RESUMO
Apolipoprotein A4 (ApoA4) regulates lipid and glucose metabolism and exerts anti-inflammatory effects in atherogenesis and colitis. The present study explored the presumed protective role of ApoA4 in carbon tetrachloride (CCl4)-induced acute liver injury (ALI) in mice. The ALI model in wild type (WT), ApoA4 knock-out (ApoA4-KO) and ApoA4 transgenic (ApoA4-TG) mice was induced by a single intraperitoneal administration of CCl4. Liver and blood were harvested from mice to assess liver functions, immunohistological changes, immune cell populations and cytokine profiles. ApoA4 deficiency aggravated, and ApoA4 overexpression alleviated CCl4-inflicted liver damage by controlling levels of anti-oxidant enzymes. ApoA4 deletion increased the recruitment of monocytes/macrophages into the injured liver and upregulated the plasma levels of IL-6, TNF-α and MCP-1, but lower IL-10 and IFN-γ. ApoA4 over-expression rescued this effect and resulted in lower percentages of monocytes/macrophages and dendritic cells, the ratio of blood pro-inflammatory to anti-inflammatory monocytes and reduced plasma concentrations of IL-6, but enhanced IL-10 and IFN-γ. We propose ApoA4 as a potential new therapeutic target for the management of liver damage.
Assuntos
Apolipoproteínas A/metabolismo , Tetracloreto de Carbono/antagonistas & inibidores , Tetracloreto de Carbono/toxicidade , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Animais , Antioxidantes/metabolismo , Apolipoproteínas A/deficiência , Apolipoproteínas A/genética , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/patologia , Citocinas/sangue , Citocinas/genética , Mediadores da Inflamação/sangue , Fígado/efeitos dos fármacos , Fígado/imunologia , Fígado/metabolismo , Macrófagos/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout para ApoE , Camundongos Transgênicos , Monócitos/imunologia , Regulação para CimaRESUMO
Müller cells are the predominant retinal glial cells. One of the key roles of Müller cells is in the uptake of the neurotransmitter glutamate and in its conversion to glutamine. Müller cell dysfunction due to oxidative stress elicited by high glutamate concentrations can lead to toxicity, which promote the pathogenesis of retinal diseases like diabetic retinopathy and glaucoma. This study investigated the anti-oxidant activity and mechanisms of betulinic acid (BA) and its derivatives in human Müller cells. Human MIO-M1 Müller cells were pre-treated in the presence or absence of BA, BE as well as their derivatives (named H3-H20) followed by incubation with glutamate. Cell viability was evaluated with the MTT and calcein-AM assays. Reactive oxygen species (ROS) production in MIO-M1 cells was measured using CM-H2DCFDA and flow cytometry. The activation of cellular apoptosis and necrosis was analyzed with annexin V/PI staining and flow cytometry. The modulation of signaling pathways involved in glutamate-mediated cytotoxicity and ROS production was evaluated by immunoblotting. The BA derivatives H3, H5 and H7 exhibited minimal cytotoxicity and significant anti-oxidant activity. These compounds significantly suppressed ROS production and attenuated cellular necrosis elicited by glutamate-induced oxidative stress. The protective effects of H3, H5 and H7 in MIO-M1 cells were associated with the attenuation of Akt, Erk, and JNK signaling. The BA analogues H3, H5 and H7 are protective against glutamate-induced oxidative stress in human Müller cells, and elicit their actions by modulation of the Erk, Akt and JNK signaling pathways. These agents are potential candidate molecules for the prevention or treatment of human retinal diseases.
Assuntos
Apoptose/efeitos dos fármacos , Células Ependimogliais/efeitos dos fármacos , Ácido Glutâmico/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Substâncias Protetoras/farmacologia , Triterpenos/farmacologia , Células Cultivadas , Células Ependimogliais/metabolismo , Células Ependimogliais/patologia , Humanos , Triterpenos Pentacíclicos , Espécies Reativas de Oxigênio/metabolismo , Ácido BetulínicoRESUMO
Oxidative stress plays a key role in the pathophysiology of post-cardiac arrest syndrome. Molecular hydrogen reduces oxidative stress and exerts anti-inflammatory effects in an animal model of cardiac arrest. However, its effect on human post-cardiac arrest syndrome is unclear. We consecutively enrolled five comatose post-cardiac arrest patients (three males; mean age, 65 ± 15 years; four cardiogenic, one septic cardiac arrest) and evaluated temporal changes in oxidative stress markers and cytokines with inhaled hydrogen. All patients were treated with target temperature management. Hydrogen gas inhalation (2% hydrogen with titrated oxygen) was initiated upon admission for 18 h. Blood hydrogen concentrations, plasma and urine oxidative stress markers (derivatives of reactive oxygen metabolites, biological antioxidant potential, 8-hydroxy-2'-deoxyguanosine, N É-hexanoyl-lysine, lipid hydroperoxide), and cytokines (interleukin-6 and tumor necrosis factor-α) were measured before and 3, 9, 18, and 24 h after hydrogen gas inhalation. Arterial hydrogen concentration was measurable and it was equilibrated with inhaled hydrogen. Oxidative stress was reduced and cytokine levels were unchanged in cardiogenic patients, whereas oxidative stress was unchanged and cytokine levels were diminished in the septic patient. The effect of inhaled hydrogen on oxidative stress and cytokines in comatose post-cardiac arrest patients remains indefinite because of methodological weaknesses.
RESUMO
Radix Bupleuri extract (RBE) is one of the most popular oriental herbal medicines, which has anti-oxidative and anti-inflammatory properties. However, its protective effects and underlying molecular mechanisms on oxidative damage in tilapia are still unclear. The aims of the study were to explore the anti-oxidative, anti-inflammatory and hepatoprotective effects of RBE against oxidative damage, and to elucidate underlying molecular mechanisms in fish. Tilapia received diet containing three doses of RBE (0, 1 and 3â¯g/kg diet) for 60 days, and then were given an intraperitoneal injection of H2O2 or saline. Before injection, RBE treatments improved growth performance and partial anti-oxidative capacity in tilapia. After oxidative damage, RBE pretreatments were able to signally reduce the higher serum aminotransferases, alkaline phosphatase (AKP) and liver necrosis. In serum and liver, the abnormal lipid peroxidation level and antioxidant status induced by H2O2 injection were restored by RBE treatments. Furthermore, RBE treatments activated erythroid 2-related factor 2 (Nrf2) signaling pathway, which promoted the gene expression of heme oxygenase 1 (HO-1), NAD(P) H:quinone oxidoreductase 1 (NQO-1), glutathione-S-transferase (GST) and catalase (CAT). Meanwhile, RBE treatments reduced inflammatory response by inhibiting TLRs-MyD88-NF-κB signaling pathway, accompanied by the lower interleukin-1ß (IL-1ß), tumor necrosis factor-α (TNF-α) and IL-8 mRNA levels. In addition, RBE treatments upregulated complement (C3) gene expression and downregulated heat shock protein (HSP70) gene expression. In conclusion, the current study suggested that RBE pretreatments protected against H2O2-induced oxidative damage in tilapia. The beneficial activity of RBE may be due to the modulation of Nrf2/ARE and TLRs-Myd88-NF-κB signaling pathway.
Assuntos
Anti-Inflamatórios/farmacologia , Antioxidantes/metabolismo , Ciclídeos/metabolismo , Proteínas de Peixes/genética , Extratos Vegetais/farmacologia , Substâncias Protetoras/farmacologia , Ração Animal/análise , Animais , Dieta/veterinária , Suplementos Nutricionais/análise , Relação Dose-Resposta a Droga , Proteínas de Peixes/metabolismo , Fígado/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Raízes de Plantas/química , Distribuição Aleatória , Receptores Toll-Like/genética , Receptores Toll-Like/metabolismoRESUMO
Heterophyllin B (HB), an active cyclic peptide, is a compound existing in the ethyl acetate extract of Pseudostellaria heterophylla (Miq.) Pax and exhibited the activity of inhibiting the production of NO and cytokines, such as IL-1ß and IL-6, in LPS-stimulated RAW 264.7 macrophages. In addition, HB suppressed the production of ROS and the apoptosis induced by LPS in RAW 264.7 macrophages. The underlying mechanism was investigated in the LPS-induced RAW 264.7 cells. The results showed that HB decreased the level of IL-1ß and IL-6 expression by qRT-PCR analysis. HB up-regulated the relative ratio of p-AKT/AKT and p-PI3K/PI3K as indicated by western blot analysis. In summary, HB inhibited the LPS-induced inflammation and apoptosis through the PI3K/Akt signaling pathways and represented a potential therapeutic target for treatment of inflammatory diseases.
Assuntos
Inflamação/tratamento farmacológico , Inflamação/patologia , Macrófagos/patologia , Estresse Oxidativo , Peptídeos Cíclicos/uso terapêutico , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Animais , Apoptose/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Citocinas/metabolismo , Lipopolissacarídeos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Óxido Nítrico/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Peptídeos Cíclicos/química , Peptídeos Cíclicos/farmacologia , Fosforilação/efeitos dos fármacos , Células RAW 264.7 , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacosRESUMO
Six pairs of enantiomeric dilignans, (+)/(-)-magdiligols A-F, have been isolated from an ethanolic extract of the barks of Magnolia officinalis var. biloba. Their chemical structures were elucidated by extensive spectroscopic analyses, NMR calculation with DP4+ analysis, and the electronic circular dichroism spectra calculation. (+)/(-)-1-3 possessed a dihydrobenzopyran ring, while a propyl chain of 1 was linked via ether bond. (+)/(-)-Magdiligols D and E ((+)/(-)-4 and 5) were dilignans possessing a furan ring. (+)-Magdiligol B ((+)/(-)-2), (+)/(-)-magdiligol C ((+)/(-)-3), and racemes 2, 3, and 5 showed potential hepatoprotective effects against APAP-induced HepG2 cell damage, increased the cell viability from 65.4% to 72.7, 78.7.76.6, 73.9, 77.9 and 73.2%, via decreasing the level of the live enzymes ALH and LDH consistently. (+)/(-)-Magdiligols B-D ((+)/(-)-2-4) and (+)/(-)-magdiligol F ((+)/(-)-6) exhibited significant antioxidative activity. (+)/(-)-Magdiligols B-C ((+)/(-)-2 and 3), (-)-magdiligol D ((-)-4), and (+)-magdiligol E ((+)-5) displayed significant PTP1B inhibitory activity with IC50 values 1.41-3.42 µM. (+)/(-)-Magdiligol B ((+)/(-)-2), and its raceme (2) demonstrated α-glucosidase inhibitory activity with the IC50 values 1.47, 2.88 and 1.85 µM, respectively.
Assuntos
Magnolia , Humanos , Magnolia/química , Espectroscopia de Ressonância Magnética , Células Hep G2 , Estrutura MolecularRESUMO
Aim This study aims to investigate the antibacterial, antifungal, and phytochemical properties of methanolic tuber extracts from Terminalia chebula. Additionally, the study seeks to assess the in vitro anticancer effects of these extracts on an oral cancer cell line, as well as their antioxidant and anti-inflammatory activities. Materials and methods The research involves examining the antibacterial and antifungal properties of methanolic tuber extracts from Terminalia chebula. The phytochemical composition will be analyzed using standard techniques. The in vitro anticancer effects will be tested on an oral cancer cell line, while antioxidant and anti-inflammatory activities will be evaluated through appropriate assays. Results The study demonstrated that Terminalia chebula methanolic tuber extracts exhibit cytotoxic effects on the oral cancer cell line (KB-1), reducing cell viability as evidenced by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. A concentration of 30 µg/mL induced notable morphological changes observed under an inverted fluorescence microscope. Antioxidant assays showed a maximum absorption of 85.3% with 50 µL of the extract, while anti-inflammatory tests revealed a 76.0% absorption. Antimicrobial activity, assessed via agar-well diffusion, indicated significant antibacterial effects, especially against Streptococcus mutans and Candida albicans at higher concentrations. The findings suggest promising therapeutic potential for Terminalia chebula extracts. Conclusion Terminalia chebula tuber extracts may treat diseases caused by studied organisms. The study suggests that methanolic extracts from Terminalia chebula tubers have potential commercial value due to their anti-inflammatory, antioxidant, and cytotoxic properties. The extracts induced apoptosis in an oral cancer cell line at 30 µg/mL after 24 hours. Further research is needed to understand the active components and underlying molecular mechanisms.
RESUMO
The purpose of this study was to examine the anti-oxidative activity of pectin and other polysaccharides in order to develop a cosmeceutical base having anti-oxidative effects towards retinyl palmitate (RP). The anti-oxidative stabilizing effects of pectin and other polysaccharides on RP were evaluated by DPPH assay and then the stabilizing effect of pectin on RP was examined as a function of time. Among the polysaccharides we examined, pectin exhibited a considerably higher anti-oxidative activity, with an approximately 5-fold greater DPPH radical scavenging effect compared to other polysaccharides. The DPPH radical scavenging effect of pectin increased gradually with increasing concentrations of pectin. At two different RP concentrations, 0.01 and 0.1% in ethanol, addition of pectin improved the stability of RP in a concentration dependent manner. The stabilizing effect of pectin on RP was more effective for the lower concentration of RP (0.01%, v/v). Further, degradation of RP was reduced following the addition of pectin as measured over 8 hours. From the results obtained, it can be suggested that pectin may be a promising ingredient for cosmeceutical bases designed to stabilize RP or other pharmacological agents subject to degradation by oxidation.
RESUMO
Psoriasis is a chronic inflammatory skin disease characterized by the hyperproliferation and aberrant differentiation of epidermal keratinocytes. It is a debilitating condition that can cause significant physical and emotional distress. Natural anti-psoriatic agents have been investigated as alternatives to conventional allopathic medications, as they have notable limitations and drawbacks. Curcumin and tea tree oil are cost-efficient and effective anti-inflammatory medicines with less adverse effects compared to synthetic psoriasis medications. Our research endeavors to harness the therapeutic potential of these natural compounds by developing an herbal anti-psoriatic topical drug delivery system. This novel method uses curcumin and tea tree oil to create a bi-phasic emulgel drug delivery system. Formulations F1 (gel) and F2 (emulgel) have high drug content percentages of 84.2% and 96.7%, respectively. The emulgel showed better spreadability for cutaneous applications, with a viscosity of 92,200 ± 943 cp compared to the gel's 56,200 ± 1725 cp. The emulgel released 94.48% of the drugs, compared to 87.58% for the gel. These formulations conform to the zero-order and Higuchi models, and their stability over a three-month period is crucial. In vivo, the emulgel healed psoriasis symptoms faster than the usual gel. The gathered results confirmed the emulgel's potential as a drug delivery method, emphasizing the complementary benefits of tea tree oil and curcumin as an effective new therapy for psoriasis.
RESUMO
This study adopted systematic literature review and meta-analysis methodology to explored anti-oxidative effect of pu-erh tea. Study authors have systemically searched seven databases up until 21 February 2020. In performing the literature search on the above-mentioned databases, the authors used keywords of pu-erh AND (superoxide dismutase OR glutathione peroxidase OR malondialdehyde). Results derived from meta-analyses showed statistically significant effects of pu-erh tea on reducing serum MDA levels (SMD, −4.19; 95% CI, −5.22 to −3.15; p < 0.001; I2 = 93.67%); increasing serum SOD levels (SMD, 2.41; 95% CI, 1.61 to 3.20; p < 0.001; I2 = 91.36%); and increasing serum GSH-Px levels (SMD, 4.23; 95% CI, 3.10 to 5.36; p < 0.001; I2 = 93.69%). Results from systematic review and meta-analyses validated that various ingredients found in pu-erh tea extracts had anti-oxidation effects, a long-held conventional wisdom with limited supporting evidence.
RESUMO
Gingivitis and periodontitis are inflammatory disorders caused by dental plaque and calculus. These disorders often lead to tooth loss if not treated properly. Although antibiotics can be used, it is hard to treat them due to the difficulty in supplying effective doses of antibiotics to lesion areas and side effects associated with long-term use of antibiotics. In the present study, attempts were made to provide in vitro and in vivo evidence to support anti-inflammatory activities of TEES-10®, a mixture of ethanol extracts of Ligularia stenocephala (LSE) and Secale cereale L. sprout (SCSE) toward gingivitis and periodontitis by performing the following experiments. TEES-10® with a ratio of 6:4 (LSE:SCSE) showed the best effects in both stimulating the viability and inhibiting the cytotoxicity. In in vitro experiments, TEES-10® showed an ability to scavenge 2,2-diphenyl-1-picrylhydrazyl and superoxide radicals and remove ROS generated in periodontal ligament cells treated with lipopolysaccharide. TEES-10® also enhanced the viability of stem cells from human exfoliated deciduous teeth and stimulated the osteogenic differentiation of deciduous teeth cells. In in vivo experiments using rats with induced periodontitis, TEES-10® significantly decreased inflammatory cell infiltration and the numbers of osteoclasts, increased alveolar process volume and the numbers of osteoblasts, decreased serum levels of IL-1ß and TNF-α (pro-inflammatory cytokines), and increased serum levels of IL-10 and IL-13 (anti-inflammatory cytokines). These results strongly support the theory that TEES-10® has the potential to be developed as a health functional food that can treat and prevent gingival and periodontal diseases and improve dental health.
RESUMO
ETHNOPHARMACOLOGICAL RELEVANCE: The seeds of Psoralea corylifolia (PCS), also called "Boh-Gol-Zhee" in Korean, have been used in traditional medicine. PCS is effective for the treatment of vitiligo, cancer, inflammatory diseases, neurodegenerative diseases, kidney diseases, and musculoskeletal diseases. AIM OF THE STUDY: In this study, we validated the beneficial effects of PCS extract on dexamethasone (DEX)-induced muscle atrophy in mice. MATERIALS AND METHODS: DEX (20 mg/kg/day, 10 days) was intraperitoneally injected into C57BL/6 male mice to induce muscular atrophy. Oral administration of PCS extract (200 or 500 mg/kg/day) was started 2 days before DEX injection and continued for 12 days. RESULTS: PCS extract inhibited DEX-induced decrease in body and muscle weight, grip strength, and cross-sectional area of the tibialis anterior. PCS extract significantly increased the mRNA and protein expression levels of myosin heavy chain 1, 2A, and 2X in DEX-administered mice. DEX administration significantly increased the levels of muscle atrophy factors atrogin-1, muscle RING-finger protein-1, and myostatin, which were inhibited by the PCS extract. Additionally, PCS extract increased the expression of muscle regeneration factors, such as myoblast determination protein 1, myogenin, and embryonic myosin heavy chain, and muscle synthesis markers, such as protein kinase B and mammalian target of rapamycin signaling molecules. PCS extract also significantly decreased the DEX-induced production of 4-hydroxynonenal, an oxidative stress marker. Furthermore, PCS extract recovered superoxide dismutase 2, glutathione peroxidase, and catalase activities, which were significantly reduced by DEX administration. Moreover, DEX-induced activation of nuclear factor kappa-light-chain-enhancer of activated B cells and expression of cytokines, such as tumor necrosis factor α and monocyte chemoattractant protein-1, significantly decreased after PCS extract administration. CONCLUSIONS: Here, we demonstrated that PCS extract administration protected against DEX-induced muscle atrophy. This beneficial effect was mediated by suppressing the expression of muscle degradation factors and increasing the expression of muscle regeneration and synthesis factors. This effect was probably due to the inhibition of oxidative stress and inflammation. These results highlight the potential of PCS extract as a protective and therapeutic agent against muscle dysfunction and atrophy.
Assuntos
Dexametasona , Atrofia Muscular , Extratos Vegetais , Psoralea , Animais , Dexametasona/efeitos adversos , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Masculino , Mamíferos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Músculo Esquelético/metabolismo , Atrofia Muscular/induzido quimicamente , Atrofia Muscular/tratamento farmacológico , Atrofia Muscular/prevenção & controle , Cadeias Pesadas de Miosina/metabolismo , Estresse Oxidativo , Extratos Vegetais/metabolismo , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Psoralea/metabolismo , Sementes/metabolismoRESUMO
ETHNOPHARMACOLOGICAL RELEVANCE: The root of Angelica sinensis, has been commonly used in gynecology for centuries, and is normally applied divided into different parts in various clinical applications. At present, the majority of existing studies focus on the volatile oil and ferulic acid extracted from different parts of A. sinensis, but there is a dearth of scientific information on its water-soluble polysaccharides. AIM OF THE STUDY: The structures of polysaccharides from plants, have been reported contributing to multiple pharmacological activities such as anti-oxidative, anti-inflammatory, anti-tumor and liver protection. Therefore, the focus of this study was on its anti-oxidative and anti-inflammatory activities in vitro, which would be based on the various polysaccharides with distinct structures obtained from different parts of the A. sinensis root. MATERIALS AND METHODS: Four parts of A. sinensis root were separated according to the Chinese Pharmacopoeia: head, body, tail and whole body. Crude polysaccharides were obtained by water extraction and ethanol precipitation method, and were further fractionated by DEAE Sepharose chromatographic column and gel filtration. The comparison of ASPs from different root parts were performed, including chemical compositions determined by colorimetric analysis, monosaccharide compositions measured by high performance liquid chromatography (HPLC), glycosidic linkage units determined by methylation and gas chromatography-mass spectrometry (GC-MS), organic functional groups determined by FT-IR, molecular weight (Mw) demarcated by gel permeation chromatography, and the viscosities and solubilities were measured according to method published in the previous report with minor modification. In vitro biological activities of APSs were compared on lipopolysaccharide (LPS)-induced inflammatory and oxidative stress models on IPEC-J2 cells. RESULTS: Four purified polysaccharides, ASP-H-AP, ASP-B-AP, ASP-T-AP and ASP-Hb-AP from the root of A. sinensis, were obtained, and consisted of various contents of protein and the polyphenol. They were possibly pectic polysaccharides with a long homogalacturonan region as the main backbone and ramified with rhamnogalacturonan I region, but they were differed by subregions and the relative contents of glycosidic units. The Mw of four pectic polysaccharides were ranged from 67.9-267.7 kDa. The infrared spectrum also showed that the four polysaccharide fractions contained the characteristic peaks of polysaccharides. Their distinct primary structure could lead to a variety of biological activities. In vitro biological assays suggested that four polysaccharide fractions can protect IPEC-J2 cells against the LPS-induced inflammation by down-regulating inflammation factors and related genes on IPEC-J2 cells. These polysaccharides also could alleviate oxidative stress on IPEC-J2 cells by up-regulating the gene and protein expressions of antioxidant enzymes. It was concluded that ASP-H-AP possessed better anti-inflammatory and anti-oxidative effects, while those of ASP-T-AP was relatively poor among the four polysaccharide fractions. CONCLUSION: All results indicated that the structure of pectic polysaccharides from different root parts of A. sinensis differed, which lead to their distinct anti-inflammatory and anti-oxidative activities. This may also be one of the factors why different parts of A. sinensis showed various pharmacological activities and applied independently in traditional use. In addition, it would be valuable for further studies on structure-activity relationship of polysaccharides obtained by different root parts of A. sinensis.
Assuntos
Angelica sinensis , Angelica sinensis/química , Anti-Inflamatórios/farmacologia , Inflamação , Lipopolissacarídeos , Polissacarídeos/química , Polissacarídeos/farmacologia , Espectroscopia de Infravermelho com Transformada de Fourier , Água/químicaRESUMO
Jian-Ti-Kang-Yi decoction (JTKY) is widely used in the treatment of COVID-19. However, the protective mechanisms of JTKY against pneumonia remain unknown. In this study, polyinosinic-polycytidylic acid (poly(I:C)), a mimic of viral dsRNA, was used to induce pneumonia in mice; the therapeutic effects of JTKY on poly(I:C)-induced pneumonia model mice were evaluated. In addition, the anti-inflammatory and anti-oxidative potentials of JTKY were also investigated. Lastly, the metabolic regulatory effects of JTKY in poly(I:C)-induced pneumonia model mice were studied using untargeted metabolomics. Our results showed that JTKY treatment decreased the wet-to-dry ratio in the lung tissue, total protein concentration, and total cell count of the bronchoalveolar lavage fluid (BALF). Hematoxylin and Eosin (HE) and Masson staining indicated that the JTKY treatment alleviated the pathological changes and decreased the fibrotic contents in the lungs. JTKY treatment also decreased the expression of pro-inflammatory cytokines [interleukin (IL)-1ß, IL-6, and tumor necrosis factor-alpha (TNF-α)] and increased the levels of immunomodulatory cytokines (IL-4 and IL-10) in the BALF and serum. Flow cytometry analysis showed that the JTKY treatment lowered the ratio of CD86+/CD206+ macrophages in the BALF, decreased inducible nitric oxide synthase (iNOS) level, and increased arginase 1 (Arg-1) level in lung. JTKY also lowered CD11b+Ly6G+ neutrophils in BALF and decreased myeloperoxidase (MPO) activity in lung. Moreover, it also elevated superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activities and decreased methane dicarboxylic aldehyde (MDA) level in lung. Untargeted metabolomic analysis showed that the JTKY treatment could affect 19 metabolites in lung, such as L-adrenaline, L-asparagine, ornithine, and alpha-ketoglutaric acid. These metabolites are associated with the synthesis and degradation of ketone bodies, butanoate, alanine, aspartate, and glutamate metabolism, and tricarboxylic acid (TCA) cycle processes. In conclusion, our study demonstrated that treatment with JTKY ameliorated poly(I:C)-induced pneumonia. The mechanism of action of JTKY may be associated with the inhibition of the inflammatory response, the reduction of oxidative stress, and the regulation of the synthesis and degradation of ketone bodies, TCA cycle, and metabolism of alanine, aspartate, glutamate, and butanoate processes in lung.
RESUMO
BACKGROUND/OBJECTIVES: Hyperuricemic nephropathy is a common cause of acute kidney injury. Resveratrol can ameliorate kidney injury, but the explicit mechanism remains unclear. We investigated the effects of resveratrol on the inflammatory response and renal injury in hyperuricemic rats. MATERIALS/METHODS: A rat model of hyperuricemic nephropathy was established by the oral administration of a mixture of adenine and potassium oxinate. Biochemical analysis and hematoxylin and eosin staining were performed to assess the rat kidney function. Enzyme-linked immunosorbent assays were performed to evaluate the immune and oxidative responses. RESULTS: The expression levels of urine albumin and ß2-microglobulin were significantly decreased after resveratrol treatment. In addition, the levels of serum creatinine and uric acid were significantly decreased in the resveratrol groups, compared with the control group. The levels of proinflammatory factors, such as interleukin-1ß and tumor necrosis factor-α, in kidney tissue and serum were also increased in the hyperuricemic rats, and resveratrol treatment inhibited their expression. Moreover, the total antioxidant capacity in kidney tissue as well as the superoxide dismutase and xanthine oxidase levels in serum were all decreased by resveratrol treatment. CONCLUSIONS: Resveratrol may protect against hyperuricemic nephropathy through regulating the inflammatory response.
RESUMO
The use of exogenous antioxidants or the combination of them during in vitro oocyte/embryo culture media is reasonable. Co-delivery by nanocarrier has been designed to overcome the limitations of combining them traditionally. In this work, amphiphilic chitosan nanocarrier (ACN) was applied to co-encapsulate melatonin (Mel) and tretinoin (TTN) by the self-assembled method and evaluate their synergistic antioxidant efficacy in mice oocytes/embryos. The formation of single/dual-ACN was confirmed by Fourier-transformed infrared spectroscopy (FT-IR). The average particle diameter, size distribution, polydispersity index (PDI), and zeta potential of them were measured by dynamic light scattering (DLS), and the morphology was evaluated by TEM and SEM technologies. Also, the encapsulation efficiency (EE%) and drug loading content (DL%) of the nanocapsules were determined by UV-vis spectrophotometry. Studies of the in vitro release showed a continued drug release without any bursting effect of Mel+TTN-ACNs compared with single Mel/TTN-ACNs. Then, in both experiments, nuclear staining (Aceto-orcein and Hoechst 33342), fluorescent staining of H2DCFDA, chemiluminescence test, and qRT-PCR technique were performed as in vitro toxicity studies. The results of all these evaluations demonstrated that the dual delivery of Mel and TTN could accumulate a safety (without high-dose toxicity) synergistic anti-oxidative effect in oocyte/embryo by passive controlled, and inhibit intra/extracellular ROS levels by an enhanced intracellular penetration.
Assuntos
Antioxidantes/administração & dosagem , Quitosana/administração & dosagem , Melatonina/administração & dosagem , Mórula/efeitos dos fármacos , Nanocápsulas/administração & dosagem , Oócitos/efeitos dos fármacos , Tretinoína/administração & dosagem , Animais , Antioxidantes/metabolismo , Quitosana/metabolismo , Portadores de Fármacos/administração & dosagem , Portadores de Fármacos/metabolismo , Sinergismo Farmacológico , Técnicas de Cultura Embrionária/métodos , Desenvolvimento Embrionário/efeitos dos fármacos , Desenvolvimento Embrionário/fisiologia , Feminino , Masculino , Melatonina/metabolismo , Camundongos , Mórula/metabolismo , Oócitos/metabolismo , Tretinoína/metabolismoRESUMO
As a promising strategy in overcoming drug resistance, the nano drug co-delivery system (NDCDS) can transport two or more drugs into the cell. In this study, we sought to compare the dual and single drug-delivery system, to deliver the optimal dose of Resveratrol (RES) and Tretinoin (TTN) into the in vitro matured oocyte and morula-compact stage embryonic cells. The formation of single (RES/TTN) and dual-drug (RES + TTN)-SLN were confirmed by Uv-vis spectrophotometery, dynamic light scattering (DLS), transmission electron microscopy (TEM), and scanning electron microscopy (SEM) technologies. In two experiments, the oocytes/presumptive zygotes were cultured under various concentrations of the single (RES/TTN) and dual-drug (RES + TTN)-SLN. In vitro toxicity studies, including nuclear staining (Aceto-orcein and Hoechst 33342), H2DCFDA fluorescent staining, chemiluminescence assay, and quantitative reverse transcription-PCR (qRT-PCR) techniques, indicated an excellent oocyte/embryo internalization of RES and TTN. Moreover, when oocytes/embryos were treated with the lowest concentration of RES + TTN-SLN, antioxidants-related genes were upregulated, apoptotic-related genes were downregulated, and intra/extracellular ROS production was reduced. In vitro cytotoxicity studies also demonstrated that single/dual-encapsulation of RES or TTN were safe even at the highest concentration (10 and 5 µM) compared to the control group. To sum it up, both delivery systems of RES and TTN by SLN (dual or single encapsulation) can deliver the optimal dose of RES and TTN into the oocyte/embryo. Where the dual-delivery of RES and TTN even at the lowest concentration (0.25 µM + 0.1 µm) showed a synergistic anti-oxidative effect in oocyte/embryo with a better inhibition of intra/extra-cellular ROS production by an enhanced/controlled intracellular penetration.
Assuntos
Desenvolvimento Embrionário , Preparações Farmacêuticas , Animais , Técnicas de Maturação in Vitro de Oócitos/veterinária , Lipídeos , Camundongos , Mórula , Oócitos , Resveratrol/farmacologiaRESUMO
This article explores the role of ApoA4 in a CCl4-induced chronic liver injury (CLI) mouse model. C57BL/6J mice (WT) and ApoA4 knock-out (KO) mice were divided into CCl4 CLI (WT-CCl4 and KO-CCl4) and olive oil solvent control groups (WT-Veh and KO-Veh). Some of the KO-CCl4 mice were additionally treated with recombinant mouse ApoA4 and primary mouse T lymphocyte injections. After 6 weeks, histological analyses, biochemical and superoxide dismutase (SOD) and malondialdehyde (MDA) assays, flow cytometry of immune cells and qRT-PCR analyses were performed. KO mice after treatment with CCl4 showed reduced hepatic SOD and enhanced serum MDA activities leading to worsening liver injury and fibrosis compared with WT-CCl4, accompanied by enhanced hepatic alpha smooth muscle actin (α-SMA), tissue inhibitor of metalloproteinases-1 (TIMP-1) and collagen type I alpha 1 chain (COL1A1) transcriptions, elevated macrophage M1 levels, enhanced tumor necrosis factor-alpha (TNF-α), Interleukin 6 (IL-6) and C-C Motif Chemokine Ligand 5 (CCL5), but reduced Interleukin 10 (IL-10), monocyte chemotactic protein 1 (MCP-1), C-C Motif Chemokine Receptor 2 (CCR2), C-X3-C Motif Chemokine Receptor 1 (CX3CR1) and C-X-C Motif Chemokine Ligand 9 (CXCL9) transcription, as well as reduced CD3+, CD4+ and CD8+ T cell percentages in hepatic tissue, blood cells and spleen. In addition, CD11b+CD115+, CD11b+/Ly6Chigh, CD11b+/LyC6- and CD11b+/Ly6Cint cells were enhanced, which partly reversed by ApoA4 protein and T cell injections. In conclusion, we propose that ApoA4 might be involved in liver protection via inhibiting fibrotic mediators and inflammatory cytokines, suppression of pro-inflammatory hepatic M1 cell invasion and regulation of CD8+ T and CD4+ T lymphocytes.
Assuntos
Apolipoproteínas A/metabolismo , Doença Hepática Crônica Induzida por Substâncias e Drogas/metabolismo , Citocinas/metabolismo , Mediadores da Inflamação/metabolismo , Cirrose Hepática/metabolismo , Transferência Adotiva , Animais , Apolipoproteínas A/genética , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Tetracloreto de Carbono , Doença Hepática Crônica Induzida por Substâncias e Drogas/imunologia , Doença Hepática Crônica Induzida por Substâncias e Drogas/patologia , Quimiotaxia de Leucócito , Citocinas/genética , Regulação da Expressão Gênica , Fígado/imunologia , Fígado/metabolismo , Fígado/patologia , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/imunologia , Cirrose Hepática/patologia , Macrófagos/imunologia , Macrófagos/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Estresse Oxidativo , Fenótipo , Transdução de SinaisRESUMO
The quality of embryos produced by assisted reproductive techniques should be advanced by the improvement of in vitro culture conditions for successful implantation and pregnancy maintenance. We investigated the anti-oxidative effect of human adipose stem cell (ASC) conditioned medium with its optimal basal medium, Dulbecco's modified Eagle's medium (DMEM-CM), or keratinocyte serum-free medium (KSFM-CM) as supplements during in vitro culture (IVC) of in vitro fertilized mouse embryo. At first, preimplantation embryo development was evaluated in KSFM-CM and DMEM-CM supplemented cultures at various concentrations. The blastocyst (BL) and hatched BL formation rates were significantly increased in 5% DMEM-CM, while no difference was observed from KSFM-CM. Next, comparing the efficacy of KSFM-CM and DMEM-CM at the same concentration, DMEM-CM enhanced the developmental rate of 16 cells, morula, BL, and hatched BL. The expression level of reactive oxygen species decreased and that of glutathione increased in BL cultured with DMEM-CM, which confirms its anti-oxidative effect. Furthermore, apoptosis in BL cultured with DMEM-CM was reduced compared with that in KSFM-CM. This study demonstrated that the comparative effect of human ASC-CM made of two different basal media during mouse embryo IVC and anti-oxidative effect of 5% DMEM-CM was optimal to improve preimplantation embryo development.
RESUMO
The anti-skin inflammatory activities of rose petal extracts have been described in our previous study. Because skin inflammation is closely linked to skin aging, our study investigated the effects of Rosa gallica petals on skin aging-related activities such as skin whitening and anti-wrinkle properties. Each sample was prepared via extraction using different ethanol ratios with the objective of evaluationg optimal extraction conditions for industrial application. Aqueous 50% (v/v) EtOH extract of R. gallica petal significantly suppressed tyrosinase activity, melanin production, and solar UV-induced matrix metalloproteinase-1, a hall mark of wrinkle formation. In addition, the aqueous 50% (v/v) EtOH extract showed the highest antioxidative effect and had highest flavonoid contents, consistent with the reported anti-aging effects. Overall, our findings suggest that R. gallica petals extracts exhibit anti-aging effects. Furthermore, 50% EtOH extraction, in particular, was optimal for the highest anti-aging, and anti-oxidative effects as well as to obtain the highest flavonoid content.