Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Pharmacol Res ; 203: 107169, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38583688

RESUMO

BACKGROUND: Defining the ability of prebiotic dietary carbohydrates to influence the composition and metabolism of the gut microbiota is central to defining their health impact in diverse individuals. Many clinical trials are using indirect methods. This study aimed to validate collection and fermentation methods enabling their use in the context of clinical studies. METHODS AND RESULTS: Parameters tested included stool sample acquisition, storage, and growth conditions. Stool from 3 infants and 3 adults was collected and stored under varying conditions. Samples were cultured anaerobically for two days in the presence of prebiotics, whereupon optical density and pH were measured across time. Whole genome shotgun sequencing and NMR metabolomics were performed. Neither the type of collection vial (standard vial and two different BD anaerobic collection vials) nor cryopreservation (-80 °C or 4 °C) significantly influenced either microbial composition at 16 h of anaerobic culture or the principal components of the metabolome at 8 or 16 h. Metagenomic differences were driven primarily by subject, while metabolomic differences were driven by fermentation sugar (2'-fucosyllactose or dextrose). CONCLUSIONS: These data identified a feasible and valid approach for prebiotic fermentation analysis of individual samples in large clinical studies: collection of stool microbiota using standard vials; cryopreservation prior to testing; and collecting fermentation read-out at 8 and 16 hr. Thus, fermentation analysis can be a valid technique for testing the effects of prebiotics on human fecal microbiota.


Assuntos
Fezes , Fermentação , Microbioma Gastrointestinal , Prebióticos , Humanos , Prebióticos/análise , Fezes/microbiologia , Fezes/química , Lactente , Adulto , Anaerobiose , Masculino , Feminino , Manejo de Espécimes/métodos , Metabolômica/métodos
2.
Environ Sci Technol ; 58(22): 9792-9803, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38780952

RESUMO

Anaerobic fermentation is a crucial route to realize effective waste activated sludge (WAS) resource recovery and utilization, while the overall efficiency is commonly restrained by undesirable disruptors (i.e., chemical dewatering agents). This work unveiled the unexpectedly positive effects of biodewatering tannic acid (TA) on the volatile fatty acids (VFAs) biosynthesis during WAS anaerobic fermentation. The total VFAs yield was remarkably increased by 15.6 folds with enriched acetate and butyrate in TA-occurred systems. TA was capable to disintegrate extracellular polymeric substances to promote the overall organics release. However, TA further modulated the soluble proteins structure by hydrogen bonding and hydrophobic interactions, resulting in the decrease of proteins bioavailability and consequential alteration of metabolic substrate feature. These changes reshaped the microbial community and stimulated adaptive regulatory systems in hydrolytic-acidogenic bacteria. The keystone species for carbohydrate metabolism (i.e., Solobacterium and Erysipelotrichaceae) were preferentially enriched. Also, the typical quorum sensing (i.e., enhancing substrate transport) and two-component systems (i.e., sustaining high metabolic activity) were activated to promote the microbial networks connectivity and ecological cooperative behaviors in response to TA stress. Additionally, the metabolic functions responsible for carbohydrate hydrolysis, transmembrane transport, and intracellular metabolism as well as VFA biosynthesis showed increased relative abundance, which maintained high microbial activities for VFAs biosynthesis. This study underscored the advantages of biodewatering TA for WAS treatment in the context of resource recovery and deciphered the interactive mechanisms.


Assuntos
Ácidos Graxos Voláteis , Fermentação , Esgotos , Taninos , Ácidos Graxos Voláteis/metabolismo , Esgotos/microbiologia , Taninos/metabolismo , Anaerobiose , Microbiota
3.
Environ Res ; 246: 118046, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38160968

RESUMO

Tannery sludge, a challenging waste, was utilized as a substrate for the production of Short-Chain Fatty Acids (SCFAs) through a series of six thermophilic Continuous Stirred-Tank Reactor runs. The sludge was subjected to a mild thermal pre-treatment and incorporated zeolites (chabazite in run II, and clinoptilolite in run III) in the acidification process. Results highlighted zeolites' impact on chromium concentration and the SCFAs/CODSOL ratio. Ammonia release remained consistent at around 47 % and 51 % for run I and II, respectively, but surpassed 60% in run III, suggesting limited zeolite effectiveness in NH4 absorption. Chromium release in the liquid fraction, due to thermal pretreatment, reached 335 mg/L. While in tests without zeolite, complete removal proved challenging, in zeolite-amended runs, complete removal was achieved, showcasing the materials' heavy metal absorption capacity. SCFA concentrations reached 20260 mgCOD/L, with acidification efficiency varying; runs I and III had ratios around 0.70 COD/COD, while run II showed substantial improvement (0.92) with chabazite. Anaerobic fermentation-digestion mass balance indicated a 41% reduction in landfill sludge mass, reducing its environmental footprint while yielding valuable byproducts like biogas and SCFAs. These findings underscore zeolites' potential in heavy metal absorption and acidification process enhancement, paving the way for applications with tannery sludge.


Assuntos
Metais Pesados , Zeolitas , Esgotos , Anaerobiose , Ácidos Graxos Voláteis , Fermentação , Cromo , Concentração de Íons de Hidrogênio
4.
Environ Res ; 251(Pt 2): 118725, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38518915

RESUMO

To achieve rapid enrichment of the targeted hydrogen-producing bacterial population and reconstruction of the microbial community in the biological hydrogen-producing reactor, the activated sludge underwent multiple pretreatments using micro-aeration, alkaline treatment, and heat treatment. The activated sludge obtained from the multiple pretreatments was inoculated into the continuous stirred tank reactor (CSTR) for continuous operations. The community structure alteration and hydrogen-producing capability of the activated sludge were analyzed throughout the operation of the reactor. We found that the primary phyla in the activated sludge population shifted to Proteobacteria, Firmicutes, and Bacteroidetes, which collectively accounted for 96.69% after undergoing several pretreatments. This suggests that the multiple pretreatments facilitated in achieving the selective enrichment of the fermentation hydrogen-producing microorganisms in the activated sludge. The CSTR start-up and continuous operation of the biological hydrogen production reactor resulted in the reactor entering a highly efficient hydrogen production stage at influent COD concentrations of 4000 mg/L and 5000 mg/L, with the highest hydrogen production rate reaching 8.19 L/d and 9.33 L/d, respectively. The main genus present during the efficient hydrogen production stage in the reactor was Ethanoligenens, accounting for up to 33% of the total population. Ethanoligenens exhibited autoaggregation capabilities and a superior capacity for hydrogen production, leading to its prevalence in the reactor and contribution to efficient hydrogen production. During high-efficiency hydrogen production, flora associated with hydrogen production exhibited up to 46.95% total relative abundance. In addition, redundancy analysis (RDA) indicated that effluent pH and COD influenced the distribution of the primary hydrogen-producing bacteria, including Ethanoligenens, Raoultella, and Pectinatus, as well as other low abundant hydrogen-producing bacteria in the activated sludge. The data indicates that the multiple pretreatments and reactor's operation has successfully enriched the hydrogen-producing genera and changed the community structure of microbial hydrogen production.


Assuntos
Reatores Biológicos , Hidrogênio , Esgotos , Hidrogênio/metabolismo , Reatores Biológicos/microbiologia , Esgotos/microbiologia , Bactérias/metabolismo , Bactérias/genética , Eliminação de Resíduos Líquidos/métodos , Fermentação , Microbiota
5.
J Environ Manage ; 360: 121062, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38735068

RESUMO

High value-added products from organic waste fermentation have garnered increasing concern in modern society. VFAs are short-chain fatty acids, produced as intermediate products during the anaerobic fermentation of organic matter. VFAs can serve as an essential organic carbon source to produce substitutable fuels, microbial fats and oils, and synthetic biodegradable plastics et al. Extracting VFAs from the fermentation broths is a challenging task as the composition of suspensions is rather complex. In this paper, a comprehensive review of methods for VFAs production, extraction and separation are provided. Firstly, the methods to enhance VFAs production and significant operating parameters are briefly reviewed. Secondly, the evaluation and detailed discussion of various VFAs extraction and separation technologies, including membrane separation, complex extraction, and adsorption methods, are presented, highlighting their specific advantages and limitations. Finally, the challenges encountered by different separation technologies and novel approaches to enhance process performance are highlighted, providing theoretical guidance for recycling VFAs from organic wastes efficiently.


Assuntos
Ácidos Graxos Voláteis , Fermentação , Anaerobiose
6.
J Environ Manage ; 351: 120006, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38176383

RESUMO

The performance of anaerobic digestion (AD) is susceptible to disturbances in feedstock degradation, intermediates accumulation, and methanogenic archaea activity. To improve the methanogenesis performance of the AD system, Fe-N co-modified biochar was prepared under different pyrolysis temperatures (300,500, and 700 °C). Meanwhile, pristine and Fe-modified biochar were also derived from alternanthera philoxeroides (AP). The aim was to compare the effects of Fe-N co-modification, Fe modification, and pristine biochar on the methanogenic performance and explicit the responding mechanism of the microbial community in anaerobic co-digestion (coAD) of AP and cow manure (CM). The highest cumulative methane production was obtained with the addition of Fe-N-BC500 (260.38 mL/gVS), which was 42.37 % higher than the control, while the acetic acid, propionic acid, and butyric acid concentration of Fe-N-BC were increased by 147.58 %, 44.25 %, and 194.06 % compared with the control, respectively. The co-modified biochar enhanced the abundance of Chloroflexi and Methanosarcina in the AD system. Metabolic pathway analysis revealed that the increased methane production was related to the formation and metabolism of volatile fatty acids and that Fe-N-BC500 enhanced the biosynthesis of coenzyme A and the cell activity of microorganisms, accelerating the degradation of propionic acid and enhancing the hydrogenotrophic methanogenesis pathway. Overall, Fe-N co-modified biochar was proved to be an effective promoter for accelerated methane production during AD.


Assuntos
Carvão Vegetal , Microbiota , Propionatos , Animais , Feminino , Bovinos , Anaerobiose , Esterco , Redes e Vias Metabólicas , Digestão , Metano , Reatores Biológicos
7.
J Environ Manage ; 354: 120459, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38402788

RESUMO

In recent years, there has been a marked increase in the production of excess sludge. Chain-elongation (CE) fermentation presents a promising approach for carbon resource recovery from sludge, enabling the transformation of carbon into medium-chain fatty acids (MCFAs). However, the impact of sulfate, commonly presents in sludge, on the CE process remains largely unexplored. In this study, batch tests for CE process of sludge anaerobic fermentation liquid (SAFL) under different SCOD/SO42- ratios were performed. The moderate sulfate reduction under the optimum SCOD/SO42- of 20:1 enhanced the n-caproate production, giving the maximum n-caproate concentration, selectivity and production rate of 5.49 g COD/L, 21.4% and 4.87 g COD/L/d, respectively. The excessive sulfate reduction under SCOD/SO42- ≤ 5 completely inhibited the CE process, resulting in almost no n-caproate generation. The variations in n-caproate production under different conditions of SCOD/SO42- were all well fitted with the modified Gompertz kinetic model. Alcaligenes and Ruminococcaceae_UCG-014 were the dominant genus-level biomarkers under moderate sulfate reduction (SCOD/SO42- = 20), which enhanced the n-caproate production by increasing the generation of acetyl-CoA and the hydrolysis of difficult biodegradable substances in SAFL. The findings presented in this work elucidate a strategy and provide a theoretical framework for the further enhancement of MCFAs production from excess sludge.


Assuntos
Caproatos , Esgotos , Fermentação , Anaerobiose , Ácidos Graxos Voláteis , Ácidos Graxos , Carbono
8.
J Environ Manage ; 356: 120632, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38531129

RESUMO

To provide a sufficient supply of electron donors for the synthesis of caproic acid, yeast fermentation was employed to increase ethanol production in the anaerobic fermentation of Chinese cabbage waste (CCW). The results showed that the caproic acid yield of CCW with ethanol pre-fermentation was 7750.3 mg COD/L, accounting for 50.2% of the total volatile fatty acids (TVFAs), which was 32.5% higher than that of the CCW without yeast inoculation. The synchronous fermentation of yeast and seed sludge significantly promoted the growth of butyric acid consuming bacterium Bacteroides, resulting in low yields of butyric acid and caproic acid. With yeast inoculation, substrate competition for the efficient ethanol conversion in the early stage of acidogenic fermentation inhibited the hydrolysis and acidfication. Without yeast inoculation, the rapid accumulation of TVFAs severely inhibited the growth of Bacteroidetes. In the reactor with ethanol pre-fermentation, the key microorganism for caproic acid production, Clostridium_sensu_stricto_12, was selectively enriched.


Assuntos
Brassica , Microbiota , Fermentação , Caproatos , Saccharomyces cerevisiae , Anaerobiose , Ácidos Graxos Voláteis , Esgotos/química , Butiratos , Etanol , Concentração de Íons de Hidrogênio , Reatores Biológicos
9.
J Environ Manage ; 359: 121078, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38723503

RESUMO

Peracetic acid (PAA) combined with free ammonia (FA) pretreatment can be utilized to promote anaerobic fermentation (AF) of waste activated sludge (WAS) to produce short-chain fatty acids (SCFAs), and the resulting SCFAs are desirable carbon sources (C-sources) for polyhydroxyalkanoate (PHA) biosynthesis. This work aimed to determine the optimum conditions for PAA + FA pretreatment of sludge AF and the feasibility of using anaerobic fermentation liquor (AFL) for PHA production. To reveal the mechanisms of integrated pretreatment, the impacts of PAA + FA pretreatment on different stages of sludge AF and changes in the microbial community structure were explored. The experimental results showed that the maximum SCFA yield reached 491.35 ± 6.02 mg COD/g VSS on day 5 after pretreatment with 0.1 g PAA/g VSS +70 mg FA/L, which was significantly greater than that resulting from PAA or FA pretreatment alone. The mechanism analysis showed that PAA + FA pretreatment promoted sludge solubilization but strongly inhibited methanogenesis. According to the analysis of the microbial community, PAA + FA pretreatment changed the microbial community structure and promoted the enrichment of bacteria related to hydrolysis and acidification, and Proteiniclasticum, Macellibacteroides and Petrimonas became the dominant hydrolytic and acidifying bacteria. Finally, after alkali treatment, the AFL was utilized for batch-mode PHA production, and a maximum PHA yield of 55.05 wt% was achieved after five operation periods.


Assuntos
Amônia , Ácidos Graxos Voláteis , Fermentação , Poli-Hidroxialcanoatos , Esgotos , Poli-Hidroxialcanoatos/biossíntese , Amônia/metabolismo , Ácidos Graxos Voláteis/metabolismo , Anaerobiose , Eliminação de Resíduos Líquidos/métodos , Reatores Biológicos
10.
J Environ Manage ; 366: 121724, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38971071

RESUMO

This manuscript delves into the realm of wastewater treatment, with a particular emphasis on anaerobic fermentation processes, especially dark, photo, and dark-photo fermentation processes, which have not been covered and overviewed previously in the literature regarding the treatment of wastewater. Moreover, the study conducts a bibliometric analysis for the first time to elucidate the research landscape of anaerobic fermentation utilization in wastewater purification. Furthermore, microorganisms, ranging from microalgae to bacteria and fungi, emphasizing the integration of these agents for enhanced efficiency, are all discussed and compared. Various bioreactors, such as dark and photo fermentation bioreactors, including tubular photo bioreactors, are scrutinized for their design and operational intricacies. The results illustrated that using clostridium pasteurianum CH4 and Rhodopseudomonas palustris WP3-5 in a combined dark-photo fermentation process can treat wastewater to a pH of nearly 7 with over 90% COD removal. Also, integrating Chlorella sp and Activated sludge can potentially treat synthetic wastewater to COD, P, and N percentage removal rates of 99%,86%, and 79%, respectively. Finally, the paper extends to discuss the limitations and future prospects of dark-photo fermentation processes, offering insights into the road ahead for researchers and scientists.


Assuntos
Reatores Biológicos , Fermentação , Eliminação de Resíduos Líquidos , Águas Residuárias , Anaerobiose , Eliminação de Resíduos Líquidos/métodos , Rodopseudomonas/metabolismo , Esgotos
11.
J Environ Manage ; 350: 119623, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38029496

RESUMO

The hydrolysis of extracellular polymeric substances (EPS) represents a critical bottleneck in the anaerobic fermentation of waste activated sludge (WAS), while tryptophan is identified as an underestimated constituent of EPS. Herein, we harnessed a tryptophan-degrading microbial consortium (TDC) to enhance the hydrolysis efficiency of WAS. At TDC dosages of 5%, 10%, and 20%, a notable increase in SCOD was observed by factors of 1.13, 1.39, and 1.88, respectively. The introduction of TDC improved both the yield and quality of short chain fatty acids (SCFAs), the maximum SCFA yield increased from 590.6 to 1820.2, 1957.9 and 2194.9 mg COD/L, whilst the acetate ratio within SCFAs was raised from 34.1% to 61.2-70.9%. Furthermore, as TDC dosage increased, the relative activity of protease exhibited significant increments, reaching 116.3%, 168.0%, and 266.1%, respectively. This enhancement facilitated WAS solubilization and the release of organic substances from bound EPS into soluble EPS. Microbial analysis identified Tetrasphaera and Soehngenia as key participants in WAS solubilization and the breakdown of protein fraction. Metabolic analysis revealed that TDC triggered the secretion of enzymes associated with amino acid metabolism and fatty acid biosynthesis, thereby fostering the decomposition of proteins and production of SCFAs.


Assuntos
Esgotos , Triptofano , Humanos , Fermentação , Esgotos/química , Anaerobiose , Triptofano/metabolismo , Ácidos Graxos Voláteis/metabolismo , Concentração de Íons de Hidrogênio
12.
Molecules ; 29(2)2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38257398

RESUMO

The paper discusses the perspectives of further implementation of the autocatalytic properties of a soluble biopolymer (SBP) derived from municipal biowastes for the realisation of a biorefinery producing value-added bio-products for consumer use. The reaction of an SBP and water is reported to cause the depolymerisation and oxidation of the pristine SBP organic matter with the formation of carboxyl-functionalised polymers having lower molecular weight and CO2. These findings demonstrate the oxidation of the SBP via water, which could only occur through the production of O and OH radicals catalysed by the SBP. According to the adopted experimental plan, the anaerobic digestate supplied by an Italian municipal biowaste treatment plant was hydrolysed in pH 13 water at 60 °C. The dry product was re-dissolved in plain water at pH 10 and used as a control against the same solution with hydrogen peroxide at 0.1-3 H2O2 moles per SBP carbon mole added. The control and test solutions were kept at room temperature, in the dark or in a climatic chamber under irradiation with simulated solar light, until the pH of the solutions remained constant. Afterwards, the solutions were processed to recover and analyse the crude soluble products. The present work reports the results obtained for the control solution and for the test solutions treated in the presence and absence of H2O2, with and without pH control, in the dark and under irradiation with simulated solar light.


Assuntos
Peróxido de Hidrogênio , Polímeros , Humanos , Biopolímeros , Carbono , Água
14.
Bioresour Technol ; 397: 130425, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38341043

RESUMO

Upcycling harmful algal blooms (HABs) into short-chain organic matters (SCOMs) presents a significantly underexplored opportunity for addressing environmental concerns and achieving circular economy. But there are challenges of low HABs harvesting and SCOMs conversion efficiencies. To address these issues, a novel cellulose-based flocculant derived from abundant agricultural waste (wheat straw) was developed. This flocculant possesses high surface positive charge to aggregate negatively charged microalgae cells via charge neutralization mechanism, resulting in HABs harvesting efficiency of 97 %. Moreover, the flocculant can serve as a carbon to nitrogen (C/N) regulator to optimize the harvested slurry properties for downstream fermentation. Following hydrothermal pretreatment for one hour, the HABs-flocculant slurry was effectively converted into SCOMs with a total energy output of 64.3 kJ/L and energy conversion efficiency of 67 %, in which SCOMs was major contributor (92 %). This work may inspire eco-friendly and cost-effective approach for HABs disposal with extra benefits of SCOMs production.


Assuntos
Proliferação Nociva de Algas , Microalgas , Celulose , Carbono
15.
Artigo em Inglês | MEDLINE | ID: mdl-38568328

RESUMO

Anaerobic fermentation of excess sludge (ES) for hydrogen production is a crucial strategy for resource utilization and environmentally friendly treatment. However, the low hydrolysis efficiency of ES and the depletion of produced hydrogen have become the limiting factors for low hydrogen yield. This study innovatively applied the bio-based surfactant alkyl polyglucoside (APG) to enhance the efficiency of dark fermentation for hydrogen production from ES. When the APG content was 100 mg/g (calculated based on total suspended solids), the maximum hydrogen production reached 17.8 mL/g VSS, approximately 3.7 times that in the control group. Mechanistic analysis revealed that APG promoted the release of organic matter from ES. APG also facilitated the release of soluble protein and soluble polysaccharide, increasing the organic matter reduction rate to 34.8%, significantly higher than other groups. APG enhanced the accumulation of volatile fatty acids and promoted the proportion of small molecular carboxylic acids. Enzyme activity analysis revealed that APG promoted the activity of hydrolytic enzymes but inhibited the activity of hydrogen-consuming enzymes. The research results provide a green and environmentally friendly strategy for the efficient resource utilization of ES.

16.
Environ Sci Ecotechnol ; 21: 100393, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38357479

RESUMO

N,N-bis(carboxymethyl)-l-glutamate (GLDA) is an eco-friendly chelating agent that effectively extracts multivalent metal ions from waste activated sludge (WAS) flocs, which could potentially alter their structure. However, the effect of GLDA on the production of volatile fatty acids (VFAs) from WAS is not well known. Here, we demonstrate that pretreatment with GLDA at a concentration of 200 mmol per kg VSS results in a significant increase of 142% in extractable extracellular polymeric substances and enhances the total VFAs yield by 64% compared to untreated samples. We reveal GLDA's capability to mobilize organic-binding multivalent metal ions within sludge flocs. Specifically, post-pretreatment analyses showed the release of 69.1 mg L-1 of Ca and 109.8 mg L-1 of Fe ions from the flocs, leading to a more relaxed floc structure and a reduced apparent activation energy (10.6 versus 20 kJ mol-1) for WAS solubilization. Molecular dynamic simulations further demonstrate GLDA's preferential binding to Fe3+ and Ca2+ over Mg2+. Our study suggests that GLDA pretreatment causes minimal disruption to reactor stability, thereby indicating the stability of microbial community composition. GLDA has emerged as a viable pretreatment agent for enhancing volatile fatty acids production from waste activated sludge.

17.
Front Cell Infect Microbiol ; 14: 1331521, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38440790

RESUMO

Introduction: The link between gut microbiota and host immunity motivated numerous studies of the gut microbiome in tuberculosis (TB) patients. However, these studies did not explore the metabolic capacity of the gut community, which is a key axis of impact on the host's immunity. Methods: We used deep sequencing of fecal samples from 23 treatment-naive TB patients and 48 healthy donors to reconstruct the gut microbiome's metabolic capacity and strain/species-level content. Results: We show that the systematic depletion of the commensal flora of the large intestine, Bacteroidetes, and an increase in Actinobacteria, Firmicutes, and Proteobacteria such as Streptococcaceae, Erysipelotrichaceae, Lachnospiraceae, and Enterobacteriaceae explains the strong taxonomic divergence of the gut community in TB patients. The cumulative expansion of diverse disease-associated pathobionts in patients reached 1/4 of the total gut microbiota, suggesting a heavy toll on host immunity along with MTB infection. Reconstruction of metabolic pathways showed that the microbial community in patients shifted toward rapid growth using glycolysis and excess fermentation to produce acetate and lactate. Higher glucose availability in the intestine likely drives fermentation to lactate and growth, causing acidosis and endotoxemia. Discussion: Excessive fermentation and lactic acidosis likely characterize TB patients' disturbed gut microbiomes. Since lactic acidosis strongly suppresses the normal gut flora, directly interferes with macrophage function, and is linked to mortality in TB patients, our findings highlight gut lactate acidosis as a novel research focus. If confirmed, gut acidosis may be a novel potential host-directed treatment target to augment traditional TB treatment.


Assuntos
Acidose Láctica , Microbioma Gastrointestinal , Humanos , Fermentação , Ácido Láctico , Glicólise , Firmicutes
18.
Synth Syst Biotechnol ; 9(2): 349-358, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38549615

RESUMO

Due to the complicated metabolic and regulatory networks of l-serine biosynthesis and degradation, microbial cell factories for l-serine production using non-model microorganisms have not been reported. In this study, a combination of synthetic biology and process optimization were applied in an ethanologenic bacterium Zymomonas mobilis for l-serine production. By blocking the degradation pathway while introducing an exporter EceamA from E. coli, l-serine titer in recombinant Z. mobilis was increased from 15.30 mg/L to 62.67 mg/L. It was further increased to 260.33 mg/L after enhancing the l-serine biosynthesis pathway. Then, 536.70 mg/L l-serine was achieved by removing feedback inhibition with a SerA mutant, and an elevated titer of 687.67 mg/L was further obtained through increasing serB copies while enhancing the precursors. Finally, 855.66 mg/L l-serine can be accumulated with the supplementation of the glutamate precursor. This work thus not only constructed an l-serine producer to help understand the bottlenecks limiting l-serine production in Z. mobilis for further improvement, but also provides guidance on engineering non-model microbes to produce biochemicals with complicated pathways such as amino acids or terpenoids.

19.
Chemosphere ; 355: 141824, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38548082

RESUMO

The complexity and high cost to separate and recover short chain fatty acids (SCFAs), ammonium ions, and phosphates in the sludge fermentation liquid hinder the application of sludge anaerobic fermentation. In this study, an interesting phenomenon was found in a sludge anaerobic fermenter with a dynamic membrane (DM) which could not only enhance SCFAs production but also retain most SCFAs in fermenter. The separation factor of DM for NH3-N/SCFAs and PO43-/SCFAs throughout the DM development were about 40 and 80, respectively. Analysis reveals that rejection of SCFAs by DM could not be simply correlated to molecular weight or membrane pore size. The rejection mechanisms might be dominated by Donnan rejection. In addition, biodegradation in the DM may also have contribution. Findings of this study suggest the potential of DM as an economical technology for nutrients and SCFAs recover.


Assuntos
Reatores Biológicos , Esgotos , Anaerobiose , Fermentação , Nutrientes , Ácidos Graxos Voláteis , Concentração de Íons de Hidrogênio
20.
Microorganisms ; 12(4)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38674623

RESUMO

The production of municipal sludge is steadily increasing in line with the production of sewage. A wealth of organic contaminants, including nutrients and energy, are present in municipal sludge. Anaerobic fermentation can be used to extract useful resources from sludge, producing hydrogen, methane, short-chain fatty acids, and, via further chain elongation, medium-chain fatty acids. By comparing the economic and use values of these retrieved resources, it is concluded that a high-value resource transformation of municipal sludge can be achieved via the production of medium-chain fatty acids using anaerobic fermentation, which is a hotspot for future research. In this study, the selection of the pretreatment method, the method of producing medium-chain fatty acids, the influence of the electron donor, and the technique used to enhance product synthesis in the anaerobic fermentation process are introduced in detail. The study outlines potential future research directions for medium-chain fatty acid production using municipal sludge. These acids could serve as a starting point for investigating other uses for municipal sludge.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA