Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 124
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(23): e2322283121, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38814873

RESUMO

Single-atom catalysts (SACs) with atomic dispersion active sites have exhibited huge potentials in peroxymonosulfate (PMS)-based Fenton-like chemistry in water purification. However, four-N coordination metal (MN4) moieties often suffer from such problems as low selectivity and narrow workable pH. How to construct SACs in a controllable strategy with optimized electronic structures is of great challenge. Herein, an innovative strategy (i.e., the "4 + 1" fabrication) was devised to precisely modulate the first-shell coordinated microenvironment of FeN4 SAC using an additional N (SA-FeN5). This leads to almost 100% selective formation of high-valent iron-oxo [Fe(IV)═O] (steady-state concentration: 2.00 × 10-8 M) in the SA-FeN5/PMS system. In-depth theoretical calculations unveil that FeN5 configuration optimizes the electron distribution of monatomic Fe sites, which thus fosters PMS adsorption and reduces the energy barrier for Fe(IV)═O generation. SA-FeN5 was then attached to polyvinylidene difluoride membrane for a continuous flow device, showing long-term abatement of the microcontaminant. This work furnishes a general strategy for effective PMS activation and selective high-valent metal-oxo species generation by high N-coordination number regulation in SACs, which would provide guidance in the rational design of superior environmental catalysts for water purification.

2.
Proteomics ; : e2300494, 2024 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-38644344

RESUMO

Microorganisms which are resistant to antibiotics are a global threat to the health of humans and animals. Wastewater treatment plants are known hotspots for the dissemination of antibiotic resistances. Therefore, novel methods for the inactivation of pathogens, and in particular antibiotic-resistant microorganisms (ARM), are of increasing interest. An especially promising method could be a water treatment by physical plasma which provides charged particles, electric fields, UV-radiation, and reactive species. The latter are foremost responsible for the antimicrobial properties of plasma. Thus, with plasma it might be possible to reduce the amount of ARM and to establish this technology as additional treatment stage for wastewater remediation. However, the impact of plasma on microorganisms beyond a mere inactivation was analyzed in more detail by a proteomic approach. Therefore, Escherichia coli GW-AmxH19, isolated from hospital wastewater in Germany, was used. The bacterial solution was treated by a plasma discharge ignited between each of four pins and the liquid surface. The growth of E. coli and the pH-value decreased during plasma treatment in comparison with the untreated control. Proteome and antibiotic resistance profile were analyzed. Concentrations of nitrite and nitrate were determined as long-lived indicative products of a transient chemistry associated with reactive nitrogen species (RNS). Conversely, hydrogen peroxide served as indicator for reactive oxygen species (ROS). Proteome analyses revealed an oxidative stress response as a result of plasma-generated RNS and ROS as well as a pH-balancing reaction as key responses to plasma treatment. Both, the generation of reactive species and a decreased pH-value is characteristic for plasma-treated solutions. The plasma-mediated changes of the proteome are discussed also in comparison with the Gram-positive bacterium Bacillus subtilis. Furthermore, no effect of the plasma treatment, on the antibiotic resistance of E. coli, was determined under the chosen conditions. The knowledge about the physiological changes of ARM in response to plasma is of fundamental interest to understand the molecular basis for the inactivation. This will be important for the further development and implementation of plasma in wastewater remediation.

3.
Small ; : e2401796, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38966879

RESUMO

As a novel type of catalytic material, hollow nanoreactors are expected to bring new development opportunities in the field of persulfate-based advanced oxidation processes due to their peculiar void-confinement, spatial compartmentation, and size-sieving effects. For such materials, however, further clarification on basic concepts and construction strategies, as well as a discussion of the inherent correlation between structure and catalytic activity are still required. In this context, this review aims to provide a state-of-the-art overview of hollow nanoreactors for activating persulfate. Initially, hollow nanoreactors are classified according to the constituent components of the shell structure and their dimensionality. Subsequently, the different construction strategies of hollow nanoreactors are described in detail, while common synthesis methods for these construction strategies are outlined. Furthermore, the most representative advantages of hollow nanoreactors are summarized, and their intrinsic connections to the nanoreactor structure are elucidated. Finally, the challenges and future prospects of hollow nanoreactors are presented.

4.
Environ Sci Technol ; 58(12): 5616-5626, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38471100

RESUMO

Advanced oxidation processes (AOPs), such as hydroxyl radical (HO•)- and sulfate radical (SO4•-)-mediated oxidation, are attractive technologies used in water and wastewater treatments. To evaluate the treatment efficiencies of AOPs, monitoring the primary radicals (HO• and SO4•-) as well as the secondary radicals generated from the reaction of HO•/SO4•- with water matrices is necessary. Therefore, we developed a novel chemical probe method to examine five key radicals simultaneously, including HO•, SO4•-, Cl•, Cl2•-, and CO3•-. Five probes, including nitrobenzene, para-chlorobenzoic acid, benzoic acid, 2,4,6-trimethylbenzoic acid, and 2,4,6-trimethylphenol, were selected in this study. Their bimolecular reaction rate constants with diverse radicals were first calibrated under the same conditions to minimize systematic errors. Three typical AOPs (UV/H2O2, UV/S2O82-, and UV/HSO5-) were tested to obtain the radical steady-state concentrations. The effects of dissolved organic matter, Br-, and the probe concentration were inspected. Our results suggest that the five-probe method can accurately measure radicals in the HO•- and SO4•--mediated AOPs when the concentration of Br- and DOM are less than 4.0 µM and 15 mgC L-1, respectively. Overall, the five-probe method is a practical and easily accessible method to determine multiple radicals simultaneously.


Assuntos
Sulfatos , Poluentes Químicos da Água , Purificação da Água , Radical Hidroxila/química , Peróxido de Hidrogênio/química , Poluentes Químicos da Água/análise , Raios Ultravioleta , Oxirredução , Purificação da Água/métodos , Água , Cinética
5.
Environ Sci Technol ; 58(11): 4844-4851, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38385614

RESUMO

This perspective presents the latest advancements in selective polymerization pathways in advanced oxidation processes (AOPs) for removal of featured organic pollutants in wastewater. In radical-based homogeneous reactions, SO4• --based systems exhibit superior oxidative activity toward aromatics with electron-donating substituents via single electron transfer and radical adduct formation (RAF). The produced organic radical cations subsequently undergo coupling and polymerization reactions to produce polymers. For •OH-based oxidation, metal ions facilitate the production of monomer radicals via RAF. Additionally, heterogeneous catalysts can mediate both coupling and polymerization reactions via persulfate activation without generating inorganic radicals. Metal-based catalysts will mediate a direct oxidation pathway toward polymerization. In contrast, carbon-based catalysts will induce coupling reactions to produce low-molecular-weight oligomers (≤4 units) via an electron transfer process. In comparison to mineralization, polymerization pathways remarkably reduce peroxide usage, quickly separate pollutants from the aqueous phase, and generate polymeric byproducts. Thus, AOP-driven polymerization systems hold significant promise in reducing carbon emission and realizing carbon recycling in water treatment processes.


Assuntos
Poluentes Químicos da Água , Oxirredução , Carbono , Águas Residuárias , Metais , Polímeros
6.
Environ Sci Technol ; 58(26): 11822-11832, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38899941

RESUMO

The potential of Ru(III)-mediated advanced oxidation processes has attracted attention due to the recyclable catalysis, high efficiency at circumneutral pHs, and robust resistance against background anions (e.g., phosphate). However, the reactive species in Ru(III)-peracetic acid (PAA) and Ru(III)-ferrate(VI) (FeO42-) systems have not been rigorously examined and were tentatively attributed to organic radicals (CH3C(O)O•/CH3C(O)OO•) and Fe(IV)/Ru(V), representing single electron transfer (SET) and double electron transfer (DET) mechanisms, respectively. Herein, the reaction mechanisms of both systems were investigated by chemical probes, stoichiometry, and electrochemical analysis, revealing different reaction pathways. The negligible contribution of hydroxyl (HO•) and organic (CH3C(O)O•/CH3C(O)OO•) radicals in the Ru(III)-PAA system clearly indicated a DET reaction via oxygen atom transfer (OAT) that produces Ru(V) as the only reactive species. Further, the Ru(III)-performic acid (PFA) system exhibited a similar OAT oxidation mechanism and efficiency. In contrast, the 1:2 stoichiometry and negligible Fe(IV) formation suggested the SET reaction between Ru(III) and ferrate(VI), generating Ru(IV), Ru(V), and Fe(V) as reactive species for micropollutant abatement. Despite the slower oxidation rate constant (kinetically modeled), Ru(V) could contribute comparably as Fe(V) to oxidation due to its higher steady-state concentration. These reaction mechanisms are distinctly different from the previous studies and provide new mechanistic insights into Ru chemistry and Ru(III)-based AOPs.


Assuntos
Oxirredução , Rutênio , Rutênio/química , Transporte de Elétrons , Catálise , Ferro/química
7.
Environ Sci Technol ; 58(26): 11843-11854, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38952299

RESUMO

Advanced oxidation processes (AOPs) are the most efficient water cleaning technologies, but their applications face critical challenges in terms of mass/electron transfer limitations and catalyst loss/deactivation. Bipolar electrochemistry (BPE) is a wireless technique that is promising for energy and environmental applications. However, the synergy between AOPs and BPE has not been explored. In this study, by combining BPE with AOPs, we develop a general approach of using carbon nanotubes (CNTs) as electric-field-induced bipolar electrodes to control electron transfer for efficient water purification. This approach can be used for permanganate and peroxide activation, with superior performances in the degradation of refractory organic pollutants and excellent durability in recycling and scale-up experiments. Theoretical calculations, in situ measurements, and physical experiments showed that an electric field could substantially reduce the energy barrier of electron transfer over CNTs and induce them to produce bipolar electrodes via electrochemical polarization or to form monopolar electrodes through a single particle collision effect with feeding electrodes. This approach can continuously provide activated electrons from one pole of bipolar electrodes and simultaneously achieve "self-cleaning" of catalysts through CNT-mediated direct oxidation from another pole of bipolar electrodes. This study provides a fundamental scientific understanding of BPE, expands its scope in the environmental field, and offers a general methodology for water purification.


Assuntos
Eletrodos , Nanotubos de Carbono , Oxirredução , Purificação da Água , Nanotubos de Carbono/química , Purificação da Água/métodos , Catálise
8.
Environ Sci Technol ; 58(18): 7710-7718, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38656189

RESUMO

When chemical pollutants enter the environment, they can undergo diverse transformation processes, forming a wide range of transformation products (TPs), some of them benign and others more harmful than their precursors. To date, the majority of TPs remain largely unrecognized and unregulated, particularly as TPs are generally not part of routine chemical risk or hazard assessment. Since many TPs formed from oxidative processes are more polar than their precursors, they may be especially relevant in the context of persistent, mobile, and toxic (PMT) and very persistent and very mobile (vPvM) substances, which are two new hazard classes that have recently been established on a European level. We highlight herein that as a result, TPs deserve more attention in research, chemicals regulation, and chemicals management. This perspective summarizes the main challenges preventing a better integration of TPs in these areas: (1) the lack of reliable high-throughput TP identification methods, (2) uncertainties in TP prediction, (3) inadequately considered TP formation during (advanced) water treatment, and (4) insufficient integration and harmonization of TPs in most regulatory frameworks. A way forward to tackle these challenges and integrate TPs into chemical management is proposed.


Assuntos
Poluentes Ambientais , Medição de Risco
9.
Environ Sci Technol ; 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39163524

RESUMO

The utilization of biochar-catalyzed peroxymonosulfate in advanced oxidation processes (BC-PMS AOPs) is widely acknowledged as an effective and economical method for mitigating emerging contaminants (ECs). Especially, state-of-the-art machine learning (ML) technology has been employed to accurately predict the reaction rate constants of EC degradation in BC-PMS AOPs, primarily focusing on three aspects: performance prediction, operating condition optimization, and mechanism interpretation. However, its real application in specific degradation optimization targeting different ECs is seldom considered, hindering the realization of contaminant-oriented BC-PMS AOPs. Herein, we propose a hierarchical ML pipeline to achieve an end-to-end (E2E) pattern for addressing this issue. First, the overall XGB model, trained with the comprehensive data set, can perform well in predicting the reaction constants of EC degradation in BC-PMS AOPs, additionally providing the basis for further analysis of various ECs. Then, the submodels trained with different EC clusters can offer specific strategies for the selection of the optimum option for BC-PMS AOPs of specific ECs with different HOMO-LUMO gaps, thus forming an E2E operating pattern for BC-PMS AOPs. This study not only increases our understanding of contaminant-oriented optimization of AOPs but also successfully bridges the gap between ML model development and its environmental application.

10.
Environ Sci Technol ; 58(26): 11213-11235, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38885125

RESUMO

Membrane bioreactors (MBRs) are well-established and widely utilized technologies with substantial large-scale plants around the world for municipal and industrial wastewater treatment. Despite their widespread adoption, membrane fouling presents a significant impediment to the broader application of MBRs, necessitating ongoing research and development of effective antifouling strategies. As highly promising, efficient, and environmentally friendly chemical methods for water and wastewater treatment, advanced oxidation processes (AOPs) have demonstrated exceptional competence in the degradation of pollutants and inactivation of bacteria in aqueous environments, exhibiting considerable potential in controlling membrane fouling in MBRs through direct membrane foulant removal (MFR) and indirect mixed-liquor improvement (MLI). Recent proliferation of research on AOPs-based antifouling technologies has catalyzed revolutionary advancements in traditional antifouling methods in MBRs, shedding new light on antifouling mechanisms. To keep pace with the rapid evolution of MBRs, there is an urgent need for a comprehensive summary and discussion of the antifouling advances of AOPs in MBRs, particularly with a focus on understanding the realizing pathways of MFR and MLI. In this critical review, we emphasize the superiority and feasibility of implementing AOPs-based antifouling technologies in MBRs. Moreover, we systematically overview antifouling mechanisms and strategies, such as membrane modification and cleaning for MFR, as well as pretreatment and in-situ treatment for MLI, based on specific AOPs including electrochemical oxidation, photocatalysis, Fenton, and ozonation. Furthermore, we provide recommendations for selecting antifouling strategies (MFR or MLI) in MBRs, along with proposed regulatory measures for specific AOPs-based technologies according to the operational conditions and energy consumption of MBRs. Finally, we highlight future research prospects rooted in the existing application challenges of AOPs in MBRs, including low antifouling efficiency, elevated additional costs, production of metal sludge, and potential damage to polymeric membranes. The fundamental insights presented in this review aim to elevate research interest and ignite innovative thinking regarding the design, improvement, and deployment of AOPs-based antifouling approaches in MBRs, thereby advancing the extensive utilization of membrane-separation technology in the field of wastewater treatment.


Assuntos
Reatores Biológicos , Membranas Artificiais , Oxirredução , Incrustação Biológica , Purificação da Água/métodos , Águas Residuárias/química , Eliminação de Resíduos Líquidos/métodos
11.
Environ Sci Technol ; 58(6): 3007-3018, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38294954

RESUMO

In water purification, the performance of heterogeneous advanced oxidation processes significantly relies upon the utilization of the catalyst's specific surface area (SSA). However, the presence of the structural "dead volume" and pore-size-induced diffusion-reaction trade-off limitation restricts the functioning of the SSA. Here, we reported an effective approach to make the best SSA by changing the traditional 3D spherule catalyst into a 2D-like form and creating an in situ micro-nanolinked structure. Thus, a 2D-like catalyst was obtained which was characterized by a mini "paddy field" surface, and it exhibited a sharply decreased dead volume, a highly available SSA and oriented flexibility. Given its paddy-field-like mass-transfer routine, the organic capture capability was 7.5-fold higher than that of the catalyst with mesopores only. Moreover, such a catalyst exhibited a record-high O3-to-·OH transition rate of 2.86 × 10-8 compared with reported millimetric catalysts (metal base), which contributed to a 6.12-fold higher total organic removal per catalyst mass than traditional 3D catalysts. The facile scale preparation, performance stability, and significant material savings with the 2D-like catalyst were also beneficial for practical applications. Our findings provide a unique and general approach for designing potential catalysts with excellent performance in water purification.


Assuntos
Ozônio , Poluentes Químicos da Água , Purificação da Água , Oxirredução , Metais , Catálise , Poluentes Químicos da Água/análise
12.
Environ Res ; 260: 119592, 2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39002629

RESUMO

Reactive oxygen species (ROS), substances with strong activity generated by oxygen during electron transfer, play a significant role in the decomposition of organic matter in various environmental settings, including soil, water and atmosphere. Although ROS has a short lifespan (ranging from a few nanoseconds to a few days), it continuously generated during the interaction between microorganisms and their environment, especially in environments characterized by strong ultraviolet radiation, fluctuating oxygen concentration or redox conditions, and the abundance of metal minerals. A comprehensive understanding of the fate of ROS in nature can provide new ideas for pollutant degradation and is of great significance for the development of green degradation technologies for organic pollutants. At present, the review of ROS generally revolves around various advanced oxidation processes, but lacks a description and summary of the fate of ROS in nature, this article starts with the definition of reactive oxidants species and reviews the production, migration, and transformation mechanisms of ROS in soil, water and atmospheric environments, focusing on recent developments. In addition, the stimulating effects of ROS on organisms were reviewed. Conclusively, the article summarizes the classic processes, possible improvements, and future directions for ROS-mediated degradation of pollutants. This review offers suggestions for future research directions in this field and provides the possible ROS technology application in pollutants treatment.

13.
Environ Res ; 261: 119719, 2024 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-39098711

RESUMO

The pervasive presence of per and polyfluoroalkyl substances (PFAS), commonly referred to as "forever chemicals," in water systems poses a significant threat to both the environment and public health. PFAS are persistent organic pollutants that are incredibly resistant to degradation and have a tendency to accumulate in the environment, resulting in long-term contamination issues. This comprehensive review delves into the primary impacts of PFAS on both the environment and human health while also delving into advanced techniques aimed at addressing these concerns. The focus is on exploring the efficacy, practicality, and sustainability of these methods. The review outlines several key methods, such as advanced oxidation processes, novel materials adsorption, bioremediation, membrane filtration, and in-situ chemical oxidation, and evaluates their effectiveness in addressing PFAS contamination. By conducting a comparative analysis of these techniques, the study aims to provide a thorough understanding of current PFAS remediation technologies, as well as offer insights into integrated approaches for managing these persistent pollutants effectively. While acknowledging the high efficiency of adsorption and membrane filtration in reducing persistent organic pollutants due to their relatively low cost, versatility, and wide applicability, the review suggests that the integration of these methods could result in an overall enhancement of removal performance. Additionally, the study emphasizes the need for researcher attention in key areas and underscores the necessity of collaboration between researchers, industry, and regulatory authorities to address this complex challenge.

14.
Environ Res ; 252(Pt 3): 118870, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38579994

RESUMO

In persulfate-based advanced oxidation processes (PS-AOPs), sulfate radicals (SO4•-) have been recognized to play more important roles in inducing bromate (BrO3-) formation rather than hydroxyl radicals (HO•) because of the stronger oxidation capacity of the former. However, this study reported an opposite result that HO• indeed dominated the formation of bromate instead of SO4•-. Quenching experiments were coupled with electron paramagnetic resonance (EPR) detection and chemical probe identification to elucidate the contributions of each radical species. The comparison of different thermal activated persulfates (PDS and PMS) demonstrated that the significant higher bromate formation in HEAT/PMS ([BrO3-]/[Br-]0 = 0.8), as compared to HEAT/PDS ([BrO3-]/[Br-]0 = 0.2), was attributable to the higher concentration of HO• radicals in HEAT/PMS. Similarly, the bromate formation in UV/PDS ([BrO3-]/[Br-]0 = 1.0), with a high concentration of HO•, further underscored the dominant role of HO•. As a result, we quantified that HO• and SO4•- radicals accounted 66.7% and 33.3% for bromate formation. This controversial result can be reconciled by considering the critical intermediate, hypobromic acid/hypobromate (HOBr/BrO-), involved in the transformation of Br- to BrO3-. HO• radicals have the chemical preference to induce the formation of HOBr/BrO- intermediates (contributing âˆ¼ 60%) relative to SO4•- radicals (contributing âˆ¼ 40%). This study highlighted the dominant role of HO• in the formation of bromate rather than SO4•- in PS-AOPs and potentially offered novel insights for reducing disinfection byproduct formation by controlling the radical species in AOPs.


Assuntos
Bromatos , Radical Hidroxila , Oxirredução , Sulfatos , Bromatos/química , Radical Hidroxila/química , Sulfatos/química , Espectroscopia de Ressonância de Spin Eletrônica
15.
Int J Mol Sci ; 25(13)2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-39000290

RESUMO

The increasing emergence of multidrug-resistant (MDR) pathogens causes difficult-to-treat infections with long-term hospitalizations and a high incidence of death, thus representing a global public health problem. To manage MDR bacteria bugs, new antimicrobial strategies are necessary, and their introduction in practice is a daily challenge for scientists in the field. An extensively studied approach to treating MDR infections consists of inducing high levels of reactive oxygen species (ROS) by several methods. Although further clinical investigations are mandatory on the possible toxic effects of ROS on mammalian cells, clinical evaluations are extremely promising, and their topical use to treat infected wounds and ulcers, also in presence of biofilm, is already clinically approved. Biochar (BC) is a carbonaceous material obtained by pyrolysis of different vegetable and animal biomass feedstocks at 200-1000 °C in the limited presence of O2. Recently, it has been demonstrated that BC's capability of removing organic and inorganic xenobiotics is mainly due to the presence of persistent free radicals (PFRs), which can activate oxygen, H2O2, or persulfate in the presence or absence of transition metals by electron transfer, thus generating ROS, which in turn degrade pollutants by advanced oxidation processes (AOPs). In this context, the antibacterial effects of BC-containing PFRs have been demonstrated by some authors against Escherichia coli and Staphylococcus aureus, thus giving birth to our idea of the possible use of BC-derived PFRs as a novel method capable of inducing ROS generation for antimicrobial oxidative therapy. Here, the general aspects concerning ROS physiological and pathological production and regulation and the mechanism by which they could exert antimicrobial effects have been reviewed. The methods currently adopted to induce ROS production for antimicrobial oxidative therapy have been discussed. Finally, for the first time, BC-related PFRs have been proposed as a new source of ROS for antimicrobial therapy via AOPs.


Assuntos
Antibacterianos , Oxirredução , Espécies Reativas de Oxigênio , Espécies Reativas de Oxigênio/metabolismo , Antibacterianos/farmacologia , Antibacterianos/química , Humanos , Animais , Carvão Vegetal/química , Carvão Vegetal/farmacologia , Biofilmes/efeitos dos fármacos
16.
J Environ Manage ; 354: 120339, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38401495

RESUMO

Micropollutants have become ubiquitous in aqueous environments due to the increased use of pharmaceuticals, personal care products, pesticides, and other compounds. In this review, the removal of micropollutants from aqueous matrices using various advanced oxidation processes (AOPs), such as photocatalysis, electrocatalysis, sulfate radical-based AOPs, ozonation, and Fenton-based processes has been comprehensively discussed. Most of the compounds were successfully degraded with an efficiency of more than 90%, resulting in the formation of transformation products (TPs). In this respect, degradation pathways with multiple mechanisms, including decarboxylation, hydroxylation, and halogenation, have been illustrated. Various techniques for the analysis of micropollutants and their TPs have been discussed. Additionally, the ecotoxicity posed by these TPs was determined using the toxicity estimation software tool (T.E.S.T.). Finally, the performance and cost-effectiveness of the AOPs at the pilot scale have been reviewed. The current review will help in understanding the treatment efficacy of different AOPs, degradation pathways, and ecotoxicity of TPs so formed.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Águas Residuárias , Oxirredução , Água , Estresse Oxidativo , Poluentes Químicos da Água/toxicidade
17.
J Environ Manage ; 367: 121971, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39074433

RESUMO

In recent years, there has been a growing interest in utilizing spinel ferrite and their nanocomposites as Fenton-like catalysts. The use of these materials offers numerous advantages, including ability to efficiently degrade pollutants and potential for long-term and repeated use facilitated by their magnetic properties that make them easily recoverable. The remarkable catalytic properties, stability, and reusability of these materials make them highly attractive for researchers. This paper encompasses a comprehensive review of various aspects related to the Fenton process and the utilization of spinel ferrite and their composites in catalytic applications. Firstly, it provides an overview of the background, principles, mechanisms, and key parameters governing the Fenton reaction, along with the role of physical field assistance in enhancing the process. Secondly, it delves into the advantages and mechanisms of H2O2 activation induced by different spinel ferrite and their composites for the removal of organic pollutants, shedding light on their efficacy in environmental remediation. Thirdly, the paper explores the application of these materials in various Fenton-like processes, including Fenon-like, photo-Fenton-like, sono-Fenton-like, and electro-Fenton-like, for the effective removal of different types of contaminants. Furthermore, it addresses important considerations such as the toxicity, recovery, and reuse of these materials. Finally, the paper presents the challenges associated with H2O2 activation by these materials, along with proposed directions for future improvements.


Assuntos
Compostos Férricos , Peróxido de Hidrogênio , Ferro , Catálise , Peróxido de Hidrogênio/química , Compostos Férricos/química , Ferro/química , Nanocompostos/química , Óxido de Alumínio , Óxido de Magnésio
18.
J Environ Manage ; 351: 120023, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38181683

RESUMO

The widespread presence of organic micropollutants in the environment reflects the inability of traditional wastewater treatment plants to remove them. In this context, advanced oxidation processes (AOPs) have emerged as promising quaternary wastewater treatment technologies since they efficiently degrade recalcitrant components by generating highly reactive free radicals. Nonetheless, the chemical characterization of potentially harmful byproducts is essential to avoid the contamination of natural water bodies with hazardous substances. Given the complexity of wastewater matrices, the implementation of comprehensive analytical methodologies is required. In this work, the simultaneous photoelectrochemical degradation of seven environmentally relevant pharmaceuticals and one metabolite from the EU Watch List 2020/1161 was examined in ultrapure water and simulated wastewater, achieving excellent removal efficiencies (overall >95%) after 180 min treatment. The reactor unit was linked to an online LC sample manager, allowing for automated sampling every 15 min and near real-time process monitoring. Online comprehensive two-dimensional liquid chromatography (LC × LC) coupled with high resolution mass spectrometry (HRMS) was subsequently used to tentatively identify degradation products after photoelectrochemical degradation. Two reversed-phase liquid chromatography (RPLC) columns were used: an SB-C18 column operated with 5 mM ammonium formate at pH 5.8 (1A) and methanol (1B) as the mobile phases in the first dimension and an SB-Aq column using acidified water at pH 3.1 (2A) and acetonitrile (2B) as the mobile phases in the second dimension. This resulted in a five-fold increase in peak capacity compared to one-dimensional LC while maintaining the same total analysis time of 50 min. The LC x LC method allowed the tentative identification of 12 venlafaxine, 7 trimethoprim and 10 ciprofloxacin intermediates. Subsequent toxicity predictions suggested that some of these byproducts were potentially harmful. This study presents an effective hybrid technology for the simultaneous removal of pharmaceuticals from contaminated wastewater matrices and demonstrates how multidimensional liquid chromatography techniques can be applied to better understand the degradation mechanisms after the treatment of micropollutants with AOPs.


Assuntos
Poluentes Químicos da Água , Água , Água/análise , Águas Residuárias , Cromatografia Líquida , Espectrometria de Massas , Preparações Farmacêuticas , Poluentes Químicos da Água/análise
19.
J Environ Manage ; 353: 120170, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38308991

RESUMO

The stress of pharmaceutical and personal care products (PPCPs) discharging to water bodies and the environment due to increased industrialization has reduced the availability of clean water. This poses a potential health hazard to animals and human life because water contamination is a great issue to the climate, plants, humans, and aquatic habitats. Pharmaceutical compounds are quantified in concentrations ranging from ng/Lto µg/L in aquatic environments worldwide. According to (Alsubih et al., 2022), the concentrations of carbamazepine, sulfamethoxazole, Lutvastatin, ciprofloxacin, and lorazepam were 616-906 ng/L, 16,532-21635 ng/L, 694-2068 ng/L, 734-1178 ng/L, and 2742-3775 ng/L respectively. Protecting and preserving our environment must be well-driven by all sectors to sustain development. Various methods have been utilized to eliminate the emerging pollutants, such as adsorption and biological and advanced oxidation processes. These methods have their benefits and drawbacks in the removal of pharmaceuticals. Successful wastewater treatment can save the water bodies; integrating green initiatives into the main purposes of actor firms, combined with continually periodic awareness of the current and potential implications of environmental/water pollution, will play a major role in water conservation. This article reviews key publications on the adsorption, biological, and advanced oxidation processes used to remove pharmaceutical products from the aquatic environment. It also sheds light on the pharmaceutical adsorption capability of adsorption, biological and advanced oxidation methods, and their efficacy in pharmaceutical concentration removal. A research gap has been identified for researchers to explore in order to eliminate the problem associated with pharmaceutical wastes. Therefore, future study should focus on combining advanced oxidation and adsorption processes for an excellent way to eliminate pharmaceutical products, even at low concentrations. Biological processes should focus on ideal circumstances and microbial processes that enable the simultaneous removal of pharmaceutical compounds and the effects of diverse environments on removal efficiency.


Assuntos
Cosméticos , Poluentes Químicos da Água , Purificação da Água , Humanos , Águas Residuárias , Poluentes Químicos da Água/análise , Cosméticos/análise , Purificação da Água/métodos , Água , Preparações Farmacêuticas
20.
J Environ Manage ; 352: 120095, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38266523

RESUMO

The present study investigates the treatment of real coke plant effluent utilising several ultrasound-based hybrid oxidation approaches including Ultrasound (US) alone, US + catalyst, US + H2O2, US + Fenton, US + Ozone, and US + Peroxone, with main objective as maximizing the reduction of chemical oxygen demand (COD). Ultrasonic horn at power of 130 W, frequency as 20 kHz and duty cycle as 70% was applied. Study with varying catalyst (TiO2) dose from 0.5 g/L - 2 g/L revealed 1 g/L as the optimum dose resulting in 65.15% reduction in COD. A 40 ml/L dose of H2O2 was shown to be optimal, giving an 81.96% reduction in COD, based on the study of varied doses of H2O2 from 20 ml/L to 60 ml/L. US + Fenton reagent combination at optimum Fe2+/H2O2 (w/v) ratio of 1:1 resulted in a COD reduction of 85.29% whereas reduction of COD as 81.75% was obtained at the optimum flow rate of ozone as 1 LPM for US + Ozone approach. US + Peroxone demonstrated the best efficiency (90.48%) for COD reduction. To find the toxicity effects, the treated (US + peroxone) and non-treated samples were tested for the growth of bacterial cultures. It was observed that the toxicity of the treated sample increased only marginally after treatment. High-resolution liquid chromatography mass spectrometry (HR-LCMS) analysis was also performed to establish intermediate compounds. Overall, the coupling of ultrasound with oxidation processes produced better results with US + Peroxone established as best treatment approach for coke plant effluent.


Assuntos
Coque , Ozônio , Poluentes Químicos da Água , Peróxido de Hidrogênio/química , Eliminação de Resíduos Líquidos/métodos , Oxirredução , Ozônio/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA