available scientific database allows for a conclusive assessment of potential health effects of defined glycation compounds (Part B).The term "glycation compounds" comprises a wide range of structurally diverse compounds that derive from the Maillard reaction, a chemical reaction between reducing carbohydrates and amino compounds that occurs during food processing. In the first stage of the Maillard reaction, reducing sugars such as glucose and fructose react for instance with the ε-amino group of lysine, which is most abundant in food ("glycation" of lysine). Subsequently, these primary reaction products undergo Amadori rearrangement to yield products (ARP) such as fructosyllysine (FL) from glucose and also Heyns rearrangement products (HRPs) such as glucosyl- and mannosyllysine from fructose. While ARPs are rapidly formed during food processing, they are not stable and undergo degradation reactions, predominantly to 1,2-dicarbonyl compounds such as glyoxal (GO), methylglyoxal (MGO) and 3-deoxyglucosone (3-DG), which are highly reactive. The last stage of the Maillard reaction is characterized predominantly by the reaction of these dicarbonyl compounds with nucleophilic groups of proteins. The side-chains of lysine and arginine residues as well as the N-termini of proteins are important reaction sites. Carboxyalkylated amino acids such as N-ε-carboxymethyllysine (CML) and N-ε-carboxyethyllysine (CEL) result from reaction of the ε-amino group of lysine with the dicarbonyl compounds GO and MGO. Dicarbonyl compounds with C5 or C6 chains can form cyclic pyrrole derivatives at the ε-amino group of lysine. The most important example for this reaction is pyrraline, which is formed from reaction of 3-DG and lysine. The reaction of dicarbonyl compounds with the guanidino group of arginine mainly leads to hydroimidazolones, of which the MGO-derived hydroimidazolone 1 (MG-H1) is best described in food systems.ARPs are the most abundant glycation products found in food. Up to 55% of the lysine residues in food may be modified to ARPs at the side-chain. Food items particularly rich in ARPs include bread, rusk, biscuits, chocolate, and powdered infant formulas. Exposure estimates range between 0.6­1.6 mg/kg body weight (bw), although exposure may be as high as 14.3 mg/kg bw in individuals consuming foods with extreme ARP concentrations. Foods particularly rich in dicarbonyl compounds include heat-treated or long-term stored items rich in reducing sugars such as jams, alternative sweeteners, soft drinks, honey, candies, cookies, and vinegars, especially balsamico-type vinegars. The main contributors to the daily intake of MGO, GO, and 3-DG are coffee and bread. Dietary exposure to dicarbonyl compounds has been estimated to range between 0.02­0.29 mg/kg bw/d for MGO, 0.04­0.16 mg/kg bw/d for GO, 0.14­2.3 mg/kg bw/d for 3-DG, and 0.08­0.13 mg/kg bw/d for 3-deoxygalactosone (3-DGal). Dietary intake of 5-hydroxymethylfurfural (HMF), which can be formed from 3-DG, is estimated to range between 0.0001­0.9 mg/kg bw/d. Exposure estimates for individual glycated amino acids range from 0.03­0.35 mg/kg bw/d for CML, 0.02­0.04 mg/kg bw/d for CEL and 0.19­0.41 mg/kg bw/d for MG-H1. From a model diet consisting of 1 L milk, 500 g bakery products and 400 mL coffee, an intake of pyrraline corresponding to 0.36 mg/kg bw/d for a 70 kg person was estimated.Quantitative analysis of individual glycation compounds or their metabolites in tissues or body fluids as well as their reaction products with amino acids, proteins or DNA may serve to monitor exposure to glycation compounds. However, since glycation compounds are also formed endogenously, these biomarkers reflect the totality of the exposure, making it inherently difficult to define the body burden due to dietary intake against the background of endogenous formation.Information on the toxicokinetics and toxicity of glycation compounds is scarce and mostly limited to the reactive dicarbonyl compounds GO, MGO, 3-DG, HMF, and individual glycated amino acids such as CML and CEL. Acute toxicity of dicarbonyl compounds is low to moderate. There are some data to suggest that rapid detoxification of dicarbonyls in the gastrointestinal tract and liver may limit their oral bioavailability. Biotransformation of GO and MGO occurs predominantly via the glutathione (GSH)-dependent glyoxalase system, and to a lesser extent via glutathione-independent aldo-keto-reductases, which are also responsible for biotransformation of 3-DG. GO, MGO and 3-DG readily react with DNA bases in vitro, giving rise to DNA adducts. There is clear evidence for genotoxicity of GO, MGO and 3-DG. Repeated dose toxicity studies on GO consistently reported reduced body weight gain concomitant with reduced food and water consumption but did not identify compound related changes in clinical chemistry and hematology or histopathological lesions. There is also no evidence for systemic carcinogenicity of GO and MGO based on the available studies. However, initiation/promotion studies indicate that oral exposure to GO may exhibit genotoxic and tumor promoting activity locally in the gastrointestinal tract. From a 2-year chronic toxicity and carcinogenicity study in rats, a NOAEL for systemic toxicity of GO administered via drinking water of 25 mg/kg bw was reported based on reduced body weight and erosions/ulcer in the glandular stomach. Other non-neoplastic and neoplastic lesions were not observed. Acute toxicity of HMF is also low. From a 90-day repeated dose toxicity study in mice, a NOAEL of 94 mg/kg bw was derived based on cytoplasmic alterations of proximal tubule epithelial cells of the kidney. HMF was mostly negative in in vitro genotoxicity tests, although positive findings for mutagenicity were obtained under conditions that promote formation of the chemically reactive sulfuric acid ester 5-sulfoxymethylfurfural. There is some evidence of carcinogenic activity of HMF in female B6C3F1 mice based on increased incidences of hepatocellular adenoma, but not in male mice and rats of both sexes. Although data on oral bioavailability of glycated amino acids are mostly limited to CML, it appears that glycated amino acids may be absorbed from the gastrointestinal tract after oral exposure to their free and protein bound form. Glycated amino acids that are not absorbed in the intestine may be subject to metabolism by the gut microbiome. Glycated amino acids present in the systemic circulation are rapidly eliminated via the urine. Acute oral toxicity of CML is low. Studies in mice and rats reported changes in clinical chemistry parameters indicative of impaired renal and hepatic function. However, these changes were not dose-related and not supported by histopathological evaluation.Previous risk assessments of individual glycation compounds did not identify a health concern at estimated human exposures (GO, HMF) but also noted the lack of data to draw firm conclusions on health risks associated with exposure to MGO.To identify potential associations between dietary intake of defined glycation compounds and disease a systematic review was carried out according to the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) model, applying the quality criteria previously defined by the SKLM. Using a combination of keywords defining individual glycation compounds and relevant disease patterns linked to the subject area of food, nutrition and diet, a systematic search in Pubmed (Medline), Scopus and Web of Science was performed. Although the present systematic review identified numerous studies that investigated an association between an "AGE-rich diet" and adverse health effects, only a subset of studies was found to comply with the quality criteria defined by the SKLM and was thus considered suitable to assess potential health risks of dietary glycation compounds.For each adverse health effect considered in this assessment, only limited numbers of human studies were identified. Although studies in humans offer the advantage of investigating effects at relevant human exposures, these studies did not provide compelling evidence for adverse effects of dietary glycation compounds. Animal studies identified in this systematic review provide some evidence for induction of impaired glucose tolerance, insulin resistance, cardiovascular effects and renal injury in response to oral exposure to GO and MGO as representatives of dicarbonyl compounds. Only limited evidence points to a link between high intake of glycated amino acids and metabolic disorders. However, these effects were typically reported to occur at dose levels that exceed human dietary exposure, often by several orders of magnitude. Unfortunately, most studies employed only one dose level, precluding characterization of dose-response and derivation of a point of departure for riskassessment. While in vitro studies provide some evidence for a potential mechanistic link between individual glycation compounds and presumed adverse health effects, the clinical and toxicological relevance of the in vitro findings is often limited by the use of high concentrations of glycation compounds that by far exceed human dietary exposure and by insufficient evidence for corresponding adverse effects in vivo. A key question that has not been adequately considered in most studies investigating systemic effects of glycation compounds is the extent of oral bioavailability of dietary glycation compounds, including the form in which MRPs may be taken up (e.g. free vs. peptide bound glycated amino acids). Understanding how much dietary glycation compounds really add to the significant endogenous background is critical to appraise the relevance of dietary MRPs for human health.While it appears mechanistically plausible that glycation of dietary allergens may affect their allergenic potential, the currently available data do not support the hypothesis that dietary glycation compounds may increase the risk for diet-induced allergies. There are no human studies addressing the immunological effects of dietary AGEs. Accordingly, there are no data on whether dietary AGEs promote the development of allergies, nor whether existing allergies are enhanced or attenuated. In numerous in vitro studies, the IgG/E binding ability of antigens and therefore their allergenic potential has been predominantly reported to be reduced by glycation. However, some in vitro studies showed that glycated proteins bind to receptors of immunological cells, and thus may have promoting effects on immune response and inflammation.Although experimental data from animal studies provide some evidence that high doses of individual glycation compounds such as MGO and protein-bound CML may produce certain adverse health effects, including diabetogenic, cardiovascular, metabolic and renal effects, the doses required to achieve these effects by far exceed human dietary exposures. Of note, in the only long-term study identified, a high dose of MGO administered via drinking water to mice for 18 months had no adverse effects on the kidneys, cardiovascular system, or development of diabetes.Experimental data from animal studies provide evidence that high doses of defined glycation compounds such as MGO or protein-bound CML may affect glucose homeostasis. However, the doses required to produce these effects markedly exceed human dietary exposure. Results from human studies are inconclusive: Three short-term intervention studies suggested that diets rich in AGEs may impair glucose homeostasis, whereas one recent intervention study and two observational studies failed to show such an effect.For the cardiovascular system, there is some evidence from in vitro and in vivo studies that high concentrations of MRPs, well above the dietary exposure of humans, may enhance inflammation in the cardiovascular system, induce endothelial damage, increase blood pressure and increase the risk of thrombosis. Only a limited number of human intervention studies investigated potential effects of short-term exposure and longer-term effects of glycation compounds on the cardiovascular system, and yielded inconsistent results. The few observational studies available either found no association between dietary MRP intake and cardiovascular function or even reported beneficial effects. Therefore, currently no definitive conclusion on potential acute and chronic effects of dietary MRPs on inflammation and cardiovascular function can be drawn. However, there is currently also no convincing evidence that potential adverse effects on the cardiovascular system are triggered by dietary MRP intake.Furthermore, human studies did not provide evidence for an adverse effect of dietary MRPs on kidney function. In animal studies with high levels of oral intake, MGO was reported to cause structural and functional effects in the kidney. Several studies show that the concentration of modified proteins and amino acids, such as CML, increases significantly in kidney tissue after oral intake. One study showed a negative effect of a high-temperature-treated diet containing increased CML concentrations on kidney structure integrity and impaired glomerular filtration. The causative relationship of accumulation of dietary MRPs and a functional decline of the kidneys, however, needs further confirmation.With regard to gut health, there is some evidence for alterations in gut microflora composition and the production of individual short-chain fatty acids (SCFAs) upon dietary exposure to glycation compounds. However, this has not been linked to adverse health effects in humans and may rather reflect adaptation of the gut microbiota to changing nutrients. In particular, a human observational study and several animal studies did not find a correlation between the intake of glycation compounds and increased intestinal inflammation. In animal studies, positive effects of glycation compounds on gut tissue damage and dysbiosis during colitis were described.Considering clear evidence for DNA reactivity and genotoxicity of the dicarbonyl compounds GO, MGO and 3-DG, it is plausible to suspect that dicarbonyl compounds may induce mutations and cancer. Although there is some evidence for tumor promoting activity of GO locally in the gastrointestinal tract, the only guideline-compatible chronic rodent bioassays reported erosions and ulcer in the glandular stomach but no treatment-related neoplastic lesions. A recent multinational cohort study with focus on CEL, CML, and MG-H1 found no evidence to support the hypothesis that dietary AGEs are linked to cancer risk.Evidence for an association between human exposure to dietary glycation compounds and detrimental effects on the brain and on cognitive performance is far from being compelling. No human studies fully complying with the defined quality criteria were identified. A few experimental studies reported neuroinflammation and cognitive impairment following dietary MRP exposure, but these can be considered indicative at best and do not support firm conclusions for human health. In addition to utilizing exceedingly high dosages of individual agents like CML, harsh processing conditions causing a multitude of major process-related changes do not allow to convincingly reconcile effects observed with measured/supposed contents of free and protein-bound CML alone.Overall, although dietary glycation compounds have been claimed to contribute to a wide range of adverse health effects, the present critical evaluation of the literature allows the conclusion that the available data are insufficient, inadequate or inconclusive and do not compellingly support the hypothesis of human health risks being related to the presence of glycation compounds in food. The study limitations detailed above, together with the fact that a large number of studies did not comply with the defined quality criteria and therefore had to be excluded highlight the importance of performing adequately designed human or animal studies to inform scientifically reliable health risk assessment.To achieve this, high quality, dependable scientific cooperation within various disciplines is pivotal.


Assuntos
Dieta , Humanos , Animais , Reação de Maillard , Produtos Finais de Glicação Avançada/metabolismo , Produtos Finais de Glicação Avançada/toxicidade
18.
Mol Pharm ; 21(4): 1677-1690, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38478716

RESUMO

Chronic periodontitis is a chronic, progressive, and destructive disease. Especially, the large accumulation of advanced glycation end products (AGEs) in a diseased body will aggravate the periodontal tissue damage, and AGEs induce M1 macrophages. In this project, the novel nanodrugs, glucose-PEG-PLGA@MCC950 (GLU@MCC), are designed to achieve active targeting with the help of glucose transporter 1 (GLUT1) which is highly expressed in M1 macrophages induced by AGEs. Then, the nanodrugs release MCC950, which is a kind of NLRP3 inhibitor. These nanodrugs not only can improve the water solubility of MCC950 but also exhibit superior characteristics, such as small size, stability, innocuity, etc. In vivo experiments showed that GLU@MCC could reduce periodontal tissue damage and inhibit cell apoptosis in periodontitis model mice. In vitro experiments verified that its mechanism of action might be closely related to the inhibition of the NLRP3 inflammatory factor in M1 macrophages. GLU@MCC could effectively reduce the damage to H400 cells caused by AGEs, decrease the expression of NLRP3, and also obviously reduce the M1-type macrophage pro-inflammatory factors such as IL-18, IL-1ß, caspase-1, and TNF-α. Meanwhile, the expression of anti-inflammatory factor Arg-1 in the M2 macrophage was increased. In brief, GLU@MCC would inhibit the expression of inflammatory factor NLRP3 and exert antiperiodontal tissue damage in chronic periodontitis via GLUT1 in the M1 macrophage as the gating target. This study provides a novel nanodrug for chronic periodontitis treatment.


Assuntos
Periodontite Crônica , Nanopartículas , Camundongos , Animais , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Periodontite Crônica/tratamento farmacológico , Periodontite Crônica/metabolismo , Transportador de Glucose Tipo 1/metabolismo , Macrófagos
19.
Biogerontology ; 25(4): 615-626, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38441836

RESUMO

Various models for ageing, each focussing on different biochemical and/or cellular pathways have been proposed. This has resulted in a complex and non-coherent portrayal of ageing. Here, we describe a concise and comprehensive model for the biochemistry of ageing consisting of three interacting signalling hubs. These are the nuclear factor kappa B complex (NFκB), controlling the innate immune system, the mammalian target for rapamycin complex, controlling cell growth, and the integrated stress responses, controlling homeostasis. This model provides a framework for most other, more detailed, biochemical pathways involved in ageing, and explains why ageing involves chronic inflammation, cellular senescence, and vulnerability to environmental stress, while starting with the spontaneous formation of advanced glycation end products. The totality of data underlying this model suggest that the gradual inhibition of the AMPK-ISR probably determines the maximal lifespan. Based on this model, anti-ageing drugs in general, are expected to show hormetic dose response curves. This complicates the process of dose-optimization. Due to its specific mechanism of action, the anti-aging drug alkaline phosphatase is an exception to this rule, because it probably exhibits saturation kinetics.


Assuntos
Envelhecimento , Longevidade , Humanos , Longevidade/fisiologia , Envelhecimento/fisiologia , Envelhecimento/metabolismo , Animais , Senescência Celular/fisiologia , Transdução de Sinais , Modelos Biológicos , NF-kappa B/metabolismo
20.
Br J Nutr ; 131(11): 1902-1914, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38383991

RESUMO

Dicarbonyl compounds are highly reactive precursors of advanced glycation end products (AGE), produced endogenously, present in certain foods and formed during food processing. AGE contribute to the development of adverse metabolic outcomes, but health effects of dietary dicarbonyls are largely unexplored. We investigated associations between three dietary dicarbonyl compounds, methylglyoxal (MGO), glyoxal (GO) and 3-deoxyglucosone (3-DG), and body weight changes in European adults. Dicarbonyl intakes were estimated using food composition database from 263 095 European Prospective Investigation into Cancer and Nutrition-Physical Activity, Nutrition, Alcohol, Cessation of Smoking, Eating Out of Home in Relation to Anthropometry participants with two body weight assessments (median follow-up time = 5·4 years). Associations between dicarbonyls and 5-year body-weight changes were estimated using mixed linear regression models. Stratified analyses by sex, age and baseline BMI were performed. Risk of becoming overweight/obese was assessed using multivariable-adjusted logistic regression. MGO intake was associated with 5-year body-weight gain of 0·089 kg (per 1-sd increase, 95 % CI 0·072, 0·107). 3-DG was inversely associated with body-weight change (-0·076 kg, -0·094, -0·058). No significant association was observed for GO (0·018 kg, -0·002, 0·037). In stratified analyses, GO was associated with body-weight gain among women and older participants (above median of 52·4 years). MGO was associated with higher body-weight gain among older participants. 3-DG was inversely associated with body-weight gain among younger and normal-weight participants. MGO was associated with a higher risk of becoming overweight/obese, while inverse associations were observed for 3-DG. No associations were observed for GO with overweight/obesity. Dietary dicarbonyls are inconsistently associated with body weight change among European adults. Further research is needed to clarify the role of these food components in overweight and obesity, their underlying mechanisms and potential public health implications.


Assuntos
Dieta , Glioxal , Aldeído Pirúvico , Aumento de Peso , Humanos , Feminino , Masculino , Pessoa de Meia-Idade , Adulto , Europa (Continente) , Desoxiglucose/análogos & derivados , Estudos Prospectivos , Obesidade/etiologia , Índice de Massa Corporal , Sobrepeso , Peso Corporal , Idoso , Estudos de Coortes , Produtos Finais de Glicação Avançada
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA