Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 164
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(17): e2320239121, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38630721

RESUMO

Collective motion is ubiquitous in nature; groups of animals, such as fish, birds, and ungulates appear to move as a whole, exhibiting a rich behavioral repertoire that ranges from directed movement to milling to disordered swarming. Typically, such macroscopic patterns arise from decentralized, local interactions among constituent components (e.g., individual fish in a school). Preeminent models of this process describe individuals as self-propelled particles, subject to self-generated motion and "social forces" such as short-range repulsion and long-range attraction or alignment. However, organisms are not particles; they are probabilistic decision-makers. Here, we introduce an approach to modeling collective behavior based on active inference. This cognitive framework casts behavior as the consequence of a single imperative: to minimize surprise. We demonstrate that many empirically observed collective phenomena, including cohesion, milling, and directed motion, emerge naturally when considering behavior as driven by active Bayesian inference-without explicitly building behavioral rules or goals into individual agents. Furthermore, we show that active inference can recover and generalize the classical notion of social forces as agents attempt to suppress prediction errors that conflict with their expectations. By exploring the parameter space of the belief-based model, we reveal nontrivial relationships between the individual beliefs and group properties like polarization and the tendency to visit different collective states. We also explore how individual beliefs about uncertainty determine collective decision-making accuracy. Finally, we show how agents can update their generative model over time, resulting in groups that are collectively more sensitive to external fluctuations and encode information more robustly.


Assuntos
Comportamento de Massa , Modelos Biológicos , Animais , Teorema de Bayes , Movimento , Movimento (Física) , Peixes , Comportamento Social , Comportamento Animal
2.
Brief Bioinform ; 25(6)2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-39397426

RESUMO

The assessment of the allergenic potential of chemicals, crucial for ensuring public health safety, faces challenges in accuracy and raises ethical concerns due to reliance on animal testing. This paper presents a novel bioinformatic protocol designed to address the critical challenge of predicting immune responses to chemical sensitizers without the use of animal testing. The core innovation lies in the integration of advanced bioinformatics tools, including the Universal Immune System Simulator (UISS), which models detailed immune system dynamics. By leveraging data from structural predictions and docking simulations, our approach provides a more accurate and ethical method for chemical safety evaluations, especially in distinguishing between skin and respiratory sensitizers. Our approach integrates a comprehensive eight-step process, beginning with the meticulous collection of chemical and protein data from databases like PubChem and the Protein Data Bank. Following data acquisition, structural predictions are performed using cutting-edge tools such as AlphaFold to model proteins whose structures have not been previously elucidated. This structural information is then utilized in subsequent docking simulations, leveraging both ligand-protein and protein-protein interactions to predict how chemical compounds may trigger immune responses. The core novelty of our method lies in the application of UISS-an advanced agent-based modelling system that simulates detailed immune system dynamics. By inputting the results from earlier stages, including docking scores and potential epitope identifications, UISS meticulously forecasts the type and severity of immune responses, distinguishing between Th1-mediated skin and Th2-mediated respiratory allergic reactions. This ability to predict distinct immune pathways is a crucial advance over current methods, which often cannot differentiate between the sensitization mechanisms. To validate the accuracy and robustness of our approach, we applied the protocol to well-known sensitizers: 2,4-dinitrochlorobenzene for skin allergies and trimellitic anhydride for respiratory allergies. The results clearly demonstrate the protocol's ability to differentiate between these distinct immune responses, underscoring its potential for replacing traditional animal-based testing methods. The results not only support the potential of our method to replace animal testing in chemical safety assessments but also highlight its role in enhancing the understanding of chemical-induced immune reactions. Through this innovative integration of computational biology and immunological modelling, our protocol offers a transformative approach to toxicological evaluations, increasing the reliability of safety assessments.


Assuntos
Alérgenos , Biologia Computacional , Biologia Computacional/métodos , Humanos , Alérgenos/química , Alérgenos/imunologia , Simulação de Acoplamento Molecular , Hipersensibilidade Respiratória/induzido quimicamente , Hipersensibilidade Respiratória/imunologia , Pele/efeitos dos fármacos , Pele/imunologia , Hipersensibilidade , Animais
3.
Proc Natl Acad Sci U S A ; 120(24): e2302245120, 2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37289806

RESUMO

A key scientific challenge during the outbreak of novel infectious diseases is to predict how the course of the epidemic changes under countermeasures that limit interaction in the population. Most epidemiological models do not consider the role of mutations and heterogeneity in the type of contact events. However, pathogens have the capacity to mutate in response to changing environments, especially caused by the increase in population immunity to existing strains, and the emergence of new pathogen strains poses a continued threat to public health. Further, in the light of differing transmission risks in different congregate settings (e.g., schools and offices), different mitigation strategies may need to be adopted to control the spread of infection. We analyze a multilayer multistrain model by simultaneously accounting for i) pathways for mutations in the pathogen leading to the emergence of new pathogen strains, and ii) differing transmission risks in different settings, modeled as network layers. Assuming complete cross-immunity among strains, namely, recovery from any infection prevents infection with any other (an assumption that will need to be relaxed to deal with COVID-19 or influenza), we derive the key epidemiological parameters for the multilayer multistrain framework. We demonstrate that reductions to existing models that discount heterogeneity in either the strain or the network layers may lead to incorrect predictions. Our results highlight that the impact of imposing/lifting mitigation measures concerning different contact network layers (e.g., school closures or work-from-home policies) should be evaluated in connection with their effect on the likelihood of the emergence of new strains.


Assuntos
COVID-19 , Epidemias , Influenza Humana , Humanos , COVID-19/epidemiologia , COVID-19/genética , Surtos de Doenças , Influenza Humana/epidemiologia , Influenza Humana/genética , Mutação
4.
Proc Biol Sci ; 291(2027): 20241036, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39082242

RESUMO

Many bees visit just one flower species during a foraging trip, i.e. they show flower constancy. Flower constancy is important for plant reproduction but it could lead to an unbalanced diet, especially in biodiversity-depleted landscapes. It is assumed that flower constancy does not reduce dietary diversity in social bees, such as honeybees or bumblebees, but this has not yet been tested. We used computer simulations to investigate the effects of flower constancy on colony diet in plant species-rich and species-poor landscapes. We also explored if communication about food sources, which is used by many social bees, further reduces forage diversity. Our simulations reveal an extensive loss of forage diversity owing to flower constancy in both species-rich and species-poor environments. Small flower-constant colonies often discovered only 30-50% of all available plant species, thereby increasing the risk of nutritional deficiencies. Communication often interacted with flower constancy to reduce forage diversity further. Finally, we found that food source clustering, but not habitat fragmentation impaired dietary diversity. These findings highlight the nutritional challenges flower-constant bees face in different landscapes and they can aid in the design of measures to increase forage diversity and improve bee nutrition in human-modified landscapes.


Assuntos
Comportamento Alimentar , Flores , Abelhas/fisiologia , Animais , Simulação por Computador , Biodiversidade , Dieta/veterinária , Ecossistema , Modelos Biológicos
5.
Artif Life ; 30(2): 147-170, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38478879

RESUMO

This study uses evolutionary simulations to explore the strategies that emerge to enable populations to cope with random environmental changes in situations where lifetime learning approaches are not available to accommodate them. In particular, it investigates how the average magnitude of change per unit time and the persistence of the changes (and hence the resulting autocorrelation of the environmental time series) affect the change tolerances, population diversities, and extinction timescales that emerge. Although it is the change persistence (often discussed in terms of environmental noise color) that has received most attention in the recent literature, other factors, particularly the average change magnitude, interact with this and can be more important drivers of the adaptive strategies that emerge. Moreover, when running simulations, the choice of change representation and normalization can also affect the outcomes. Detailed simulations are presented that are designed to explore all these issues. They also reveal significant dependences on the associated mutation rates and the extent to which they can evolve, and they clarify how evolution often leads populations into strategies with higher risks of extinction. Overall, this study shows how modeling the effect of environmental change requires more care than may have previously been realized.


Assuntos
Evolução Biológica , Meio Ambiente , Simulação por Computador , Extinção Biológica , Dinâmica Populacional
6.
J Math Biol ; 89(5): 50, 2024 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-39379537

RESUMO

Understanding how genetically encoded rules drive and guide complex neuronal growth processes is essential to comprehending the brain's architecture, and agent-based models (ABMs) offer a powerful simulation approach to further develop this understanding. However, accurately calibrating these models remains a challenge. Here, we present a novel application of Approximate Bayesian Computation (ABC) to address this issue. ABMs are based on parametrized stochastic rules that describe the time evolution of small components-the so-called agents-discretizing the system, leading to stochastic simulations that require appropriate treatment. Mathematically, the calibration defines a stochastic inverse problem. We propose to address it in a Bayesian setting using ABC. We facilitate the repeated comparison between data and simulations by quantifying the morphological information of single neurons with so-called morphometrics and resort to statistical distances to measure discrepancies between populations thereof. We conduct experiments on synthetic as well as experimental data. We find that ABC utilizing Sequential Monte Carlo sampling and the Wasserstein distance finds accurate posterior parameter distributions for representative ABMs. We further demonstrate that these ABMs capture specific features of pyramidal cells of the hippocampus (CA1). Overall, this work establishes a robust framework for calibrating agent-based neuronal growth models and opens the door for future investigations using Bayesian techniques for model building, verification, and adequacy assessment.


Assuntos
Teorema de Bayes , Simulação por Computador , Conceitos Matemáticos , Modelos Neurológicos , Método de Monte Carlo , Neurônios , Processos Estocásticos , Animais , Neurônios/citologia , Neurônios/fisiologia , Calibragem , Células Piramidais/citologia , Células Piramidais/fisiologia , Região CA1 Hipocampal/crescimento & desenvolvimento , Região CA1 Hipocampal/citologia , Neurogênese/fisiologia , Camundongos , Humanos
7.
Proc Natl Acad Sci U S A ; 118(50)2021 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-34876506

RESUMO

Extreme polarization can undermine democracy by making compromise impossible and transforming politics into a zero-sum game. "Ideological polarization"-the extent to which political views are widely dispersed-is already strong among elites, but less so among the general public [N. McCarty, Polarization: What Everyone Needs to Know, 2019, pp. 50-68]. Strong mutual distrust and hostility between Democrats and Republicans in the United States, combined with the elites' already strong ideological polarization, could lead to increasing ideological polarization among the public. The paper addresses two questions: 1) Is there a level of ideological polarization above which polarization feeds upon itself to become a runaway process? 2) If so, what policy interventions could prevent such dangerous positive feedback loops? To explore these questions, we present an agent-based model of ideological polarization that differentiates between the tendency for two actors to interact ("exposure") and how they respond when interactions occur, positing that interaction between similar actors reduces their difference, while interaction between dissimilar actors increases their difference. Our analysis explores the effects on polarization of different levels of tolerance to other views, responsiveness to other views, exposure to dissimilar actors, multiple ideological dimensions, economic self-interest, and external shocks. The results suggest strategies for preventing, or at least slowing, the development of extreme polarization.

8.
Entropy (Basel) ; 26(4)2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38667861

RESUMO

The polarization of opinions and difficulties in reaching a consensus are central problems of many modern societies. Understanding the dynamics governing those processes is, therefore, one of the main aims of sociophysics. In this work, the Sznajd model of opinion dynamics is investigated with Monte Carlo simulations performed on four different regular lattices: triangular, honeycomb, and square with von Neumann or Moore neighborhood. The main objective is to discuss the interplay of the probability of convincing (conformity) and mass media (external) influence and to provide the details of the possible phase transitions. The results indicate that, while stronger bonds and openness to discussion and argumentation may help in reaching a consensus, external influence becomes destructive at different levels depending on the lattice.

9.
Erkenntnis ; 89(1): 367-409, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38303980

RESUMO

Some authors claim that minimal models have limited epistemic value (Fumagalli, 2016; Grüne-Yanoff, 2009a). Others defend the epistemic benefits of modelling by invoking the role of robustness analysis for hypothesis confirmation (see, e.g., Levins, 1966; Kuorikoski et al., 2010) but such arguments find much resistance (see, e.g., Odenbaugh & Alexandrova, 2011). In this paper, we offer a Bayesian rationalization and defence of the view that robustness analysis can play a confirmatory role, and thereby shed light on the potential of minimal models for hypothesis confirmation. We illustrate our argument by reference to a case study from macroeconomics. At the same time, we also show that there are cases in which robustness analysis is detrimental to confirmation. We characterize these cases and link them to recent investigations on evidential variety (Landes, 2020b, 2021; Osimani and Landes, forthcoming). We conclude that robustness analysis over minimal models can confirm, but its confirmatory value depends on concrete circumstances.

10.
Mol Ecol ; 2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37668092

RESUMO

Introduced and invasive species make excellent natural experiments for investigating rapid evolution. Here, we describe the effects of genetic drift and rapid genetic adaptation in pink salmon (Oncorhynchus gorbuscha) that were accidentally introduced to the Great Lakes via a single introduction event 31 generations ago. Using whole-genome resequencing for 134 fish spanning five sample groups across the native and introduced range, we estimate that the source population's effective population size was 146,886 at the time of introduction, whereas the founding population's effective population size was just 72-a 2040-fold decrease. As expected with a severe founder event, we show reductions in genome-wide measures of genetic diversity, specifically a 37.7% reduction in the number of SNPs and an 8.2% reduction in observed heterozygosity. Despite this decline in genetic diversity, we provide evidence for putative selection at 47 loci across multiple chromosomes in the introduced populations, including missense variants in genes associated with circadian rhythm, immunological response and maturation, which match expected or known phenotypic changes in the Great Lakes. For one of these genes, we use a species-specific agent-based model to rule out genetic drift and conclude our results support a strong response to selection occurring in a period gene (per2) that plays a predominant role in determining an organism's daily clock, matching large day length differences experienced by introduced salmon during important phenological periods. Together, these results inform how populations might evolve rapidly to new environments, even with a small pool of standing genetic variation.

11.
J Theor Biol ; 574: 111624, 2023 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-37769802

RESUMO

The Allee effect describes the phenomenon that the per capita reproduction rate increases along with the population density at low densities. Allee effects have been observed at all scales, including in microscopic environments where individual cells are taken into account. This is great interest to cancer research, as understanding critical tumour density thresholds can inform treatment plans for patients. In this paper, we introduce a simple model for cell division in the case where the cancer cell population is modelled as an interacting particle system. The rate of the cell division is dependent on the local cell density, introducing an Allee effect. We perform parameter inference of the key model parameters through Markov Chain Monte Carlo, and apply our procedure to two image sequences from a cervical cancer cell line. The inference method is verified on in silico data to accurately identify the key parameters, and results on the in vitro data strongly suggest an Allee effect.

12.
Exp Cell Res ; 419(2): 113317, 2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-36028058

RESUMO

Computational models can shape our understanding of cell and tissue remodelling, from cell spreading, to active force generation, adhesion, and growth. In this mini-review, we discuss recent progress in modelling of chemo-mechanical cell behaviour and the evolution of multicellular systems. In particular, we highlight recent advances in (i) free-energy based single cell models that can provide new fundamental insight into cell spreading, cancer cell invasion, stem cell differentiation, and remodelling in disease, and (ii) mechanical agent-based models to simulate large numbers of discrete interacting cells in proliferative tumours. We describe how new biological understanding has emerged from such theoretical models, and the trade-offs and constraints associated with current approaches. Ultimately, we aim to make a case for why theory should be integrated with an experimental workflow to optimise new in-vitro studies, to predict feedback between cells and their microenvironment, and to deepen understanding of active cell behaviour.


Assuntos
Modelos Biológicos , Neoplasias , Simulação por Computador , Humanos , Microambiente Tumoral
13.
Entropy (Basel) ; 25(6)2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37372182

RESUMO

Two of the main factors shaping an individual's opinion are social coordination and personal preferences, or personal biases. To understand the role of those and that of the topology of the network of interactions, we study an extension of the voter model proposed by Masuda and Redner (2011), where the agents are divided into two populations with opposite preferences. We consider a modular graph with two communities that reflect the bias assignment, modeling the phenomenon of epistemic bubbles. We analyze the models by approximate analytical methods and by simulations. Depending on the network and the biases' strengths, the system can either reach a consensus or a polarized state, in which the two populations stabilize to different average opinions. The modular structure generally has the effect of increasing both the degree of polarization and its range in the space of parameters. When the difference in the bias strengths between the populations is large, the success of the very committed group in imposing its preferred opinion onto the other one depends largely on the level of segregation of the latter population, while the dependency on the topological structure of the former is negligible. We compare the simple mean-field approach with the pair approximation and test the goodness of the mean-field predictions on a real network.

14.
Entropy (Basel) ; 25(4)2023 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-37190355

RESUMO

Most sociophysics opinion dynamics simulations assume that contacts between agents lead to greater similarity of opinions, and that there is a tendency for agents having similar opinions to group together. These mechanisms result, in many types of models, in significant polarization, understood as separation between groups of agents having conflicting opinions. The addition of inflexible agents (zealots) or mechanisms, which drive conflicting opinions even further apart, only exacerbates these polarizing processes. Using a universal mathematical framework, formulated in the language of utility functions, we present novel simulation results. They combine polarizing tendencies with mechanisms potentially favoring diverse, non-polarized environments. The simulations are aimed at answering the following question: How can non-polarized systems exist in stable configurations? The framework enables easy introduction, and study, of the effects of external "pro-diversity", and its contribution to the utility function. Specific examples presented in this paper include an extension of the classic square geometry Ising-like model, in which agents modify their opinions, and a dynamic scale-free network system with two different mechanisms promoting local diversity, where agents modify the structure of the connecting network while keeping their opinions stable. Despite the differences between these models, they show fundamental similarities in results in terms of the existence of low temperature, stable, locally and globally diverse states, i.e., states in which agents with differing opinions remain closely linked. While these results do not answer the socially relevant question of how to combat the growing polarization observed in many modern democratic societies, they open a path towards modeling polarization diminishing activities. These, in turn, could act as guidance for implementing actual depolarization social strategies.

15.
Int J High Perform Comput Appl ; 37(1): 4-27, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38603425

RESUMO

This paper describes an integrated, data-driven operational pipeline based on national agent-based models to support federal and state-level pandemic planning and response. The pipeline consists of (i) an automatic semantic-aware scheduling method that coordinates jobs across two separate high performance computing systems; (ii) a data pipeline to collect, integrate and organize national and county-level disaggregated data for initialization and post-simulation analysis; (iii) a digital twin of national social contact networks made up of 288 Million individuals and 12.6 Billion time-varying interactions covering the US states and DC; (iv) an extension of a parallel agent-based simulation model to study epidemic dynamics and associated interventions. This pipeline can run 400 replicates of national runs in less than 33 h, and reduces the need for human intervention, resulting in faster turnaround times and higher reliability and accuracy of the results. Scientifically, the work has led to significant advances in real-time epidemic sciences.

16.
BMC Bioinformatics ; 22(Suppl 14): 626, 2022 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-35590242

RESUMO

BACKGROUND: Nowadays, the inception of computer modeling and simulation in life science is a matter of fact. This is one of the reasons why regulatory authorities are open in considering in silico trials evidence for the assessment of safeness and efficacy of medicinal products. In this context, mechanistic Agent-Based Models are increasingly used. Unfortunately, there is still a lack of consensus in the verification assessment of Agent-Based Models for regulatory approval needs. VV&UQ is an ASME standard specifically suited for the verification, validation, and uncertainty quantification of medical devices. However, it can also be adapted for the verification assessment of in silico trials for medicinal products. RESULTS: Here, we propose a set of automatic tools for the mechanistic Agent-Based Model verification assessment. As a working example, we applied the verification framework to an Agent-Based Model in silico trial used in the COVID-19 context. CONCLUSIONS: Using the described verification computational workflow allows researchers and practitioners to easily perform verification steps to prove Agent-Based Models robustness and correctness that provide strong evidence for further regulatory requirements.


Assuntos
COVID-19 , Simulação por Computador , Consenso , Coleta de Dados , Humanos , Incerteza
17.
Semin Cell Dev Biol ; 100: 186-198, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31901312

RESUMO

Interactions between primordium cells and their environment determines the self-organization of the zebrafish posterior Lateral Line primordium as it migrates under the skin from the ear to the tip of the tail forming and depositing neuromasts to spearhead formation of the posterior Lateral Line sensory system. In this review we describe how the NetLogo agent-based programming environment has been used in our lab to visualize and explore how self-generated chemokine gradients determine collective migration, how the dynamics of Wnt signaling can be used to predict patterns of neuromast deposition, and how previously defined interactions between Wnt and Fgf signaling systems have the potential to determine the periodic formation of center-biased Fgf signaling centers in the wake of a shrinking Wnt system. We also describe how NetLogo was used as a database for storing and visualizing the results of in toto lineage analysis of all cells in the migrating primordium. Together, the models illustrate how this programming environment can be used in diverse ways to integrate what has been learnt from biological experiments about the nature of interactions between cells and their environment, and explore how these interactions could potentially determine emergent patterns of cell fate specification, morphogenesis and collective migration of the zebrafish posterior Lateral Line primordium.


Assuntos
Movimento Celular , Sistema da Linha Lateral/citologia , Sistema da Linha Lateral/embriologia , Modelos Biológicos , Morfogênese , Peixe-Zebra/embriologia , Animais
18.
Epidemiol Infect ; 150: e192, 2022 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-36305040

RESUMO

We developed an agent-based model using a trial emulation approach to quantify effect measure modification of spillover effects of pre-exposure prophylaxis (PrEP) for HIV among men who have sex with men (MSM) in the Atlanta-Sandy Springs-Roswell metropolitan area, Georgia. PrEP may impact not only the individual prescribed, but also their partners and beyond, known as spillover. We simulated a two-stage randomised trial with eligible components (≥3 agents with ≥1 HIV+ agent) first randomised to intervention or control (no PrEP). Within intervention components, agents were randomised to PrEP with coverage of 70%, providing insight into a high PrEP coverage strategy. We evaluated effect modification by component-level characteristics and estimated spillover effects on HIV incidence using an extension of randomisation-based estimators. We observed an attenuation of the spillover effect when agents were in components with a higher prevalence of either drug use or bridging potential (if an agent acts as a mediator between ≥2 connected groups of agents). The estimated spillover effects were larger in magnitude among components with either higher HIV prevalence or greater density (number of existing partnerships compared to all possible partnerships). Consideration of effect modification is important when evaluating the spillover of PrEP among MSM.


Assuntos
Infecções por HIV , Profilaxia Pré-Exposição , Minorias Sexuais e de Gênero , Masculino , Humanos , Homossexualidade Masculina , Infecções por HIV/epidemiologia , Infecções por HIV/prevenção & controle , Infecções por HIV/tratamento farmacológico , Georgia/epidemiologia
19.
Biol Cell ; 113(3): 146-164, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33275796

RESUMO

BACKGROUND: Cell biology is evolving to become a more formal and quantitative science. In particular, several mathematical models have been proposed to address Golgi self-organisation and protein and lipid transport. However, most scientific articles about the Golgi apparatus are still using static cartoons that miss the dynamism of this organelle. RESULTS: In this report, we show that schematic drawings of Golgi trafficking can be easily translated into an agent-based model using the Repast platform. The simulations generate an active interplay among cisternae and vesicles rendering quantitative predictions about Golgi stability and transport of soluble and membrane-associated cargoes. The models can incorporate complex networks of molecular interactions and chemical reactions by association with COPASI, a software that handles ordinary differential equations. CONCLUSIONS: The strategy described provides a simple, flexible and multiscale support to analyse Golgi transport. The simulations can be used to address issues directly linked to the mechanism of transport or as a way to incorporate the complexity of trafficking to other cellular processes that occur in dynamic organelles. SIGNIFICANCE: We show that the rules implicitly present in most schematic representations of intracellular trafficking can be used to build dynamic models with quantitative outputs that can be compared with experimental results.


Assuntos
Complexo de Golgi/metabolismo , Transporte Biológico , Humanos
20.
Bull Math Biol ; 84(7): 72, 2022 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-35689123

RESUMO

Multiscale modeling of marine and aerial plankton has traditionally been difficult to address holistically due to the challenge of resolving individual locomotion dynamics while being carried with larger-scale flows. However, such problems are of paramount importance, e.g., dispersal of marine larval plankton is critical for the health of coral reefs, and aerial plankton (tiny arthropods) can be used as effective agricultural biocontrol agents. Here we introduce the open-source, agent-based modeling software Planktos targeted at 2D and 3D fluid environments in Python. Agents in this modeling framework are relatively tiny organisms in sufficiently low densities that their effect on the surrounding fluid motion can be considered negligible. This library can be used for scientific exploration and quantification of collective and emergent behavior, including interaction with immersed structures. In this paper, we detail the implementation and functionality of the library along with some illustrative examples. Functionality includes arbitrary agent behavior obeying either ordinary differential equations, stochastic differential equations, or coded movement algorithms, all under the influence of time-dependent fluid velocity fields generated by computational fluid dynamics, experiments, or analytical models in domains with static immersed mesh structures with sliding or sticky collisions. In addition, data visualization tools provide images or animations with kernel density estimation and velocity field analysis with respect to deterministic agent behavior via the finite-time Lyapunov exponent.


Assuntos
Conceitos Matemáticos , Modelos Biológicos , Recifes de Corais , Locomoção , Plâncton , Análise de Sistemas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA