Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 163
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(7)2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38612852

RESUMO

Salinity is an environmental stress that severely impacts rice grain yield and quality. However, limited information is available on the molecular mechanism by which salinity reduces grain quality. In this study, we investigated the milling, appearance, eating and cooking, and nutritional quality among three japonica rice cultivars grown either under moderate salinity with an electrical conductivity of 4 dS/m or under non-saline conditions in a paddy field in Dongying, Shandong, China. Moderate salinity affected rice appearance quality predominantly by increasing chalkiness rate and chalkiness degree and affected rice eating and cooking and nutritional quality predominantly by decreasing amylose content and increasing protein content. We compared the expression levels of genes determining grain chalkiness, amylose content, and protein content in developing seeds (0, 5, 10, 15, and 20 days after flowering) of plants grown under saline or non-saline conditions. The chalkiness-related gene Chalk5 was up-regulated and WHITE-CORE RATE 1 was repressed. The genes Nuclear factor Y and Wx, which determine amylose content, were downregulated, while protein-content-associated genes OsAAP6 and OsGluA2 were upregulated by salinity in the developing seeds. These findings suggest some target genes that may be utilized to improve the grain quality under salinity stress conditions via gene-pyramiding breeding approaches.


Assuntos
Metanfetamina , Oryza , Oryza/genética , Amilose , Melhoramento Vegetal , Estresse Salino , Sementes/genética , Carbonato de Cálcio , Grão Comestível/genética
2.
Int J Mol Sci ; 25(12)2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38928265

RESUMO

Rice (Oryza sativa) is a cereal crop with a starchy endosperm. Starch is composed of amylose and amylopectin. Amylose content (AC) is the principal determinant of rice quality, but varieties with similar ACs can still vary substantially in their quality. In this study, we analyzed the total AC (TAC) and its constituent fractions, the hot water-soluble amylose content (SAC) and hot water-insoluble amylose content (IAC), in two sets of related chromosome segment substitution lines of rice with a common genetic background grown in two years. We searched for quantitative trait loci (QTLs) associated with SAC, IAC, and TAC and identified one common QTL (qSAC-6, qIAC-6, and qTAC-6) on chromosome 6. Map-based cloning revealed that the gene underlying the trait associated with this common QTL is Waxy (Wx). An analysis of the colors of soluble and insoluble starch-iodine complexes and their λmax values (wavelengths at the positions of their peak absorbance values) as well as gel permeation chromatography revealed that Wx is responsible for the biosynthesis of amylose, comprising a large proportion of the soluble fractions of the SAC. Wx is also involved in the biosynthesis of long chains of amylopectin, comprising the hot water-insoluble fractions of the IAC. These findings highlight the pleiotropic effects of Wx on the SAC and IAC. This pleiotropy indicates that these traits have a positive genetic correlation. Therefore, further studies of rice quality should use rice varieties with the same Wx genotype to eliminate the pleiotropic effects of this gene, allowing the independent relationship between the SAC or IAC and rice quality to be elucidated through a multiple correlation analysis. These findings are applicable to other valuable cereal crops as well.


Assuntos
Amilose , Oryza , Proteínas de Plantas , Locos de Características Quantitativas , Solubilidade , Oryza/genética , Oryza/metabolismo , Amilose/metabolismo , Amilose/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Água/química , Grão Comestível/genética , Grão Comestível/metabolismo , Pleiotropia Genética , Temperatura Alta , Mapeamento Cromossômico , Sintase do Amido/genética , Sintase do Amido/metabolismo
3.
J Sci Food Agric ; 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38923540

RESUMO

BACKGROUND: Nitrogen is a key factor affecting the quality of rice. Studying the impact of nitrogen fertilizer on the taste, physicochemical properties, and starch structure of Indica rice with different amylose contents is of great significance for scientifically fertilizing and cultivating high-quality rice varieties for consumption. RESULTS: The results indicate that increasing nitrogen fertilizer application reduces the amylose content and increases the protein content, resulting in a decrease in taste quality. Simultaneously, it reduces the intergranular porosity of starch particles, improving the appearance and milling quality of rice. Compared to the N1 treatment (nitrogen fertilizer application rate of 90 kg ha-1), the taste of low-amylose rice (Yixiangyou 2115) and high-amylose rice (Byou 268) decreased by 14.24% and 19.79%, respectively, under N4 treatment (nitrogen fertilizer application rate of 270 kg ha-1). The effect of nitrogen fertilizer on low-amylose rice is mainly reflected in increased rice hardness, enthalpy value, and setback viscosity, resulting in a decline in taste. The effect of nitrogen fertilizer on high-amylose rice is mainly reflected in a decrease in peak viscosity, an increase in gelatinization temperature, and crystallinity under high nitrogen levels. CONCLUSION: Increasing nitrogen fertilizer application can improve the appearance and milling quality of rice, but it also leads to an increase in protein content, hardness, gelatinization enthalpy, decrease in breakdown value, and a decline in palatability. In practical production, different production measures should be taken according to different production goals. © 2024 Society of Chemical Industry.

4.
J Sci Food Agric ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38953558

RESUMO

BACKGROUND: Rice is considered a high estimated glycemic index (eGI) food because of its higher starch digestibility, which leads to type II diabetes and obesity as a result of a sedentary life style. Furthermore, the incresaing diabetes cases in rice-consuming populations worldwide need alternative methods to reduce the glycemic impact of rice, with dietary prescriptions based on the eGI value of food being an attractive and practical concept. Rice is often paired with vegetables, pulses, tubers and roots, a staple food group in Africa, Latin America and Asia, which are rich in fibre and health-promoting compounds. RESULTS: Rice from four categories (high protein, scented, general and pigmented) was analyzed for eGI and resistant starch (RS) content. Among the genotypes, Improved Lalat had the lowest eGI (53.12) with a relatively higher RS content (2.17%), whereas Hue showed the lowest RS (0.19%) with the highest eGI (76.3) value. The addition of tuber crops to rice caused a significant lowering of eGI where the maximum beneficial effect was shown by elephant foot yam (49.37) followed by yam bean (53.07) and taro (54.43). CONCLUSION: The present study suggests that combining rice with suitable tuber crops can significantly reduce its eGI value, potentially reducing the burden of diet-associated lifestyle diseases particularly diabetics. © 2024 Society of Chemical Industry.

5.
J Sci Food Agric ; 2023 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-37665950

RESUMO

BACKGROUND: Cassava utilization for food and/or industrial products depends on inherent properties of root dry matter content (DMC) and the starch fraction of amylose content (AC). Accordingly, in the present study, near-infrared reflectance spectroscopy (NIRS) models were developed to aid breeding and selection of DMC and AC as critical industrial traits taking care of root sample preparation and cassava germplasm diversity available in Uganda. RESULTS: Upon undertaking calibrations and cross-validations, best models were adopted for validation. DMC in calibration samples ranged from 20 to 45 g 100g-1 , whereas, for amylose content, it ranged from 14 to 33 g 100g-1 . In the validation set, average DMC was 29.5 g 100g-1 , whereas, for amylose content, it was 24.64 g 100g-1 . For DMC, a modified partial least square regression model had regression coefficients (R2 ) of 0.98 and 0.96, respectively, in the calibration and validation set. These were also associated with low bias (-0.018) and ratio of performance deviation that ranged from 4.7 to 5.0. In addition, standard error of prediction values ranged from 0.9 g 100g-1 to 1.06 g 100g-1 . For AC, the regression coefficient was 0.91 for the calibration set and 0.94 for the validation set. A bias equivalent to -0.03 and a ratio of performance deviation of 4.23 were observed. CONCLUSION: These findings confirm the robustness of NIRS in the estimation of dry matter content and amylose content in cassava roots and thus justify its use in routine cassava breeding operations. © 2023 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

6.
J Sci Food Agric ; 2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37400424

RESUMO

BACKGROUND: Yam (Dioscorea alata L.) is the staple food of many populations in the intertropical zone, where it is grown. The lack of phenotyping methods for tuber quality has hindered the adoption of new genotypes from breeding programs. Recently, near-infrared spectroscopy (NIRS) has been used as a reliable tool to characterize the chemical composition of the yam tuber. However, it failed to predict the amylose content, although this trait is strongly involved in the quality of the product. RESULTS: This study used NIRS to predict the amylose content from 186 yam flour samples. Two calibration methods were developed and validated on an independent dataset: partial least squares (PLS) and convolutional neural networks (CNN). To evaluate final model performances, the coefficient of determination (R2 ), the root mean square error (RMSE), and the ratio of performance to deviation (RPD) were calculated using predictions on an independent validation dataset. The tested models showed contrasting performances (i.e., R2 of 0.72 and 0.89, RMSE of 1.33 and 0.81, RPD of 2.13 and 3.49 respectively, for the PLS and the CNN model). CONCLUSION: According to the quality standard for NIRS model prediction used in food science, the PLS method proved unsuccessful (RPD < 3 and R2 < 0.8) for predicting amylose content from yam flour but the CNN model proved to be reliable and efficient method. With the application of deep learning methods, this study established the proof of concept that amylose content, a key driver of yam textural quality and acceptance, can be predicted accurately using NIRS as a high throughput phenotyping method. © 2023 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

7.
J Integr Plant Biol ; 65(7): 1782-1793, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36965127

RESUMO

Amylose content (AC) is the main factor determining the palatability, viscosity, transparency, and digestibility of rice (Oryza sativa) grains. AC in rice grains is mainly controlled by different alleles of the Waxy (Wx) gene. The AP2/EREBP transcription factor OsEBP89 interacts with the MYC-like protein OsBP5 to synergistically regulate the expression of Wx. Here, we determined that the GLYCOGEN SYNTHASE KINASE 5 (OsGSK5, also named SHAGGY-like kinase 41 [OsSK41]) inhibits the transcriptional activation activity of OsEBP89 in rice grains during amylose biosynthesis. The loss of OsSK41 function enhanced Wx expression and increased AC in rice grains. By contrast, the loss of function of OsEBP89 reduced Wx expression and decreased AC in rice grains. OsSK41 interacts with OsEBP89 and phosphorylates four of its sites (Thr-28, Thr-30, Ser-238, and Thr-257), which makes OsEBP89 unstable and attenuates its interaction with OsBP5. Wx promoter activity was relatively weak when regulated by the phosphomimic variant OsEBP89E -OsBP5 but relatively strong when regulated by the nonphosphorylatable variant OsEBP89A -OsBP5. Therefore, OsSK41-mediated phosphorylation of OsEBP89 represents an additional layer of complexity in the regulation of amylose biosynthesis during rice grain development. In addition, our findings provide four possible sites for regulating rice grain AC via precise gene editing.


Assuntos
Endosperma , Oryza , Endosperma/metabolismo , Amilose/metabolismo , Oryza/metabolismo , Regiões Promotoras Genéticas , Grão Comestível/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
8.
BMC Plant Biol ; 22(1): 620, 2022 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-36581797

RESUMO

BACKGROUND: Protein, starch, amylose and total soluble sugars are basic metabolites of seed that influence the eating, cooking and nutritional qualities of rice. Chlorophyll is responsible for the absorption and utilization of the light energy influencing photosynthetic efficiency in rice plant. Mapping of these traits are very important for detection of more number of robust markers for improvement of these traits through molecular breeding approaches. RESULTS: A representative panel population was developed by including 120 germplasm lines from the initial shortlisted 274 lines for mapping of the six biochemical traits using 136 microsatellite markers through association mapping. A wide genetic variation was detected for the traits, total protein, starch, amylose, total soluble sugars, chlorophyll a, and chlorophyll b content in the population. Specific allele frequency, gene diversity, informative markers and other diversity parameters obtained from the population indicated the effectiveness of utilization of the population and markers for mapping of these traits. The fixation indices values estimated from the population indicated the existence of linkage disequilibrium for the six traits. The population genetic structure at K = 3 showed correspondence with majority of the members in each group for the six traits. The reported QTL, qProt1, qPC6.2, and qPC8.2 for protein content; qTSS8.1 for total soluble sugar; qAC1.2 for amylose content; qCH2 and qSLCHH for chlorophyll a (Chl. a) while qChl5D for chlorophyll b (Chl. b) were validated in this population. The QTL controlling total protein content qPC1.2; qTSS7.1, qTSS8.2 and qTSS12.1 for total soluble sugars; qSC2.1, qSC2.2, qSC6.1 and qSC11.1 for starch content; qAC11.1, qAC11.2 and qAC11.3 for amylose content; qChla8.1 for Chl. a content and qChlb7.1 and qChlb8.1 for Chl. b identified by both Generalized Linear Model and Mixed Linear Model were detected as novel QTL. The chromosomal regions on chromosome 8 at 234 cM for grain protein content and total soluble sugars and at 363 cM for Chl. a and Chl. b along with the position at 48 cM on chromosome 11 for starch and amylose content are genetic hot spots for these traits. CONCLUSION: The validated, co-localized and the novel QTL detected in this study will be useful for improvement of protein, starch, amylose, total soluble sugars and chlorophyll content in rice.


Assuntos
Oryza , Amido , Amido/química , Amilose/metabolismo , Oryza/metabolismo , Clorofila A , Clorofila , Açúcares
9.
Mol Breed ; 42(4): 23, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37309456

RESUMO

Noodles are an important food in Asia. Wheat starch is the most important component in Chinese noodles. Loss of the waxy genes leads to lower activity of starch synthesis enzymes and decreased amylose content that further affects starch properties and noodle quality. To study the effects of different waxy (Wx) protein subunits on starch biosynthesis and processing quality, the high-yielding wheat cultivar Jimai 22 was treated with the mutagen ethyl methane sulfonate (EMS) to produce a population of Wx lines and chosen 7 Wx protein combinations. The amylose content increased but swelling power decreased as the number of Wx proteins increased. Both GBSS activity and gene expression were the lowest for the waxy mutant, followed by the mutants with 1 Wx protein. The combinations of these mutant alleles lead to reductions in both RNA expression and protein levels. Noodles made from materials with 2 Wx protein subunits had the highest score, which agreed with peak viscosity. The influence of the Wx-B1 protein on amylose synthesis and noodle quality was the highest, whereas the influence of Wx-A1 protein was the lowest. Mutants with lower amylose content caused by the absence of 1 subunit, especially the Wx-B1 subunit, had superior noodle quality. Additionally, the identified mutant lines can be used as intermediate materials to improve wheat quality. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-022-01292-x.

10.
Int J Mol Sci ; 23(18)2022 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-36142438

RESUMO

The type of soft rice with low amylose content (AC) is more and more favored by consumers for its better eating and cooking quality, as people's quality of life continuously improves in China. The Wx gene regulates the AC of rice grains, thus affecting the degree of softness of the rice. Mei Meng B (MMB), Tian Kang B (TKB), and DR462 are three indica rice maintained lines with good morphological characters, but also with undesirably high AC. Therefore, CRISPR/Cas9 technology was used to edit the Wx gene of these lines to create a batch of soft rice breeding materials. New gene-edited lines MMB-10-2, TKB-21-12, and DR462-9-9, derived from the above parental lines, respectively, were selected in the T2 generations, with an AC of 17.2%, 16.8%, and 17.8%, and gel consistency (GC) of 78.6 mm, 77.4 mm, and 79.6 mm, respectively. The rapid viscosity analysis (RVA) spectrum showed that the three edited lines had a better eating quality as compared to the corresponding wild type, and showing new characteristics, different from the high-quality soft rice popular in the market. There was no significant difference in the main agronomic traits in the three edited lines compared to the corresponding wild types. Moreover, the chalkiness of DR462-9-9 was reduced, resulting in an improved appearance of its polished rice. The present study created soft rice germplasms for breeding improved quality hybrid rice, without changing the excellent traits of their corresponding wild type varieties.


Assuntos
Amilose , Oryza , Regiões 5' não Traduzidas , Amilose/genética , Humanos , Oryza/genética , Melhoramento Vegetal , Qualidade de Vida
11.
Int J Mol Sci ; 23(15)2022 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-35955567

RESUMO

The granule-bound starch synthase I (GBSSI) encoded by the waxy gene is responsible for amylose synthesis in the endosperm of wheat grains. In the present study, a novel Wx-B1 null mutant line, M3-415, was identified from an ethyl methanesulfonate-mutagenized population of Chinese tetraploid wheat landrace Jianyangailanmai (LM47). The gene sequence indicated that the mutated Wx-B1 encoded a complete protein; this protein was incompatible with the protein profile obtained using sodium dodecyl sulfate-polyacrylamide gel electrophoresis, which showed the lack of Wx-B1 protein in the mutant line. The prediction of the protein structure showed an amino acid substitution (G470D) at the edge of the ADPG binding pocket, which might affect the binding of Wx-B1 to starch granules. Site-directed mutagenesis was further performed to artificially change the amino acid at the sequence position 469 from alanine (A) to threonine (T) (A469T) downstream of the mutated site in M3-415. Our results indicated that a single amino acid mutation in Wx-B1 reduces its activity by impairing its starch-binding capacity. The present study is the first to report the novel mechanism underlying Wx-1 deletion in wheat; moreover, it provided new insights into the inactivation of the waxy gene and revealed that fine regulation of wheat amylose content is possible by modifying the GBSSI activity.


Assuntos
Amilose , Triticum , Aminoácidos/metabolismo , Amilose/análise , Domínio Catalítico , Mutação , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Amido/metabolismo , Tetraploidia , Triticum/metabolismo
12.
Molecules ; 27(14)2022 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-35889518

RESUMO

Apparent amylose content (AAC) is one of the most important parameters in rice quality evaluation. In this study, four rice reference materials used to test rice AAC were developed. The AAC of rice reference materials were measured by a spectrophotometric method with a defatting procedure, calibrated from potato amylose and waxy rice amylopectin at the absorption wavelengths of 620 and 720 nm. Homogeneity test (n = 20) was judged by F-test based on the mean squares of among and within bottles, and short- and long-term stability monitoring was performed by T-test to check if there was significant degradation at the delivery temperature of under 40 °C (14 days) and at 0-4 °C storage condition (18 months), respectively. After joint evaluation by ten laboratories, Dixion and Cochran statistical analyses were presented. The expanded uncertainties were calculated based on the uncertainty of homogeneity, short- and long-term stability, and inter-laboratory validation containing factor k = 2. It found that the four reference materials were homogenous and stable, and had the AAC (g/100 g, k = 2) of 2.96 ± 1.01, 10.68 ± 0.66, 17.18 ± 1.04, and 16.09 ± 1.29, respectively, at 620 nm, and 1.46 ± 0.49, 10.44 ± 0.56, 16.82 ± 0.75, and 24.33 ± 0.52, respectively, at 720 nm. It was indicated that 720 nm was more suitable for the determination of rice AAC with lower uncertainties. The determinations of the AAC of 11 rice varieties were carried out by two methods, the method without defatting and with calibration from the four rice reference materials and the method with a defatting procedure and calibrating from potato amylose and waxy rice amylopectin. It confirmed that the undefatted rice reference materials could achieve satisfactory results to test the rice samples with the AAC ranging from 1 to 25 g/100 g. It would greatly reduce the time cost and improve testing efficiency and applicability, and provide technical support for the high-quality development of the rice industry.


Assuntos
Amilose , Oryza , Amilopectina , Amilose/análise , Oryza/metabolismo , Amido/metabolismo , Temperatura
13.
Plant Mol Biol ; 106(4-5): 419-432, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34129189

RESUMO

KEY MESSAGE: Coordinated regulation of amylose and amylopectin synthesis via manipulation of SSII-2, SSII-3 and Wx expression in endosperm can improve rice eating and cooking quality. With increasing rice consumption worldwide, many researchers are working to increase the yield and improve grain quality, especially eating and cooking quality (ECQ). The rice ECQ is mainly controlled by the expression of starch synthesis-related genes (SSRGs) in endosperm. Although the Wx and SSII-3/SSIIa/ALK genes, two major SSRGs, have been manipulated to improve rice ECQ via various breeding approaches, new methods to further improve ECQ are desired. In our previous study, we enhanced rice ECQ by knocking down SSII-2 expression in the japonica Nipponbare cultivar (carrying the Wxb allele) via RNA interference. Herein, the SSII-2 RNAi was introduced into two Nipponbare-derived near-isogenic lines (NILs), Nip(Wxa) and Nip(wx), carrying Wxa and wx alleles respond for high and no amylose levels, respectively. Analysis of physicochemical properties revealed that the improved grain quality of SSII-2 RNAi transgenic lines was achieved by coordinated downregulating the expression of SSII-2, SSII-3 and Wx. To further confirm this conclusion, we generated ssii-2, ssii-3 and ssii-2ssii-3 mutants via CRISPR/Cas9 technique. The amylopectin structure of the resulting ssii-2sii-3 mutants was similar to that in SSII-2 RNAi transgenic lines, and the absence of SSII-2 decreased the amylose content, gelatinisation temperature and rapid visco-analyser profile, indicating essential roles for SSII-2 in the regulation of amylopectin biosynthesis and amylose content in rice endosperm. The effect of SSII-2 was seen only when the activity of SSII-3 was very low or lacking. Our study provides novel approaches and valuable germplasm resources for improving ECQ via plant breeding.


Assuntos
Grão Comestível/genética , Endosperma/genética , Regulação da Expressão Gênica de Plantas , Oryza/genética , Amido/biossíntese , Culinária , Grão Comestível/enzimologia , Grão Comestível/fisiologia , Qualidade dos Alimentos , Oryza/enzimologia , Oryza/fisiologia , Proteínas de Plantas/genética , Interferência de RNA , Amido/genética , Sintase do Amido/genética
14.
BMC Plant Biol ; 21(1): 600, 2021 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-34922452

RESUMO

BACKGROUND: Overuse of chemical fertilizer highly influences grain filling rate and quality of rice grain. Biochar is well known for improving plant growth and grain yield under lower chemical fertilization. Therefore field trials were conducted in the early and late seasons of 2019 at Guangxi University, China to investigate the effects of combined biochar (B) and nitrogen (N) application on rice yield and yield components. There were a total of eight treatments: N1B0, 135 kg N ha- 1+ 0 t B ha- 1; N2B0,180 kg N ha- 1+ 0 t B ha- 1; N1B1,135 kg N ha- 1+ 10 t B ha- 1; N1B2,135kg N ha- 1+ 20 t B ha- 1; N1B3,135 kg N ha- 1+ 30 t B ha- 1; N2B1,180 kg N ha- 1+ 10 t B ha- 1; N2B2,180 kg N ha- 1+ 20 t B ha- 1; and N2B3,180 kg N ha- 1+ 30 t B ha- 1. RESULTS: Biochar application at 30 t ha- 1combined with low N application (135 kg ha- 1) increased the activity of starch-metabolizing enzymes (SMEs) during the early and late seasons compared with treatments without biochar. The grain yield, amylose concentration, and starch content of rice were increased in plots treated with 30 t B ha-1and low N. RT-qPCR analysis showed that biochar addition combined with N fertilizer application increased the expression of AGPS2b, SSS1, GBSS1, and GBSE11b, which increased the activity of SMEs during the grain-filling period. CONCLUSION: Our results suggest that the use of 20 to 30 t B ha- 1coupled with 135 kg N ha- 1 is optimal for improving the grain yield and quality of rice.


Assuntos
Carvão Vegetal/farmacologia , Fertilizantes , Nitrogênio/farmacologia , Oryza/efeitos dos fármacos , Enzima Ramificadora de 1,4-alfa-Glucana/genética , Enzima Ramificadora de 1,4-alfa-Glucana/metabolismo , Agricultura , Amilose/metabolismo , China , Ativação Enzimática , Enzimas/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes de Plantas , Oryza/enzimologia , Oryza/genética , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Amido/metabolismo
15.
Molecules ; 26(21)2021 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-34770775

RESUMO

ß-glucan is a dietary fiber that is beneficial to human health, and its content varies according to its different parts, type of cereal grain, and growing environment. In this study, the ß-glucan of milled rice, rice husk, and rice bran fractions, as well as the amylose content of milled rice fraction, from 38 selected rice-paddy grains from six regions of Thailand were quantitatively determined. The milled rice of the Sakon Nakhon (SN) cultivar grown in the northeast contained the highest ß-glucan content (0.88 ± 0.03%), followed by the milled rice of the Jow Khao Chiangmai (JKC) cultivar (0.71 ± 0.03%) and rice bran of the Sew Mae Jan (SMJ) cultivar (0.67 ± 0.03%) grown in the north. The results reveal that the rice cultivars from each region showing variation in the ß-glucan level in each fraction, which is mainly found in milled rice and rice bran, are similar to those found in other cereal grains, although low amounts are found in the husk. The amylose and ß-glucan contents in the milled rice fraction showed a strong negative correlation (r = -0.805; p < 0.0001). This new information about the ß-glucan content of Thai rice cultivars could be used for the development of cereal-based functional food.


Assuntos
Amilose/química , Oryza/química , beta-Glucanas/química , Amilose/análise , Fracionamento Químico , Grão Comestível/química , Análise de Alimentos , Geografia , Especificidade de Órgãos , Tailândia , beta-Glucanas/análise
16.
Molecules ; 26(12)2021 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-34198695

RESUMO

Unripe banana fruit of Musa acuminata (Musa AAA; Hom Khieo) and Musa sapientum L. (Musa ABB; Namwa) growing in Chiang Rai (Thailand) were used for extraction. The yield of the starches was 16.88% for Hom Khieo (HK) and 22.73% for Namwa (NW) based on unripe peeled banana fruit. The amylose contents of HK and NW were 24.99% and 26.23%, respectively. The morphology of starch granules was oval shape with elongated forms for large granules and round shape for small granules. The HK and NW showed B-type crystalline structure and the crystallinities were 23.54% and 26.83%, respectively. The peak temperature of gelatinization was around 77 °C and the enthalpy change (ΔH) was 3.05 and 7.76 J/g, respectively. The HK and NW banana starches showed 1.27 ± 0.12 g/g and 1.53 ± 0.12 g/g water absorption capacity, and 1.22 ± 0.11 g/g and 1.16 ± 0.12 g/g oil absorption capacity, respectively. The swelling power of the banana starches was 17.23 ± 0.94 g/g and 15.90 ± 0.15 g/g, respectively, and the percentage of solubility in water showed 26.43 ± 2.50 g/g and 20.54 ± 0.94 g/g, respectively. The banana starches showed very poor flow character. The HK and NW starches have the potential to be used in powder base preparations with no effect on the sensory texture of the product at 15% w/w maximum.


Assuntos
Amilose/química , Cosméticos/química , Musa/química , Amido/química , Temperatura , Termodinâmica , Difração de Raios X/métodos , Frutas , Solubilidade , Água
17.
J Sci Food Agric ; 101(9): 3811-3818, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33314139

RESUMO

BACKGROUND: Rice eating quality largely dictates consumer preference, and the demand for new rice varieties with excellent eating quality from farmers is increasing. Identification of factors contributing to eating quality is helpful for developing high-quality rice varieties. RESULTS: Two groups of rice with different apparent amylose content (AACs) were used in this study. One group contained four varieties with low AACs (8.8-9.4%), whereas the other contained four traditional varieties with medium AACs (17.2-17.5%). The physicochemical properties, starch fine structure and crystallinity and storage protein composition of the two groups were analyzed. We found that, in both groups, the rice varieties with high eating quality had more short-chain amylopectin, lower glutelin and prolamin content, and a higher albumin content. In addition, the low-AAC varieties produced opaque endosperms, which may result from an increased number of pores in the center of starch granules. CONCLUSIONS: Both the fine structure of starch and the storage protein composition were closely related to rice eating quality. In both groups, short branch-chain amylopectin, short-chain amylopectin [degree of polymerization (DP) 6-12], and albumin had positive effects on eating quality. By contrast, long branch-chain amylopectin, long-chain amylopectin (DP 35-60), glutelin and prolamin had adverse effects on eating quality of rice. © 2020 Society of Chemical Industry.


Assuntos
Oryza/química , Proteínas de Armazenamento de Sementes/química , Amido/química , Amilopectina/química , Amilopectina/metabolismo , Amilose/química , Amilose/metabolismo , Análise de Alimentos , Humanos , Oryza/classificação , Oryza/metabolismo , Sementes/química , Sementes/classificação , Sementes/metabolismo , Amido/metabolismo
18.
J Integr Plant Biol ; 63(5): 889-901, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-32886440

RESUMO

In rice (Oryza sativa), amylose content (AC) is the major factor that determines eating and cooking quality (ECQ). The diversity in AC is largely attributed to natural allelic variation at the Waxy (Wx) locus. Here we identified a rare Wx allele, Wxmw , which combines a favorable AC, improved ECQ and grain transparency. Based on a phylogenetic analysis of Wx genomic sequences from 370 rice accessions, we speculated that Wxmw may have derived from recombination between two important natural Wx alleles, Wxin and Wxb . We validated the effects of Wxmw on rice grain quality using both transgenic lines and near-isogenic lines (NILs). When introgressed into the japonica Nipponbare (NIP) background, Wxmw resulted in a moderate AC that was intermediate between that of NILs carrying the Wxb allele and NILs with the Wxmp allele. Notably, mature grains of NILs fixed for Wxmw had an improved transparent endosperm relative to soft rice. Further, we introduced Wxmw into a high-yielding japonica cultivar via molecular marker-assisted selection: the introgressed lines exhibited clear improvements in ECQ and endosperm transparency. Our results suggest that Wxmw is a promising allele to improve grain quality, especially ECQ and grain transparency of high-yielding japonica cultivars, in rice breeding programs.


Assuntos
Oryza/genética , Proteínas de Plantas/química , Alelos , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/metabolismo
19.
J Integr Plant Biol ; 63(9): 1632-1638, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33847449

RESUMO

Amylose content (AC), which is regulated by the Waxy (Wx) gene, is a major indicator of eating and cooking quality (ECQ) in rice (Oryza sativa). Thus far, only a limited number of mutations in the N-terminal domain of Wx were found to have a major impact on the AC of rice grains and no mutations with such effects were reported for other regions of the Wx protein. Here, nucleotide substitutions in the middle region of Wx were generated by adenine and cytosine base editors. The nucleotide substitutions led to changes in 15 amino acid residues of Wx, and a series of novel Wx alleles with ACs of 0.3%-29.43% (wild type with AC of 19.87%) were obtained. Importantly, the waxyabe2 allele showed a "soft rice" AC, improved ECQ, favorable appearance, and no undesirable agronomic traits. The transgenes were removed from the waxyabe2 progeny, generating a promising breeding material for improving rice grain quality.


Assuntos
Grão Comestível/genética , Edição de Genes , Oryza/genética , Proteínas de Plantas/genética , Sintase do Amido/genética , Alelos , Amilose/genética , Amilose/ultraestrutura , Grão Comestível/química , Oryza/química
20.
Biosci Biotechnol Biochem ; 84(11): 2347-2359, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-32693694

RESUMO

The apparent amylose content (AAC) is usually measured by an iodine colorimetric method using the starch as a sample. Nevertheless, it is time-consuming and labor-intensive to prepare rice starch. Therefore, we compared two methods, starch method and milled rice flour method. The former AACs were higher than the latter and correlated with pasting properties, physical properties and sensory scores better than the latter. Therefore, we developed a novel formula for estimating the AACs of starches from japonica rice cultivars using milled rice flours instead of using rice starch. The correlation coefficients of the new formula were 0.89 for calibration and 0.94 for validation, which showed that this equation can be applied to unknown japonica rice samples, and will lead to easy, rapid, and accurate iodine method to determine rice AACs using milled rice flours instead of starch. Abbreviations: AAC: apparent amylose content; RS: resistant starch; SLC: super-long chain; CD: chain length distribution; RVA: Rapid Visco Analyzer; SB: setback; BD: breakdown; Max.vis: maximum viscosity; Min.vis: minimum viscosity; Pt: pasting temperature; Cons: consistency; Final.vis: Final viscosity; SB/Cons: setback/consistency; Max/Min: maximum viscosity/minimum viscosity; Max/Fin: maximum viscosity/final viscosity.


Assuntos
Amilose/análise , Biotecnologia , Farinha/análise , Oryza/química , Absorção Fisico-Química , Amilose/química , Fenômenos Mecânicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA