Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 434
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Traffic ; 23(9): 442-461, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36040075

RESUMO

Plasmodium falciparum parasites which cause malaria, traffic hundreds of proteins into the red blood cells (RBCs) they infect. These exported proteins remodel their RBCs enabling host immune evasion through processes such as cytoadherence that greatly assist parasite survival. As resistance to all current antimalarial compounds is rising new compounds need to be identified and those that could inhibit parasite protein secretion and export would both rapidly reduce parasite virulence and ultimately lead to parasite death. To identify compounds that inhibit protein export we used transgenic parasites expressing an exported nanoluciferase reporter to screen the Medicines for Malaria Venture Malaria Box of 400 antimalarial compounds with mostly unknown targets. The most potent inhibitor identified in this screen was MMV396797 whose application led to export inhibition of both the reporter and endogenous exported proteins. MMV396797 mediated blockage of protein export and slowed the rigidification and cytoadherence of infected RBCs-modifications which are both mediated by parasite-derived exported proteins. Overall, we have identified a new protein export inhibitor in P. falciparum whose target though unknown, could be developed into a future antimalarial that rapidly inhibits parasite virulence before eliminating parasites from the host.


Assuntos
Antimaláricos , Malária Falciparum , Malária , Parasitos , Animais , Antimaláricos/metabolismo , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Eritrócitos/parasitologia , Humanos , Malária Falciparum/tratamento farmacológico , Malária Falciparum/parasitologia , Parasitos/metabolismo , Plasmodium falciparum/metabolismo , Proteínas de Protozoários/metabolismo
2.
J Biol Chem ; 299(7): 104860, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37236355

RESUMO

Among the various components of the protozoan Plasmodium mitochondrial respiratory chain, only Complex III is a validated cellular target for antimalarial drugs. The compound CK-2-68 was developed to specifically target the alternate NADH dehydrogenase of the malaria parasite respiratory chain, but the true target for its antimalarial activity has been controversial. Here, we report the cryo-EM structure of mammalian mitochondrial Complex III bound with CK-2-68 and examine the structure-function relationships of the inhibitor's selective action on Plasmodium. We show that CK-2-68 binds specifically to the quinol oxidation site of Complex III, arresting the motion of the iron-sulfur protein subunit, which suggests an inhibition mechanism similar to that of Pf-type Complex III inhibitors such as atovaquone, stigmatellin, and UHDBT. Our results shed light on the mechanisms of observed resistance conferred by mutations, elucidate the molecular basis of the wide therapeutic window of CK-2-68 for selective action of Plasmodium vs. host cytochrome bc1, and provide guidance for future development of antimalarials targeting Complex III.


Assuntos
Antimaláricos , Plasmodium , Animais , Antimaláricos/química , Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Plasmodium falciparum/metabolismo , Plasmodium/metabolismo , Citocromos/metabolismo , Mamíferos/metabolismo
3.
Antimicrob Agents Chemother ; 68(10): e0017624, 2024 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-39194263

RESUMO

Protein arginine methyltransferases (PRMTs) play critical roles in Plasmodium falciparum, a protozoan causing the deadliest form of malaria, making them potential targets for novel antimalarial drugs. Here, we screened 11 novel PRMT inhibitors against P. falciparum asexual growth and found that onametostat, an inhibitor for type II PRMTs, exhibited strong antimalarial activity with a half-maximal inhibitory concentration (IC50) value of 1.69 ± 0.04 µM. In vitro methyltransferase activities of purified PfPRMT5 were inhibited by onametostat, and a shift of IC50 to onametostat was found in the PfPRTM5 disruptant parasite line, indicating that PfPRTM5 is the primary target of onametostat. Consistent with the function of PfPRMT5 in mediating symmetric dimethylation of histone H3R2 (H3R2me2s) and in regulating invasion-related genes, onametostat treatment led to the reduction of H3R2me2s level in P. falciparum and caused the defects on the parasite's invasion of red blood cells. This study provides a starting point for identifying specific PRMT inhibitors with the potential to serve as novel antimalarial drugs.


Assuntos
Antimaláricos , Plasmodium falciparum , Proteína-Arginina N-Metiltransferases , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/crescimento & desenvolvimento , Antimaláricos/farmacologia , Proteína-Arginina N-Metiltransferases/antagonistas & inibidores , Proteína-Arginina N-Metiltransferases/metabolismo , Eritrócitos/parasitologia , Eritrócitos/efeitos dos fármacos , Proteínas de Protozoários/antagonistas & inibidores , Proteínas de Protozoários/metabolismo , Proteínas de Protozoários/genética , Humanos , Concentração Inibidora 50 , Histonas/metabolismo , Malária Falciparum/tratamento farmacológico , Malária Falciparum/parasitologia , Inibidores Enzimáticos/farmacologia
4.
Antimicrob Agents Chemother ; 68(9): e0085324, 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39058023

RESUMO

Plasmodium vivax is now the main cause of malaria outside Africa. The gametocytocidal effects of antimalarial drugs are important to reduce malaria transmissibility, particularly in low-transmission settings, but they are not well characterized for P. vivax. The transmission-blocking effects of chloroquine, artesunate, and methylene blue on P. vivax gametocytes were assessed. Blood specimens were collected from patients presenting with vivax malaria, incubated with or without the tested drugs, and then fed to mosquitos from a laboratory-adapted colony of Anopheles dirus (a major malaria vector in Southeast Asia). The effects on oocyst and sporozoite development were analyzed under a multi-level Bayesian model accounting for assay variability and the heterogeneity of mosquito Plasmodium infection. Artesunate and methylene blue, but not chloroquine, exhibited potent transmission-blocking effects. Gametocyte exposures to artesunate and methylene blue reduced the mean oocyst count 469-fold (95% CI: 345 to 650) and 1,438-fold (95% CI: 970 to 2,064), respectively. The corresponding estimates for the sporozoite stage were a 148-fold reduction (95% CI: 61 to 470) and a 536-fold reduction (95% CI: 246 to 1,311) in the mean counts, respectively. In contrast, high chloroquine exposures reduced the mean oocyst count only 1.40-fold (95% CI: 1.20 to 1.64) and the mean sporozoite count 1.34-fold (95% CI: 1.12 to 1.66). This suggests that patients with vivax malaria often remain infectious to anopheline mosquitos after treatment with chloroquine. Use of artemisinin combination therapies or immediate initiation of primaquine radical cure should reduce the transmissibility of P. vivax infections.


Assuntos
Anopheles , Antimaláricos , Artesunato , Cloroquina , Malária Vivax , Azul de Metileno , Plasmodium vivax , Azul de Metileno/farmacologia , Azul de Metileno/uso terapêutico , Artesunato/farmacologia , Artesunato/uso terapêutico , Cloroquina/farmacologia , Cloroquina/uso terapêutico , Plasmodium vivax/efeitos dos fármacos , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Malária Vivax/tratamento farmacológico , Malária Vivax/parasitologia , Malária Vivax/transmissão , Animais , Humanos , Anopheles/parasitologia , Anopheles/efeitos dos fármacos , Esporozoítos/efeitos dos fármacos , Artemisininas/farmacologia , Artemisininas/uso terapêutico , Oocistos/efeitos dos fármacos
5.
Antimicrob Agents Chemother ; 68(7): e0033824, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38837364

RESUMO

The human malaria-Aotus monkey model has served the malaria research community since its inception in 1966 at the Gorgas Memorial Laboratory (GML) in Panama. Spanning over five decades, this model has been instrumental in evaluating the in vivo efficacy and pharmacokinetics of a wide array of candidate antimalarial drugs, whether used singly or in combination. The animal model could be infected with drug-resistant and susceptible Plasmodium falciparum and Plasmodium vivax strains that follow a characteristic and reproducible course of infection, remarkably like human untreated and treated infections. Over the years, the model has enabled the evaluation of several synthetic and semisynthetic endoperoxides, for instance, artelinic acid, artesunate, artemether, arteether, and artemisone. These compounds have been evaluated alone and in combination with long-acting partner drugs, commonly referred to as artemisinin-based combination therapies, which are recommended as first-line treatment against uncomplicated malaria. Further, the model has also supported the evaluation of the primaquine analog tafenoquine against blood stages of P. vivax, contributing to its progression to clinical trials and eventual approval. Besides, the P. falciparum/Aotus model at GML has also played a pivotal role in exploring the biology, immunology, and pathogenesis of malaria and in the characterization of drug-resistant P. falciparum and P. vivax strains. This minireview offers a historical overview of the most significant contributions made by the Panamanian owl monkey (Aotus lemurinus lemurinus) to malaria chemotherapy research.


Assuntos
Antimaláricos , Artemisininas , Modelos Animais de Doenças , Animais , Antimaláricos/uso terapêutico , Antimaláricos/farmacocinética , Antimaláricos/farmacologia , Artemisininas/uso terapêutico , Artemisininas/farmacologia , Humanos , Panamá , Aotidae , Plasmodium falciparum/efeitos dos fármacos , Malária/tratamento farmacológico , Plasmodium vivax/efeitos dos fármacos , Malária Falciparum/tratamento farmacológico , Malária Falciparum/parasitologia , Artesunato/uso terapêutico , Artesunato/farmacologia , Artesunato/farmacocinética , Malária Vivax/tratamento farmacológico , Malária Vivax/parasitologia , História do Século XX , Aminoquinolinas
6.
Chembiochem ; 25(14): e202400116, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38668388

RESUMO

The 4-aminoquinoline class of compounds includes the important antimalarial compounds amodiaquine and chloroquine. Despite their medicinal importance, the mode of action of these compounds is poorly understood. In a previous study we observed these compounds, as well as quinine and mefloquine, tightly bind the DNA cocaine-binding aptamer. Here, we further explore the range of nucleic acid structures bound by these compounds. To gauge a wide range of binding affinities, we used isothermal titration calorimetry to explore high affinity binding (nM to tens of µM) and NMR spectroscopy to assay weak binding biding in the hundreds of micromolar range. We find that amodiaquine tightly binds all double stranded DNA structures explored. Mefloquine binds double stranded DNA duplex molecules tightly and weakly associates with a three-way junction DNA construct. Quinine and chloroquine only weakly bind duplex DNA but do not tightly bind any of the DNA constructs explored. A simulation of the free energy of binding of these ligands to the Dickerson-Drew dodecamer resulted in an excellent agreement between the simulated and experimental free energy. These results provide new insight into the DNA binding of clinically important antimalarial compounds and may play a role in future development of new antimalarials.


Assuntos
Amodiaquina , DNA , DNA/química , DNA/metabolismo , Amodiaquina/química , Amodiaquina/metabolismo , Amodiaquina/análogos & derivados , Antimaláricos/química , Antimaláricos/metabolismo , Conformação de Ácido Nucleico , Sítios de Ligação , Termodinâmica , Calorimetria
7.
Rheumatology (Oxford) ; 63(2): 456-465, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37216912

RESUMO

OBJECTIVES: To test the association of use of antimalarials with the overall safety of treatment in RA patients receiving one or multiple courses of biologic (b)DMARDs or a Janus kinase inhibitor (JAKi). METHODS: BiobadaBrasil is a multicentric registry-based cohort study of Brazilian patients with rheumatic diseases starting their first bDMARD or JAKi. The present analysis includes RA patients recruited from January 2009 to October 2019, followed up over one or multiple (up to six) courses of treatment (latest date, 19 November 2019). The primary outcome was the incidence of serious adverse events (SAEs). Total and system-specific adverse events (AEs) and treatment interruption served as secondary outcomes. Negative binomial regression with generalized estimating equations (to estimate multivariate incidence rate ratios, mIRR) and frailty Cox proportional hazards models were used for statistical analyses. RESULTS: The number of patients enrolled was 1316 (2335 treatment courses, 6711 patient-years [PY]; 1254.5 PY on antimalarials). The overall incidence of SAEs was 9.2/100 PY. Antimalarials were associated with reduced risk of SAEs (mIRR: 0.49; 95% CI: 0.36, 0.68; P < 0.001), total AEs (0.68; 95% CI: 0.56, 0.81; P < 0.001), serious infections (0.53; 95% CI: 0.34, 0.84; P = 0.007) and total hepatic AEs (0.21; 95% CI: 0.05, 0.85; P = 0.028). Antimalarials were also related to better survival of treatment course (P = 0.003). There was no significant increase in the risk of cardiovascular AEs. CONCLUSION: Among RA patients on treatment with bDMARDs or JAKi, concomitant use of antimalarials was associated with reduced the incidence of serious and total AEs and with longer treatment course survival.


Assuntos
Antimaláricos , Antirreumáticos , Artrite Reumatoide , Produtos Biológicos , Inibidores de Janus Quinases , Humanos , Inibidores de Janus Quinases/efeitos adversos , Antimaláricos/efeitos adversos , Estudos de Coortes , Artrite Reumatoide/epidemiologia , Antirreumáticos/efeitos adversos , Produtos Biológicos/uso terapêutico
8.
Malar J ; 23(1): 132, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38702649

RESUMO

BACKGROUND: Drug repurposing offers a strategic alternative to the development of novel compounds, leveraging the known safety and pharmacokinetic profiles of medications, such as linezolid and levofloxacin for tuberculosis (TB). Anti-malarial drugs, including quinolones and artemisinins, are already applied to other diseases and infections and could be promising for TB treatment. METHODS: This review included studies on the activity of anti-malarial drugs, specifically quinolones and artemisinins, against Mycobacterium tuberculosis complex (MTC), summarizing results from in vitro, in vivo (animal models) studies, and clinical trials. Studies on drugs not primarily developed for TB (doxycycline, sulfonamides) and any novel developed compounds were excluded. Analysis focused on in vitro activity (minimal inhibitory concentrations), synergistic effects, pre-clinical activity, and clinical trials. RESULTS: Nineteen studies, including one ongoing Phase 1 clinical trial, were analysed: primarily investigating quinolones like mefloquine and chloroquine, and, to a lesser extent, artemisinins. In vitro findings revealed high MIC values for anti-malarials versus standard TB drugs, suggesting a limited activity. Synergistic effects with anti-TB drugs were modest, with some synergy observed in combinations with isoniazid or pyrazinamide. In vivo animal studies showed limited activity of anti-malarials against MTC, except for one study of the combination of chloroquine with isoniazid. CONCLUSIONS: The repurposing of anti-malarials for TB treatment is limited by high MIC values, poor synergy, and minimal in vivo effects. Concerns about potential toxicity at effective dosages and the risk of antimicrobial resistance, especially where TB and malaria overlap, further question their repurposing. These findings suggest that focusing on novel compounds might be both more beneficial and rewarding.


Assuntos
Antimaláricos , Antituberculosos , Reposicionamento de Medicamentos , Mycobacterium tuberculosis , Tuberculose , Tuberculose/tratamento farmacológico , Antimaláricos/uso terapêutico , Antimaláricos/farmacologia , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Mycobacterium tuberculosis/efeitos dos fármacos , Humanos , Animais
9.
Malar J ; 23(1): 278, 2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39272079

RESUMO

BACKGROUND: Over the past years, there has been a growing concern that a considerable amount of anti-malarial supply in the underdeveloped world particularly in the private sector, is of poor quality. The World Health Organization (WHO) has received about 1500 reports that mentions instances of substandard and falsified products since 2013. The majority of the reports concerned antibiotics and anti-malarials. The majority of reports (42%) originate from the WHO African region. OBJECTIVE: This study intends to assess the quality of the most widely used anti-malarial medications [artemether-lumefantrine tablets, chloroquine phosphate tablets, primaquine phosphate tablets, artesunate, and artemether injections] in Gambella, South-West, Ethiopia. METHODS: A total of 52 samples were collected on June 2022 from Gambella National Regional State, Ethiopia. Half of the districts (six) located in the four zones of the region were chosen using simple random sampling technique. All drug retail outlets available in the selected districts (locally known as woredas) were included. The samples were subjected to visual inspection with a tool adopted from the joint WHO/FIP/ USP checklist. The pharmacopeial tests for identification, uniformity of dosage forms, assay, thickness, diameter, hardness, friability, disintegration test, dissolution, and sterility tests were carried out according to the USP 44-NF 39 and International Pharmacopoeia 11th edition, 2022 monographs. RESULTS AND DISCUSSION: Only 25% of the samples were registered on the Ethiopian Food and Drug Authority (EFDA's) electronic regulatory/ registration system (ERIS). Besides, 88.8% of artemether injection products were presented in clear glass ampoules. This might expose the products to photochemical degradation that leads to in loss of anti-plasmodial activity. In addition, 50% of the artemether products assessed were not bioequivalent with the comparator product in the in vitro dissolution comparison tests. Overall, the study findings reveal a high prevalence (58.3%) of substandard anti-malarial drugs in the region. The stated percent of the samples had failed in one or more of the quality test parameters assessed in this study. CONCLUSION: The study findings reveal a high prevalence (58.3%) of substandard anti-malarial drugs in the region. Only a quarter were registered and 38% of the unregistered products failed the quality tests. Hence, the national, regional medicine regulatory bodies and other stake holders should perform the required roles to circumvent presence of Substandard and Falsified (SF) anti-malarial drugs in the study sites.


Assuntos
Antimaláricos , Antimaláricos/análise , Antimaláricos/normas , Antimaláricos/química , Etiópia , Combinação Arteméter e Lumefantrina/análise , Controle de Qualidade , Medicamentos Fora do Padrão/análise , Medicamentos Falsificados/análise , Artesunato/análise , Cloroquina/análise , Primaquina/análise , Humanos
10.
Malar J ; 23(1): 125, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38685044

RESUMO

BACKGROUND: Despite efforts made to reduce morbidity and mortality associated with malaria, especially in sub-Saharan Africa, malaria continues to be a public health concern that requires innovative efforts to reach the WHO-set zero malaria agenda. Among the innovations is the use of artemisinin-based combination therapy (ACT) that is effective against Plasmodium falciparum. Generic artemether-lumefantrine (AL) is used to treat uncomplicated malaria after appropriate diagnosis. AL is metabolized by the cytochrome P450 family of enzymes, such as CYP2B6, CYP3A4 and CYP3A5, which can be under pharmacogenetic influence. Pharmacogenetics affecting AL metabolism, significantly influence the overall anti-malarial activity leading to variable therapeutic efficacy. This study focused on generic AL drugs used in malarial treatment as prescribed at health facilities and evaluated pharmacogenomic influences on their efficacy. METHODS: Patients who have been diagnosed with malaria and confirmed through RDT and microscopy were recruited in this study. Blood samples were taken on days 1, 2, 3 and 7 for parasite count and blood levels of lumefantrine, artemisinin, desbutyl-lumefantrine (DBL), and dihydroartemisinin (DHA), the active metabolites of lumefantrine and artemether, respectively, were analysed using established methods. Pharmacogene variation analysis was undertaken using iPLEX microarray and PCR-RFLP. RESULTS: A total of 52 patients completed the study. Median parasite density from day 1 to 7 ranged from 0-2666/µL of blood, with days 3 and 7 recording 0 parasite density. Highest median plasma concentration for lumefantrine and desbutyl lumefantrine, which are the long-acting components of artemisinin-based combinations, was 4123.75 ng/mL and 35.87 ng/mL, respectively. Day 7 plasma lumefantrine concentration across all generic ACT brands was ≥ 200 ng/mL which potentially accounted for the parasitaemia profile observed. Monomorphism was observed for CYP3A4 variants, while there were observed variations in CYP2B6 and CYP3A5 alleles. Among the CYP3A5 genotypes, significant differences in genotypes and plasma concentration for DBL were seen on day 3 between 1/*1 versus *1/*6 (p = 0.002), *1/*3 versus *1/*6 (p = 0.006) and *1/*7 versus *1/*6 (p = 0.008). Day 7 plasma DBL concentrations showed a significant difference between *1/*6 and *1/*3 (p = 0.026) expressors. CONCLUSIONS: The study findings show that CYP2B6 and CYP3A5 pharmacogenetic variations may lead to higher plasma exposure of AL metabolites.


Assuntos
Antimaláricos , Combinação Arteméter e Lumefantrina , Artemisininas , Combinação de Medicamentos , Etanolaminas , Fluorenos , Humanos , Antimaláricos/uso terapêutico , Antimaláricos/farmacocinética , Combinação Arteméter e Lumefantrina/uso terapêutico , Feminino , Etanolaminas/uso terapêutico , Etanolaminas/farmacocinética , Adolescente , Fluorenos/uso terapêutico , Fluorenos/farmacocinética , Fluorenos/farmacologia , Artemisininas/uso terapêutico , Artemisininas/farmacocinética , Masculino , Gana , Adulto , Adulto Jovem , Criança , Pré-Escolar , Pessoa de Meia-Idade , Malária Falciparum/tratamento farmacológico , Malária Falciparum/parasitologia , Medicamentos Genéricos/uso terapêutico , Resultado do Tratamento , Farmacogenética , Idoso , Lactente
11.
Br J Clin Pharmacol ; 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38858224

RESUMO

Infants bear a significant malaria burden but are usually excluded from participating in early dose optimization studies that inform dosing regimens of antimalarial therapy. Unlike older children, infants' exclusion from early-phase trials has resulted in limited evidence to guide accurate dosing of antimalarial treatment for uncomplicated malaria or malaria-preventive treatment in this vulnerable population. Subsequently, doses used in infants are often extrapolated from older children or adults, with the potential for under- or overdosing. Population pharmacokinetic-pharmacodynamic (PK-PD) modelling, a quantitative methodology that applies mathematical and statistical techniques, can aid the design of clinical studies in infants that collect sparse pharmacokinetic data as well as support the analysis of such data to derive optimized antimalarial dosing in this complex and at-risk yet understudied subpopulation. In this review, we reflect on what PK-PD modelling can do in programmatic settings of most malaria-endemic areas and how it can be used to inform antimalarial dose optimization for preventive and curative treatment of uncomplicated malaria in infants. We outline key developmental physiological changes that affect drug exposure in early life, the challenges of conducting dose optimization studies in infants, and examples of how PK-PD modelling has previously informed antimalarial dose optimization in this subgroup. Additionally, we discuss the limitations and gaps of PK-PD modelling when used for dose optimization in infants. To utilize modelling well, there is a need to generate useful, sparse, PK and PD data in this subpopulation to inform antimalarial optimal dosing in infancy.

12.
Oral Dis ; 30(7): 4098-4112, 2024 10.
Artigo em Inglês | MEDLINE | ID: mdl-38720635

RESUMO

OBJECTIVE: To evaluate whether hydroxychloroquine (HCQ) or chloroquine (CQ) are effective for the treatment of oral lichen planus (OLP). MATERIALS AND METHODS: A literature search was conducted in four databases. Clinical studies investigating the effect of HCQ/CQ in patients with OLP were included. RESULTS: Eleven studies were included. Four were RCTs and seven quasi-experimental studies. The studies included 390 patients diagnosed with OLP, of which 326 and 7 received HCQ and CQ, respectively. 46 patients received topical dexamethasone, 5 placebo and 6 griseofulvin as controls. Five studies assessed pain, and all of them obtained pain reduction with the use of HCQ. Six studies reported objective clinical improvement of OLP with the use of HCQ. Five studies that used a subjective scale obtained that 24%-100% of the patients achieved a complete/almost complete improvement of OLP lesions and its symptomatology. The most frequent side effects were vision problems, gastric discomfort, rash, nauseas, headaches, skin pigmentation, and elevated kidney function. 17 patients had to withdraw from the studies. CONCLUSIONS: Current evidence is scarce to confirm HCQ as a therapeutic option for OLP. More RCTs are needed to compare its efficacy with topical corticosteroids and to evaluate whether HCQ reduces relapses of OLP.


Assuntos
Antimaláricos , Cloroquina , Hidroxicloroquina , Líquen Plano Bucal , Humanos , Líquen Plano Bucal/tratamento farmacológico , Antimaláricos/uso terapêutico , Hidroxicloroquina/uso terapêutico , Cloroquina/uso terapêutico , Resultado do Tratamento , Ensaios Clínicos Controlados Aleatórios como Assunto
13.
Chem Biodivers ; : e202401668, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39345161

RESUMO

Malaria, an infectious disease caused by Plasmodium falciparum, is becoming increasingly difficult to treat due to the emergence of drug-resistant strains. Recent studies have proposed purine nucleoside phosphorylase from P. falciparum (pfPNP) as a potential target for malaria treatment. In the present study, we designed a virtual library of 400 dipeptides to discover novel anti-malarial peptide inhibitors. A structure-based molecular docking method was employed to virtually screen the designed library against the wild-type structure of pfPNP (PDB: 5ZNC). The best four (Phe-Arg, Arg-His, Trp-Arg and Tyr-Arg) dipeptides, which were then investigated for their binding potential against pfPNP using Molecular Dynamics simulation studies. Parameters such as RMSD, RMSF, Rg, and SASA were analyzed to understand the structural changes, energetics, and overall behavior of pfPNP -dipeptide complexes. The pfPNP demonstrated significant stability upon binding with each of the identified dipeptides with ΔG of over -168 kcal/mol. Additionally, DFT and ADME predictions indicated that  electronic structure, energetics, and pharmacokinetic properties of  selected dipeptides were favorable for drug development. Our comprehensive computational investigation has identified these four dipeptides as promising candidates. These designed and selected dipeptides may further be modified using peptidomimetic and medicinal chemistry tools to develop a novel class of promising antimalarials.

14.
Molecules ; 29(10)2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38792178

RESUMO

Malaria remains an important and challenging infectious disease, and novel antimalarials are required. Benzyl isothiocyanate (BITC), the main breakdown product of benzyl glucosinolate, is present in all parts of Tropaeolum majus L. (T. majus) and has antibacterial and antiparasitic activities. To our knowledge, there is no information on the effects of BITC against malaria. The present study evaluates the antimalarial activity of aqueous extracts of BITC and T. majus seeds, leaves, and stems. We used flow cytometry to calculate the growth inhibition (GI) percentage of the extracts and BITC against unsynchronized cultures of the chloroquine-susceptible Plasmodium falciparum 3D7 - GFP strain. Extracts and/or compounds with at least 70% GI were validated by IC50 estimation against P. falciparum 3D7 - GFP and Dd2 (chloroquine-resistant strain) unsynchronized cultures by flow cytometry, and the resistance index (RI) was determined. T. majus aqueous extracts showed some antimalarial activity that was higher in seeds than in leaves or stems. BITC's GI was comparable to chloroquine's. BITC's IC50 was similar in both strains; thus, a cross-resistance absence with aminoquinolines was found (RI < 1). BITC presented features that could open new avenues for malaria drug discovery.


Assuntos
Antimaláricos , Isotiocianatos , Nasturtium , Extratos Vegetais , Plasmodium falciparum , Antimaláricos/farmacologia , Antimaláricos/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Isotiocianatos/farmacologia , Isotiocianatos/química , Plasmodium falciparum/efeitos dos fármacos , Nasturtium/química , Humanos , Folhas de Planta/química , Sementes/química , Cloroquina/farmacologia
15.
Indian J Crit Care Med ; 28(Suppl 2): S59-S66, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39234225

RESUMO

Malaria is a worldwide health concern, but a great majority of cases occur in tropical countries like India. With almost 95% of Indian population living in malaria endemic regions, India contributes to most of the global malaria cases and deaths, outside of African countries. Despite significant advances towards malaria control and eradication, mortality associated with severe malaria remains particularly high. Changing epidemiology, vulnerable patient population, overlapping symptomatology, and limited availability of parenteral preparations of artemisinin derivatives pose significant challenges in management of severe malaria. Further, the dearth of large-scale randomized trials from the developing countries makes it difficult to establish evidence-based guidelines pertaining to their situation. Thus, this position paper aims to provide guidance to critical care physicians across the country on managing patients with severe malaria in intensive care units (ICUs). How to cite this article: Hegde A, Chhallani AK, Gupta B, Kadapatti K, Karnad D, Maheshwarappa HM, et al. ISCCM Position Statement on the Management of Severe Malaria in Intensive Care Unit. Indian J Crit Care Med 2024;28(S2):S59-S66.

16.
Antimicrob Agents Chemother ; 67(11): e0058923, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37819090

RESUMO

Drug resistance to commercially available antimalarials is a major obstacle in malaria control and elimination, creating the need to find new antiparasitic compounds with novel mechanisms of action. The success of kinase inhibitors for oncological treatments has paved the way for the exploitation of protein kinases as drug targets in various diseases, including malaria. Casein kinases are ubiquitous serine/threonine kinases involved in a wide range of cellular processes such as mitotic checkpoint signaling, DNA damage response, and circadian rhythm. In Plasmodium, it is suggested that these protein kinases are essential for both asexual and sexual blood-stage parasites, reinforcing their potential as targets for multi-stage antimalarials. To identify new putative PfCK2α inhibitors, we utilized an in silico chemogenomic strategy involving virtual screening with docking simulations and quantitative structure-activity relationship predictions. Our investigation resulted in the discovery of a new quinazoline molecule (542), which exhibited potent activity against asexual blood stages and a high selectivity index (>100). Subsequently, we conducted chemical-genetic interaction analysis on yeasts with mutations in casein kinases. Our chemical-genetic interaction results are consistent with the hypothesis that 542 inhibits yeast Cka1, which has a hinge region with high similarity to PfCK2α. This finding is in agreement with our in silico results suggesting that 542 inhibits PfCK2α via hinge region interaction.


Assuntos
Antimaláricos , Malária Falciparum , Malária , Plasmodium , Antimaláricos/farmacologia , Caseína Quinase II/antagonistas & inibidores , Malária/tratamento farmacológico , Malária/parasitologia , Malária Falciparum/parasitologia , Plasmodium/metabolismo , Plasmodium falciparum
17.
Antimicrob Agents Chemother ; 67(8): e0035623, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37428074

RESUMO

Malaria parasites in the blood stage express a single transmembrane transport protein for the release of the glycolytic end product l-lactate/H+ from the cell. This transporter is a member of the strictly microbial formate-nitrite transporter (FNT) family and a novel putative drug target. Small, drug-like FNT inhibitors potently block lactate transport and kill Plasmodium falciparum parasites in culture. The protein structure of Plasmodium falciparum FNT (PfFNT) in complex with the inhibitor has been resolved and confirms its previously predicted binding site and its mode of action as a substrate analog. Here, we investigated the mutational plasticity and essentiality of the PfFNT target on a genetic level, and established its in vivo druggability using mouse malaria models. We found that, besides a previously identified PfFNT G107S resistance mutation, selection of parasites at 3 × IC50 (50% inhibitory concentration) gave rise to two new point mutations affecting inhibitor binding: G21E and V196L. Conditional knockout and mutation of the PfFNT gene showed essentiality in the blood stage, whereas no phenotypic defects in sexual development were observed. PfFNT inhibitors mainly targeted the trophozoite stage and exhibited high potency in P. berghei- and P. falciparum-infected mice. Their in vivo activity profiles were comparable to that of artesunate, demonstrating strong potential for the further development of PfFNT inhibitors as novel antimalarials.


Assuntos
Antimaláricos , Malária Falciparum , Parasitos , Animais , Camundongos , Transportadores de Ácidos Monocarboxílicos/química , Transportadores de Ácidos Monocarboxílicos/genética , Plasmodium falciparum/genética , Plasmodium falciparum/metabolismo , Malária Falciparum/parasitologia , Antimaláricos/farmacologia , Antimaláricos/química , Parasitos/metabolismo , Lactatos/metabolismo , Plasmodium berghei/genética , Plasmodium berghei/metabolismo , Proteínas de Protozoários/metabolismo
18.
BMC Med ; 21(1): 119, 2023 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-36991404

RESUMO

Severe malaria is a potentially fatal condition that requires urgent treatment. In a clinical trial, a sub-group of children treated with rectal artesunate (RAS) before being referred to a health facility had an increased chance of survival. We recently published in BMC Medicine results of the CARAMAL Project that did not find the same protective effect of pre-referral RAS implemented at scale under real-world conditions in three African countries. Instead, CARAMAL identified serious health system shortfalls that impacted the entire continuum of care, constraining the effectiveness of RAS. Correspondence to the article criticized the observational study design and the alleged interpretation and consequences of our findings.Here, we clarify that we do not dispute the life-saving potential of RAS, and discuss the methodological criticism. We acknowledge the potential for confounding in observational studies. Nevertheless, the totality of CARAMAL evidence is in full support of our conclusion that the conditions under which RAS can be beneficial were not met in our settings, as children often failed to complete referral and post-referral treatment was inadequate.The criticism did not appear to acknowledge the realities of highly malarious settings documented in detail in the CARAMAL project. Suggesting that trial-demonstrated efficacy is sufficient to warrant large-scale deployment of pre-referral RAS ignores the paramount importance of functioning health systems for its delivery, for completing post-referral treatment, and for achieving complete cure. Presenting RAS as a "magic bullet" distracts from the most urgent priority: fixing health systems so they can provide a functioning continuum of care and save the lives of sick children.The data underlying our publication is freely accessible on Zenodo.


Assuntos
Antimaláricos , Artemisininas , Malária , Criança , Humanos , Pré-Escolar , Artesunato/uso terapêutico , Antimaláricos/uso terapêutico , Artemisininas/uso terapêutico , Administração Retal , Malária/tratamento farmacológico , Encaminhamento e Consulta , Bisacodil/uso terapêutico
19.
Lupus ; 32(1): 74-82, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36346921

RESUMO

OBJECTIVES: We aimed to investigate the rate of non-adherence to antimalarials and glucocorticoids (GCs) and to analyze their potential relationships with sociodemographic characteristics, disease activity and accumulate damage in a cohort of Systemic lupus erythematosus (SLE) patients. METHODS: A cross-sectional study was conducted among 670 patients. The Systemic Lupus Erythematosus Activity Questionnaire (SLAQ) and the Lupus Damage Index Questionnaire (LDIQ) were used to assess disease activity and accumulated damage. RESULTS: The prevalence of non-adherence to antimalarials and GCs were 10.67% and 39.61%. 86.9% of participants indicated that the reason for stopping therapy was the presence of side effects. SLE patients with non-adherence to antimalarials and GCs had significantly higher scores in disease severity (SLAQ) compared to adherence patients (5.03 (2.12) vs 4.39 (2.61); p = .004 and (4.75 (2.29) vs 4.05 (2.78); p ≤ .001). CONCLUSION: Adherence to the treatment indicated in SLE differs from drug to drug. Findings highlight the importance of developing interventions to support adherence and improve outcomes among patients.


Assuntos
Antimaláricos , Lúpus Eritematoso Sistêmico , Humanos , Lúpus Eritematoso Sistêmico/complicações , Glucocorticoides/uso terapêutico , Antimaláricos/uso terapêutico , Autorrelato , Estudos Transversais , Índice de Gravidade de Doença
20.
Malar J ; 22(1): 189, 2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37340324

RESUMO

Three-day artemisinin-based combination therapy (ACT) is the current standard of care for the treatment of malaria. However, specific drug resistance associated with reduced efficacy of ACT has been observed, therefore necessitating the clinical development of new anti-malarial drugs and drug combinations. Previously, Single Encounter Radical Cure and Prophylaxis (SERCAP) has been proposed as ideal target-product-profile for any new anti-malarial drug regimen as this would improve treatment adherence besides ensuring complete cure and prevention of early reinfection. Arguably, this concept may not be ideal as it (1) necessitates administration of an excessively high dose of drug to achieve plasmodicidal plasma levels for a sufficient time span, (2) increases the risk for drug related adverse drug reactions, and (3) leaves the patient with a one-time opportunity to achieve-or not-cure by a single drug intake. Over the past years, SERCAP has led to the halt of promising drug development programmes, leading to potentially unnecessary attrition in the anti-malarial development pipeline. One proposition could be the concept of single-day multi-dose regimens as a potentially better alternative, as this allows to (1) administer a lower dose of the drug at each time-point leading to better tolerability and safety, (2) increase treatment adherence based on the intake of the anti-malarial drug within 24 h when malaria-related symptoms are still present, and (3) have more than one opportunity for adequate intake of the drug in case of early vomiting or other factors causing reduced bioavailability. In line with a recently published critical viewpoint on the concept of SERCAP, an alternative proposition is-in contrast to the current World Health Organization (WHO) treatment guidelines-to aim for less than three days, but still multiple-dose anti-malarial treatment regimens. This may help to strike the optimal balance between improving treatment adherence, maximizing treatment effectiveness, while keeping attrition of new drugs and drug regimens as low as possible.


Assuntos
Antimaláricos , Artemisininas , Malária Falciparum , Malária , Humanos , Malária Falciparum/tratamento farmacológico , Malária/tratamento farmacológico , Combinação de Medicamentos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA