Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.295
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 2024 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-39406242

RESUMO

Winning increases the readiness to attack and the probability of winning, a widespread phenomenon known as the "winner effect." Here, we reveal a transition from target-specific to generalized aggression enhancement over 10 days of winning in male mice. This behavioral change is supported by three causally linked plasticity events in the ventrolateral part of the ventromedial hypothalamus (VMHvl), a critical node for aggression. Over 10 days of winning, VMHvl cells experience monotonic potentiation of long-range excitatory inputs, transient local connectivity strengthening, and a delayed excitability increase. Optogenetically coactivating the posterior amygdala (PA) terminals and VMHvl cells potentiates the PA-VMHvl pathway and triggers the same cascade of plasticity events observed during repeated winning. Optogenetically blocking PA-VMHvl synaptic potentiation eliminates all winning-induced plasticity. These results reveal the complex Hebbian synaptic and excitability plasticity in the aggression circuit during winning, ultimately leading to increased "aggressiveness" in repeated winners.

2.
Cell ; 186(6): 1195-1211.e19, 2023 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-36796363

RESUMO

Social interactions require awareness and understanding of the behavior of others. Mirror neurons, cells representing an action by self and others, have been proposed to be integral to the cognitive substrates that enable such awareness and understanding. Mirror neurons of the primate neocortex represent skilled motor tasks, but it is unclear if they are critical for the actions they embody, enable social behaviors, or exist in non-cortical regions. We demonstrate that the activity of individual VMHvlPR neurons in the mouse hypothalamus represents aggression performed by self and others. We used a genetically encoded mirror-TRAP strategy to functionally interrogate these aggression-mirroring neurons. We find that their activity is essential for fighting and that forced activation of these cells triggers aggressive displays by mice, even toward their mirror image. Together, we have discovered a mirroring center in an evolutionarily ancient region that provides a subcortical cognitive substrate essential for a social behavior.


Assuntos
Agressão , Hipotálamo , Neurônios-Espelho , Animais , Camundongos , Agressão/fisiologia , Hipotálamo/citologia , Comportamento Social
3.
Cell ; 186(1): 178-193.e15, 2023 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-36608653

RESUMO

The hypothalamus regulates innate social behaviors, including mating and aggression. These behaviors can be evoked by optogenetic stimulation of specific neuronal subpopulations within MPOA and VMHvl, respectively. Here, we perform dynamical systems modeling of population neuronal activity in these nuclei during social behaviors. In VMHvl, unsupervised analysis identified a dominant dimension of neural activity with a large time constant (>50 s), generating an approximate line attractor in neural state space. Progression of the neural trajectory along this attractor was correlated with an escalation of agonistic behavior, suggesting that it may encode a scalable state of aggressiveness. Consistent with this, individual differences in the magnitude of the integration dimension time constant were strongly correlated with differences in aggressiveness. In contrast, approximate line attractors were not observed in MPOA during mating; instead, neurons with fast dynamics were tuned to specific actions. Thus, different hypothalamic nuclei employ distinct neural population codes to represent similar social behaviors.


Assuntos
Comportamento Sexual Animal , Núcleo Hipotalâmico Ventromedial , Animais , Comportamento Sexual Animal/fisiologia , Núcleo Hipotalâmico Ventromedial/fisiologia , Hipotálamo/fisiologia , Agressão/fisiologia , Comportamento Social
4.
Cell ; 186(18): 3862-3881.e28, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37572660

RESUMO

Male sexual behavior is innate and rewarding. Despite its centrality to reproduction, a molecularly specified neural circuit governing innate male sexual behavior and reward remains to be characterized. We have discovered a developmentally wired neural circuit necessary and sufficient for male mating. This circuit connects chemosensory input to BNSTprTac1 neurons, which innervate POATacr1 neurons that project to centers regulating motor output and reward. Epistasis studies demonstrate that BNSTprTac1 neurons are upstream of POATacr1 neurons, and BNSTprTac1-released substance P following mate recognition potentiates activation of POATacr1 neurons through Tacr1 to initiate mating. Experimental activation of POATacr1 neurons triggers mating, even in sexually satiated males, and it is rewarding, eliciting dopamine release and self-stimulation of these cells. Together, we have uncovered a neural circuit that governs the key aspects of innate male sexual behavior: motor displays, drive, and reward.


Assuntos
Vias Neurais , Comportamento Sexual Animal , Animais , Masculino , Neurônios/fisiologia , Recompensa , Comportamento Sexual Animal/fisiologia , Camundongos
5.
Cell ; 185(4): 654-671.e22, 2022 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-35065713

RESUMO

Sex hormones exert a profound influence on gendered behaviors. How individual sex hormone-responsive neuronal populations regulate diverse sex-typical behaviors is unclear. We performed orthogonal, genetically targeted sequencing of four estrogen receptor 1-expressing (Esr1+) populations and identified 1,415 genes expressed differentially between sexes or estrous states. Unique subsets of these genes were distributed across all 137 transcriptomically defined Esr1+ cell types, including estrous stage-specific ones, that comprise the four populations. We used differentially expressed genes labeling single Esr1+ cell types as entry points to functionally characterize two such cell types, BNSTprTac1/Esr1 and VMHvlCckar/Esr1. We observed that these two cell types, but not the other Esr1+ cell types in these populations, are essential for sex recognition in males and mating in females, respectively. Furthermore, VMHvlCckar/Esr1 cell type projections are distinct from those of other VMHvlEsr1 cell types. Together, projection and functional specialization of dimorphic cell types enables sex hormone-responsive populations to regulate diverse social behaviors.


Assuntos
Ciclo Estral/genética , Regulação da Expressão Gênica , Caracteres Sexuais , Comportamento Sexual Animal/fisiologia , Agressão , Animais , Aromatase/metabolismo , Transtorno Autístico/genética , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Feminino , Perfilação da Expressão Gênica , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Comportamento Social
6.
Cell ; 179(3): 713-728.e17, 2019 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-31626771

RESUMO

The ventrolateral subdivision of the ventromedial hypothalamus (VMHvl) contains ∼4,000 neurons that project to multiple targets and control innate social behaviors including aggression and mounting. However, the number of cell types in VMHvl and their relationship to connectivity and behavioral function are unknown. We performed single-cell RNA sequencing using two independent platforms-SMART-seq (∼4,500 neurons) and 10x (∼78,000 neurons)-and investigated correspondence between transcriptomic identity and axonal projections or behavioral activation, respectively. Canonical correlation analysis (CCA) identified 17 transcriptomic types (T-types), including several sexually dimorphic clusters, the majority of which were validated by seqFISH. Immediate early gene analysis identified T-types exhibiting preferential responses to intruder males versus females but only rare examples of behavior-specific activation. Unexpectedly, many VMHvl T-types comprise a mixed population of neurons with different projection target preferences. Overall our analysis revealed that, surprisingly, few VMHvl T-types exhibit a clear correspondence with behavior-specific activation and connectivity.


Assuntos
Hipotálamo/citologia , Neurônios/classificação , Comportamento Social , Animais , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Feminino , Hipotálamo/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Neurônios/fisiologia , Comportamento Sexual Animal , Análise de Célula Única , Transcriptoma
7.
Cell ; 176(5): 1190-1205.e20, 2019 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-30712868

RESUMO

Sexually naive animals have to distinguish between the sexes because they show species-typical interactions with males and females without meaningful prior experience. However, central neural pathways in naive mammals that recognize sex of other individuals remain poorly characterized. We examined the role of the principal component of the bed nucleus of stria terminalis (BNSTpr), a limbic center, in social interactions in mice. We find that activity of aromatase-expressing BNSTpr (AB) neurons appears to encode sex of other animals and subsequent displays of mating in sexually naive males. Silencing these neurons in males eliminates preference for female pheromones and abrogates mating success, whereas activating them even transiently promotes male-male mating. Surprisingly, female AB neurons do not appear to control sex recognition, mating, or maternal aggression. In summary, AB neurons represent sex of other animals and govern ensuing social behaviors in sexually naive males.


Assuntos
Sistema Límbico/metabolismo , Núcleos Septais/fisiologia , Comportamento Sexual Animal/fisiologia , Tonsila do Cerebelo/fisiologia , Animais , Aromatase/metabolismo , Encéfalo/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Vias Neurais/metabolismo , Neurônios/metabolismo , Feromônios/metabolismo , Caracteres Sexuais , Comportamento Social
8.
Cell ; 175(7): 1827-1841.e17, 2018 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-30550786

RESUMO

Newborn mice emit signals that promote parenting from mothers and fathers but trigger aggressive responses from virgin males. Although pup-directed attacks by males require vomeronasal function, the specific infant cues that elicit this behavior are unknown. We developed a behavioral paradigm based on reconstituted pup cues and showed that discrete infant morphological features combined with salivary chemosignals elicit robust male aggression. Seven vomeronasal receptors were identified based on infant-mediated activity, and the involvement of two receptors, Vmn2r65 and Vmn2r88, in infant-directed aggression was demonstrated by genetic deletion. Using the activation of these receptors as readouts for biochemical fractionation, we isolated two pheromonal compounds, the submandibular gland protein C and hemoglobins. Unexpectedly, none of the identified vomeronasal receptors and associated cues were specific to pups. Thus, infant-mediated aggression by virgin males relies on the recognition of pup's physical traits in addition to parental and infant chemical cues.


Assuntos
Agressão , Órgão Vomeronasal/metabolismo , Animais , Animais Recém-Nascidos , Deleção de Genes , Masculino , Camundongos , Camundongos Mutantes
9.
Cell ; 173(5): 1265-1279.e19, 2018 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-29775595

RESUMO

Chronic social isolation causes severe psychological effects in humans, but their neural bases remain poorly understood. 2 weeks (but not 24 hr) of social isolation stress (SIS) caused multiple behavioral changes in mice and induced brain-wide upregulation of the neuropeptide tachykinin 2 (Tac2)/neurokinin B (NkB). Systemic administration of an Nk3R antagonist prevented virtually all of the behavioral effects of chronic SIS. Conversely, enhancing NkB expression and release phenocopied SIS in group-housed mice, promoting aggression and converting stimulus-locked defensive behaviors to persistent responses. Multiplexed analysis of Tac2/NkB function in multiple brain areas revealed dissociable, region-specific requirements for both the peptide and its receptor in different SIS-induced behavioral changes. Thus, Tac2 coordinates a pleiotropic brain state caused by SIS via a distributed mode of action. These data reveal the profound effects of prolonged social isolation on brain chemistry and function and suggest potential new therapeutic applications for Nk3R antagonists.


Assuntos
Encéfalo/metabolismo , Neurocinina B/metabolismo , Precursores de Proteínas/metabolismo , Isolamento Social , Estresse Psicológico , Taquicininas/metabolismo , Animais , Antipsicóticos/farmacologia , Comportamento Animal/efeitos dos fármacos , Encéfalo/patologia , Feminino , Vetores Genéticos/administração & dosagem , Vetores Genéticos/genética , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Neurocinina B/genética , Neurônios/citologia , Neurônios/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Precursores de Proteínas/antagonistas & inibidores , Precursores de Proteínas/genética , Interferência de RNA , RNA Interferente Pequeno/genética , Receptores de Taquicininas/antagonistas & inibidores , Receptores de Taquicininas/metabolismo , Taquicininas/antagonistas & inibidores , Taquicininas/genética , Regulação para Cima/efeitos dos fármacos
10.
Annu Rev Neurosci ; 46: 321-339, 2023 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-37001242

RESUMO

Rapid advances in the neural control of social behavior highlight the role of interconnected nodes engaged in differential information processing to generate behavior. Many innate social behaviors are essential to reproductive fitness and therefore fundamentally different in males and females. Programming these differences occurs early in development in mammals, following gonadal differentiation and copious androgen production by the fetal testis during a critical period. Early-life programming of social behavior and its adult manifestation are separate but yoked processes, yet how they are linked is unknown. This review seeks to highlight that gap by identifying four core mechanisms (epigenetics, cell death, circuit formation, and adult hormonal modulation) that could connect developmental changes to the adult behaviors of mating and aggression. We further propose that a unique social behavior, adolescent play, bridges the preweaning to the postpubertal brain by engaging the same neural networks underpinning adult reproductive and aggressive behaviors.


Assuntos
Agressão , Comportamento Social , Masculino , Animais , Feminino , Encéfalo , Comportamento Sexual Animal , Cognição , Mamíferos
11.
Proc Natl Acad Sci U S A ; 121(22): e2316459121, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38781215

RESUMO

Adult male animals typically court and attempt to mate with females, while attacking other males. Emerging evidence from mice indicates that neurons expressing the estrogen receptor ESR1 in behaviorally relevant brain regions play a central role in mediating these mutually exclusive behavioral responses to conspecifics. However, the findings in mice are unlikely to apply to vertebrates in general because, in many species other than rodents and some birds, androgens-rather than estrogens-have been implicated in male behaviors. Here, we report that male medaka (Oryzias latipes) lacking one of the two androgen receptor subtypes (Ara) are less aggressive toward other males and instead actively court them, while those lacking the other subtype (Arb) are less motivated to mate with females and conversely attack them. These findings indicate that, in male medaka, the Ara- and Arb-mediated androgen signaling pathways facilitate appropriate behavioral responses, while simultaneously suppressing inappropriate responses, to males and females, respectively. Notably, males lacking either receptor retain the ability to discriminate the sex of conspecifics, suggesting a defect in the subsequent decision-making process to mate or fight. We further show that Ara and Arb are expressed in intermingled but largely distinct populations of neurons, and stimulate the expression of different behaviorally relevant genes including galanin and vasotocin, respectively. Collectively, our results demonstrate that male teleosts make adaptive decisions to mate or fight as a result of the activation of one of two complementary androgen signaling pathways, depending on the sex of the conspecific that they encounter.


Assuntos
Androgênios , Oryzias , Receptores Androgênicos , Comportamento Sexual Animal , Transdução de Sinais , Animais , Masculino , Oryzias/metabolismo , Oryzias/fisiologia , Comportamento Sexual Animal/fisiologia , Feminino , Receptores Androgênicos/metabolismo , Receptores Androgênicos/genética , Androgênios/metabolismo , Agressão/fisiologia
12.
Proc Natl Acad Sci U S A ; 120(20): e2216972120, 2023 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-37155850

RESUMO

Mass shootings are becoming more frequent in the United States, as we routinely learn from the media about attempts that have been prevented or tragedies that destroyed entire communities. To date, there has been limited understanding of the modus operandi of mass shooters, especially those who seek fame through their attacks. Here, we explore whether the attacks of these fame-seeking mass shooters were more surprising than those of others and clarify the link between fame and surprise in mass shootings. We assembled a dataset of 189 mass shootings from 1966 to 2021, integrating data from multiple sources. We categorized the incidents in terms of the targeted population and shooting location. We measured "surprisal" (often known as "Shannon information content") with respect to these features, and we scored fame from Wikipedia traffic data-a commonly used metric of fame. Surprisal was significantly higher for fame-seeking mass shooters than non-fame-seeking ones. We also registered a significant positive correlation between fame and surprisal controlling for the number of casualties and injured victims. Not only do we uncover a link between fame-seeking behavior and surprise in the attacks but also we demonstrate an association between the fame of a mass shooting and its surprise.


Assuntos
Armas de Fogo , Violência com Arma de Fogo , Estados Unidos , Humanos
13.
J Neurosci ; 44(44)2024 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-39317475

RESUMO

Aggression involves both sexually monomorphic and dimorphic actions. How the brain implements these two types of actions is poorly understood. We found that in Drosophila melanogaster, a set of neurons, which we call CL062, previously shown to mediate male aggression also mediate female aggression. These neurons elicit aggression acutely and without the presence of a target. Although the same set of actions is elicited in males and females, the overall behavior is sexually dimorphic. The CL062 neurons do not express fruitless, a gene required for sexual dimorphism in flies, and expressed by most other neurons important for controlling fly aggression. Connectomic analysis in a female electron microscopy dataset suggests that these neurons have limited connections with fruitless expressing neurons that have been shown to be important for aggression and signal to different descending neurons. Thus, CL062 is part of a monomorphic circuit for aggression that functions parallel to the known dimorphic circuits.


Assuntos
Agressão , Proteínas de Drosophila , Drosophila melanogaster , Neurônios , Caracteres Sexuais , Animais , Feminino , Agressão/fisiologia , Masculino , Neurônios/fisiologia , Neurônios/ultraestrutura , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Encéfalo/fisiologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Conectoma , Animais Geneticamente Modificados , Proteínas do Tecido Nervoso
14.
Annu Rev Neurosci ; 40: 51-75, 2017 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-28375770

RESUMO

In this review, I discuss current knowledge and outstanding questions on the neuromodulators that influence aggressive behavior of the fruit fly Drosophila melanogaster. I first present evidence that Drosophila exchange information during an agonistic interaction and choose appropriate actions based on this information. I then discuss the influence of several biogenic amines and neuropeptides on aggressive behavior. One striking characteristic of neuromodulation is that it can configure a neural circuit dynamically, enabling one circuit to generate multiple outcomes. I suggest a consensus effect of each neuromodulatory molecule on Drosophila aggression, as well as effects of receptor proteins where relevant data are available. Lastly, I consider neuromodulation in the context of strategic action choices during agonistic interactions. Genetic components of neuromodulatory systems are highly conserved across animals, suggesting that molecular and cellular mechanisms controlling Drosophila aggression can shed light on neural principles governing action choice during social interactions.


Assuntos
Agressão/fisiologia , Comportamento Animal/fisiologia , Encéfalo/metabolismo , Drosophila melanogaster/fisiologia , Neurotransmissores/fisiologia , Animais
15.
Proc Natl Acad Sci U S A ; 119(5)2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35082150

RESUMO

Aggression is known to be regulated by pheromonal information in many species. But how central brain neurons processing this information modulate aggression is poorly understood. Using the fruit fly model of Drosophila melanogaster, we systematically characterize the role of a group of sexually dimorphic GABAergic central brain neurons, popularly known as mAL, in aggression regulation. The mAL neurons are known to be activated by male and female pheromones. In this report, we show that mAL activation robustly increases aggression, whereas its inactivation decreases aggression and increases intermale courtship, a behavior considered reciprocal to aggression. GABA neurotransmission from mAL is crucial for this behavior regulation. Exploiting the genetic toolkit of the fruit fly model, we also find a small group of approximately three to five GABA+ central brain neurons with anatomical similarities to mAL. Activation of the mAL resembling group of neurons is necessary for increasing intermale aggression. Overall, our findings demonstrate how changes in activity of GABA+ central brain neurons processing pheromonal information, such as mAL in Drosophila melanogaster, directly modulate the social behavior of aggression in male-male pairings.


Assuntos
Agressão/fisiologia , Comportamento Animal/fisiologia , Encéfalo/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Interneurônios/metabolismo , Ácido gama-Aminobutírico/metabolismo , Animais , Corte , Masculino , Neurônios/metabolismo , Feromônios/metabolismo , Comportamento Sexual Animal/fisiologia , Comportamento Social
16.
Proc Natl Acad Sci U S A ; 119(37): e2201513119, 2022 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-36067320

RESUMO

Most animal species display dimorphic sexual behaviors and male-biased aggressiveness. Current models have focused on the male-specific product from the fruitless (fruM) gene, which controls male courtship and male-specific aggression patterns in fruit flies, and describe a male-specific mechanism underlying sexually dimorphic behaviors. Here we show that the doublesex (dsx) gene, which expresses male-specific DsxM and female-specific DsxF transcription factors, functions in the nervous system to control both male and female sexual and aggressive behaviors. We find that Dsx is not only required in central brain neurons for male and female sexual behaviors, but also functions in approximately eight pairs of male-specific neurons to promote male aggressiveness and approximately two pairs of female-specific neurons to inhibit female aggressiveness. DsxF knockdown females fight more frequently, even with males. Our findings reveal crucial roles of dsx, which is broadly conserved from worms to humans, in a small number of neurons in both sexes to establish dimorphic sexual and aggressive behaviors.


Assuntos
Agressão , Corte , Proteínas de Ligação a DNA , Proteínas de Drosophila , Drosophila melanogaster , Comportamento Sexual Animal , Animais , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/fisiologia , Proteínas de Drosophila/genética , Proteínas de Drosophila/fisiologia , Drosophila melanogaster/genética , Drosophila melanogaster/fisiologia , Feminino , Masculino
17.
Proc Natl Acad Sci U S A ; 119(6)2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35131854

RESUMO

Aggressive behavior is rarely observed in virgin female mice but is specifically triggered in lactation where it facilitates protection of offspring. Recent studies demonstrated that the hypothalamic ventromedial nucleus (VMN) plays an important role in facilitating aggressive behavior in both sexes. Here, we demonstrate a role for the pituitary hormone, prolactin, acting through the prolactin receptor in the VMN to control the intensity of aggressive behavior exclusively during lactation. Prolactin receptor deletion from glutamatergic neurons or specifically from the VMN resulted in hyperaggressive lactating females, with a marked shift from intruder-directed investigative behavior to very high levels of aggressive behavior. Prolactin-sensitive neurons in the VMN project to a wide range of other hypothalamic and extrahypothalamic regions, including the medial preoptic area, paraventricular nucleus, and bed nucleus of the stria terminalis, all regions known to be part of a complex neuronal network controlling maternal behavior. Within this network, prolactin acts in the VMN to specifically restrain male-directed aggressive behavior in lactating females. This action in the VMN may complement the role of prolactin in other brain regions, by shifting the balance of maternal behaviors from defense-related activities to more pup-directed behaviors necessary for nurturing offspring.


Assuntos
Agressão/fisiologia , Lactação/metabolismo , Prolactina/metabolismo , Animais , Feminino , Hipotálamo/metabolismo , Masculino , Comportamento Materno/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Núcleo Hipotalâmico Paraventricular/metabolismo , Área Pré-Óptica/metabolismo , Receptores da Prolactina/metabolismo , Tálamo/metabolismo , Núcleo Hipotalâmico Ventromedial/metabolismo
18.
Proc Natl Acad Sci U S A ; 119(19): e2121037119, 2022 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-35512092

RESUMO

Studies from a variety of species indicate that arginine­vasopressin (AVP) and its V1a receptor (Avpr1a) play a critical role in the regulation of a range of social behaviors by their actions in the social behavior neural network. To further investigate the role of AVPRs in social behavior, we performed CRISPR-Cas9­mediated editing at the Avpr1a gene via pronuclear microinjections in Syrian hamsters (Mesocricetus auratus), a species used extensively in behavioral neuroendocrinology because they produce a rich suite of social behaviors. Using this germ-line gene-editing approach, we generated a stable line of hamsters with a frame-shift mutation in the Avpr1a gene resulting in the null expression of functional Avpr1as. Avpr1a knockout (KO) hamsters exhibited a complete lack of Avpr1a-specific autoradiographic binding throughout the brain, behavioral insensitivity to centrally administered AVP, and no pressor response to a peripherally injected Avpr1a-specific agonist, thus confirming the absence of functional Avpr1as in the brain and periphery. Contradictory to expectations, Avpr1a KO hamsters exhibited substantially higher levels of conspecific social communication (i.e., odor-stimulated flank marking) than their wild-type (WT) littermates. Furthermore, sex differences in aggression were absent, as both male and female KOs exhibited more aggression toward same-sex conspecifics than did their WT littermates. Taken together, these data emphasize the importance of comparative studies employing gene-editing approaches and suggest the startling possibility that Avpr1a-specific modulation of the social behavior neural network may be more inhibitory than permissive.


Assuntos
Sistemas CRISPR-Cas , Receptores de Vasopressinas , Agressão/fisiologia , Animais , Arginina/metabolismo , Arginina Vasopressina/genética , Cricetinae , Mesocricetus , Receptores de Vasopressinas/genética , Receptores de Vasopressinas/metabolismo , Comportamento Social
19.
J Neurosci ; 43(7): 1178-1190, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36623874

RESUMO

The accessory olfactory system (AOS) is critical for the development and expression of social behavior. The first dedicated circuit in the AOS, the accessory olfactory bulb (AOB), exhibits cellular and network plasticity in male and female mice after social experience. In the AOB, interneurons called internal granule cells (IGCs) express the plasticity-associated immediate-early gene Arc following intermale aggression or mating. Here, we sought to better understand how Arc-expressing IGCs shape AOB information processing and social behavior in the context of territorial aggression. We used "ArcTRAP" (Arc-CreERT2) transgenic mice to selectively and permanently label Arc-expressing IGCs following male-male resident-intruder interactions. Using whole-cell patch-clamp electrophysiology, we found that Arc-expressing IGCs display increased intrinsic excitability for several days after a single resident-intruder interaction. Further, we found that Arc-expressing IGCs maintain this increased excitability across repeated resident-intruder interactions, during which resident mice increase or "ramp" their aggression. We tested the hypothesis that Arc-expressing IGCs participate in ramping aggression. Using a combination of ArcTRAP mice and chemogenetics (Cre-dependent hM4D(Gi)-mCherry AAV injections), we found that disruption of Arc-expressing IGC activity during repeated resident-intruder interactions abolishes the ramping aggression exhibited by resident male mice. This work shows that Arc-expressing AOB IGC ensembles are activated by specific chemosensory environments, and play an integral role in the establishment and expression of sex-typical social behavior. These studies identify a population of plastic interneurons in an early chemosensory circuit that display physiological features consistent with simple memory formation, increasing our understanding of central chemosensory processing and mammalian social behavior.SIGNIFICANCE STATEMENT The accessory olfactory system plays a vital role in rodent chemosensory social behavior. We studied experience-dependent plasticity in the accessory olfactory bulb and found that internal granule cells expressing the immediate-early gene Arc after the resident-intruder paradigm increase their excitability for several days. We investigated the roles of these Arc-expressing internal granule cells on chemosensory social behavior by chemogenetically manipulating their excitability during repeated social interactions. We found that inhibiting these cells eliminated intermale aggressive ramping behavior. These studies identify a population of plastic interneurons in an early chemosensory circuit that display physiological features consistent with simple memory formation, increasing our understanding of central chemosensory processing and mammalian social behavior.


Assuntos
Interneurônios , Bulbo Olfatório , Camundongos , Masculino , Feminino , Animais , Bulbo Olfatório/fisiologia , Interneurônios/fisiologia , Neurônios , Comportamento Social , Agressão , Camundongos Transgênicos , Mamíferos
20.
J Neurosci ; 43(19): 3394-3420, 2023 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-36977580

RESUMO

Neuropeptides influence animal behaviors through complex molecular and cellular mechanisms, the physiological and behavioral effects of which are difficult to predict solely from synaptic connectivity. Many neuropeptides can activate multiple receptors, whose ligand affinity and downstream signaling cascades are often different from one another. Although we know that the diverse pharmacological characteristics of neuropeptide receptors form the basis of unique neuromodulatory effects on distinct downstream cells, it remains unclear exactly how different receptors shape the downstream activity patterns triggered by a single neuronal neuropeptide source. Here, we uncovered two separate downstream targets that are differentially modulated by tachykinin, an aggression-promoting neuropeptide in Drosophila Tachykinin from a single male-specific neuronal type recruits two separate downstream groups of neurons. One downstream group, synaptically connected to the tachykinergic neurons, expresses the receptor TkR86C and is necessary for aggression. Here, tachykinin supports cholinergic excitatory synaptic transmission between the tachykinergic and TkR86C downstream neurons. The other downstream group expresses the TkR99D receptor and is recruited primarily when tachykinin is overexpressed in the source neurons. Differential activity patterns in the two groups of downstream neurons correlate with levels of male aggression triggered by the tachykininergic neurons. These findings highlight how the amount of neuropeptide released from a small number of neurons can reshape the activity patterns of multiple downstream neuronal populations. Our results lay the foundation for further investigations into the neurophysiological mechanism by which a neuropeptide controls complex behaviors.SIGNIFICANCE STATEMENT Neuropeptides control a variety of innate behaviors, including social behaviors, in both animals and humans. Unlike fast-acting neurotransmitters, neuropeptides can elicit distinct physiological responses in different downstream neurons. How such diverse physiological effects coordinate complex social interactions remains unknown. This study uncovers the first in vivo example of a neuropeptisde from a single neuronal source eliciting distinct physiological responses in multiple downstream neurons that express different neuropeptide receptors. Understanding the unique motif of neuropeptidergic modulation, which may not be easily predicted from a synaptic connectivity map, can help elucidate how neuropeptides orchestrate complex behaviors by modulating multiple target neurons simultaneously.


Assuntos
Drosophila , Neuropeptídeos , Animais , Humanos , Masculino , Neurônios/fisiologia , Neuropeptídeos/fisiologia , Taquicininas , Receptores de Neuropeptídeos , Agressão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA