Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.658
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
J Biol Chem ; 300(7): 107453, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38852886

RESUMO

Identification of a conserved G-quadruplex in E165R of ASFVAfrican swine fever virus (ASFV) is a double-stranded DNA arbovirus with high transmissibility and mortality rates. It has caused immense economic losses to the global pig industry. Currently, no effective vaccines or medications are to combat ASFV infection. G-quadruplex (G4) structures have attracted increasing interest because of their regulatory role in vital biological processes. In this study, we identified a conserved G-rich sequence within the E165R gene of ASFV. Subsequently, using various methods, we verified that this sequence could fold into a parallel G4. In addition, the G4-stabilizers pyridostatin and 5,10,15,20-tetrakis-(N-methyl-4-pyridyl) porphin (TMPyP4) can bind and stabilize this G4 structure, thereby inhibiting E165R gene expression, and the inhibitory effect is associated with G4 formation. Moreover, the G4 ligand pyridostatin substantially impeded ASFV proliferation in Vero cells by reducing gene copy number and viral protein expression. These compelling findings suggest that G4 structures may represent a promising and novel antiviral target against ASFV.


Assuntos
Vírus da Febre Suína Africana , Antivirais , Quadruplex G , Vírus da Febre Suína Africana/genética , Vírus da Febre Suína Africana/metabolismo , Animais , Chlorocebus aethiops , Células Vero , Antivirais/farmacologia , Antivirais/química , Suínos , Febre Suína Africana/virologia , Febre Suína Africana/metabolismo , Porfirinas/química , Porfirinas/farmacologia , Ácidos Picolínicos/química , Ácidos Picolínicos/farmacologia , Ácidos Picolínicos/metabolismo , Replicação Viral/efeitos dos fármacos , Proteínas Virais/genética , Proteínas Virais/metabolismo , Proteínas Virais/química , Aminoquinolinas
2.
J Virol ; 98(2): e0181423, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38289103

RESUMO

HDAC6, a structurally and functionally unique member of the histone deacetylase (HDAC) family, is an important host factor that restricts viral infection. The broad-spectrum antiviral activity of HDAC6 makes it a potent antiviral agent. Previously, we found that HDAC6 functions to antagonize porcine deltacoronavirus (PDCoV), an emerging enteropathogenic coronavirus with zoonotic potential. However, the final outcome is typically a productive infection that materializes as cells succumb to viral infection, indicating that the virus has evolved sophisticated mechanisms to combat the antiviral effect of HDAC6. Here, we demonstrate that PDCoV nonstructural protein 5 (nsp5) can cleave HDAC6 at glutamine 519 (Q519), and cleavage of HDAC6 was also detected in the context of PDCoV infection. More importantly, the anti-PDCoV activity of HDAC6 was damaged by nsp5 cleavage. Mechanistically, the cleaved HDAC6 fragments (amino acids 1-519 and 520-1159) lost the ability to degrade PDCoV nsp8 due to their impaired deacetylase activity. Furthermore, nsp5-mediated cleavage impaired the ability of HDAC6 to activate RIG-I-mediated interferon responses. We also tested three other swine enteric coronaviruses (transmissible gastroenteritis virus, porcine epidemic diarrhea virus, and swine acute diarrhea syndrome-coronavirus) and found that all these coronaviruses have adopted similar mechanisms to cleave HDAC6 in both an overexpression system and virus-infected cells, suggesting that cleavage of HDAC6 is a common strategy utilized by swine enteric coronaviruses to antagonize the host's antiviral capacity. Together, these data illustrate how swine enteric coronaviruses antagonize the antiviral function of HDAC6 to maintain their infection, providing new insights to the interaction between virus and host.IMPORTANCEViral infections and host defenses are in constant opposition. Once viruses combat or evade host restriction, productive infection is achieved. HDAC6 is a broad-spectrum antiviral protein that has been demonstrated to inhibit many viruses, including porcine deltacoronavirus (PDCoV). However, whether HDAC6 is reciprocally targeted and disabled by viruses remains unclear. In this study, we used PDCoV as a model and found that HDAC6 is targeted and cleaved by nsp5, a viral 3C-like protease. The cleaved HDAC6 loses its deacetylase activity as well as its ability to degrade viral proteins and activate interferon responses. Furthermore, this cleavage mechanism is shared among other swine enteric coronaviruses. These findings shed light on the intricate interplay between viruses and HDAC6, highlighting the strategies employed by viruses to evade host antiviral defenses.


Assuntos
Infecções por Coronavirus , Coronavirus , Doenças dos Suínos , Animais , Coronavirus/fisiologia , Infecções por Coronavirus/veterinária , Infecções por Coronavirus/virologia , Deltacoronavirus , Interferons/metabolismo , Suínos , Doenças dos Suínos/virologia
3.
Mol Cell Proteomics ; 22(12): 100676, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37940003

RESUMO

Extracellular vesicles (EVs) are biomolecule carriers for intercellular communication in health and disease. Nef is a HIV virulence factor that is released from cells within EVs and is present in plasma EVs of HIV-1 infected individuals. We performed a quantitative proteomic analysis to fully characterize the Nef-induced changes in protein composition of T cell-derived EVs and identify novel host targets of HIV. Several proteins with well-described roles in infection or not previously associated with HIV pathogenesis were specifically modulated by Nef in EVs. Among the downregulated proteins are the interferon-induced transmembrane 1, 2, and 3 (IFITM1-3) proteins, broad-spectrum antiviral factors known to be cell-to-cell transferable by EVs. We demonstrate that Nef depletes IFITM1-3 from EVs by excluding these proteins from the plasma membrane and lipid rafts, which are sites of EVs biogenesis in T cells. Our data establish Nef as a modulator of EVs' global protein content and as an HIV factor that antagonizes IFITMs.


Assuntos
Vesículas Extracelulares , Infecções por HIV , HIV-1 , Humanos , Linfócitos T , Proteoma/metabolismo , Proteômica , Vesículas Extracelulares/metabolismo , Interferons/metabolismo , Infecções por HIV/metabolismo , Antivirais/metabolismo
4.
Am J Physiol Renal Physiol ; 326(6): F931-F941, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38634132

RESUMO

Coronavirus disease 2019 (COVID-19) induces respiratory dysfunction as well as kidney injury. Although the kidney is considered a target organ of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and affected by the COVID-19-induced cytokine storm, the mechanisms of renal reaction in SARS-CoV-2 infection are unknown. In this study, a murine COVID-19 model was induced by nasal infection with mouse-adapted SARS-CoV-2 (MA10). MA10 infection induced body weight loss along with lung inflammation in mice 4 days after infection. Serum creatinine levels and the urinary albumin/creatinine ratio increased on day 4 after MA10 infection. Measurement of the urinary neutrophil gelatinase-associated lipocalin/creatinine ratio and hematoxylin and eosin staining revealed tubular damage in MA10-infected murine kidneys, indicating kidney injury in the murine COVID-19 model. Interferon (IFN)-γ and interleukin-6 upregulation in the sera of MA10-infected mice, along with the absence of MA10 in the kidneys, implied that the kidneys were affected by the MA10 infection-induced cytokine storm rather than by direct MA10 infection of the kidneys. RNA-sequencing analysis revealed that antiviral genes, such as the IFN/Janus kinase (JAK) pathway, were upregulated in MA10-infected kidneys. Upon administration of the JAK inhibitor baricitinib on days 1-3 after MA10 infection, an antiviral pathway was suppressed, and MA10 was detected more frequently in the kidneys. Notably, JAK inhibition upregulated the hypoxia response and exaggerated kidney injury. These results suggest that endogenous antiviral activity protects against SARS-CoV-2-induced kidney injury in the early phase of infection, providing valuable insights into the pathogenesis of COVID-19-associated nephropathy.NEW & NOTEWORTHY Patients frequently present with acute kidney injury or abnormal urinary findings after severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Here, we investigated how the kidneys respond during SARS-CoV-2 infection using a murine coronavirus disease 2019 (COVID-19) model and showed that Janus kinase-mediated endogenous antiviral activity protects against kidney injury in the early phase of SARS-CoV-2 infection. These findings provide valuable insights into the renal pathophysiology of COVID-19.


Assuntos
COVID-19 , Inibidores de Janus Quinases , Purinas , Pirazóis , SARS-CoV-2 , Sulfonamidas , Animais , COVID-19/complicações , Inibidores de Janus Quinases/farmacologia , Inibidores de Janus Quinases/uso terapêutico , Sulfonamidas/farmacologia , Camundongos , Purinas/farmacologia , Pirazóis/farmacologia , Modelos Animais de Doenças , Injúria Renal Aguda/virologia , Injúria Renal Aguda/etiologia , Injúria Renal Aguda/metabolismo , Azetidinas/farmacologia , Azetidinas/uso terapêutico , Janus Quinases/metabolismo , Janus Quinases/antagonistas & inibidores , Rim/patologia , Rim/virologia , Rim/metabolismo , Rim/efeitos dos fármacos , Tratamento Farmacológico da COVID-19 , Antivirais/farmacologia , Antivirais/uso terapêutico , Masculino , Camundongos Endogâmicos C57BL
5.
J Med Virol ; 96(3): e29491, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38402626

RESUMO

Severe fever with thrombocytopenia syndrome (SFTS) is an emerging tick-borne hemorrhagic fever disease with high fatality rate of 10%-20%. Vaccines or specific therapeutic measures remain lacking. Human interferon inducible transmembrane protein 3 (hIFITM3) is a broad-spectrum antiviral factor targeting viral entry. However, the antiviral activity of hIFITM3 against SFTS virus (SFTSV) and the functional mechanism of IFITM3 remains unclear. Here we demonstrate that endogenous IFITM3 provides protection against SFTSV infection and participates in the anti-SFTSV effect of type Ⅰ and Ⅲ interferons (IFNs). IFITM3 overexpression exhibits anti-SFTSV function by blocking Gn/Gc-mediated viral entry and fusion. Further studies showed that IFITM3 binds SFTSV Gc directly and its intramembrane domain (IMD) is responsible for this interaction and restriction of SFTSV entry. Mutation of two neighboring cysteines on IMD weakens IFITM3-Gc interaction and attenuates the antiviral activity of IFITM3, suggesting that IFITM3-Gc interaction may partly mediate the inhibition of SFTSV entry. Overall, our data demonstrate for the first time that hIFITM3 plays a critical role in the IFNs-mediated anti-SFTSV response, and uncover a novel mechanism of IFITM3 restriction of SFTSV infection, highlighting the potential of clinical intervention on SFTS disease.


Assuntos
Fatores de Restrição Antivirais , Infecções por Bunyaviridae , Febre Grave com Síndrome de Trombocitopenia , Humanos , Infecções por Bunyaviridae/imunologia , Proteínas de Membrana/imunologia , Phlebovirus , Proteínas de Ligação a RNA/imunologia , Febre Grave com Síndrome de Trombocitopenia/imunologia , Proteínas Virais/metabolismo , Internalização do Vírus , Fatores de Restrição Antivirais/imunologia
6.
Microb Pathog ; : 106791, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39019121

RESUMO

BACKGROUND: The Pseudorabies Virus (PRV) leading to pseudorabies and causes huge economic losses in pig industry. The development of novel PRV variations has diminished the efficacy of traditional vaccinations, and there is yet no medication that can stop the spread of PRV infection. Therefore, PRV eradication is challenging. Oregano essential oil, the plant-based ingredient for medication feed have been shown to has strong anti-herpesvirus activity, but no anti-PRV function has been reported. RESULTS: The current study assessed the anti-pseudorabies virus (PRV) activity of oregano essential oil and explored its mechanisms and most effective components against PRV. Our in vivo findings demonstrated that oregano essential oil could decrease the PRV load in tissues, mitigate tissue lesions, and enhance the survival rate of mice. The potential antiviral mechanism involves augmenting humoral and cellular immune responses in PRV-infected mice. To further investigate the most effective components of oregano essential oil against PRV, an in vitro study was conducted, revealing that oregano essential oil and its main constituents, carvacrol and thymol, all diminished PRV intracellular proliferation in vitro. Carvacrol exhibited the most potent anti-PRV effect, serving as the primary contributor to oregano essential oil's anti-PRV activity. The mechanisms underlying carvacrol's anti-PRV properties include the upregulation of cytokines TNF-α, IFN-ß, IFN-γ, IL-12, and the inhibition of PRV-induced apoptosis in BHK-21 cells. CONCLUSIONS: Our study provides an effective drug for the prevention and control of PRV infection.

7.
Microb Pathog ; 190: 106628, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38508422

RESUMO

Rotavirus infections in suckling and weaning piglets cause severe dehydration and death, resulting in significant economic losses in the pig breeding industry. With the continuous emergence of porcine rotavirus (PoRV) variants and poor vaccine cross-protection among various genotypes, there is an urgent need to develop alternative strategies such as seeking effective antiviral products from nature, microbial metabolites and virus-host protein interaction. Sialidases play a crucial role in various physiopathological processes and offer a promising target for developing antivirus drugs. However, the effect of bacterial-derived sialidases on the infection of PoRVs remains largely unknown. Herein, we investigated the impact of bacterial-derived sialidases (sialidase Cp and Vc) on PoRV strain OSU(Group A) infection, using differentiated epithelial monkey kidney cells (MA104) as a model. Our results indicated that the pretreatment of MA104 with exogenous sialidases effectively suppressed PoRV OSU in a concentration-dependent manner. Notably, even at a concentration of 0.01 µU/mL, sialidases significantly inhibited the virus (MOI = 0.01). Meanwhile, we found that sialidase Vc pretreatment sharply reduced the binding rate of PoRV OSU. Last, we demonstrated that PoRV OSU might recognize α-2,3-linked sialic acid as the primary attachment factor in MA104. Our findings provide new insights into the underlying mechanism of PoRV OSU infections, shedding lights on the development of alternative antivirus approaches based on bacteria-virus interaction.


Assuntos
Neuraminidase , Infecções por Rotavirus , Rotavirus , Replicação Viral , Animais , Neuraminidase/metabolismo , Neuraminidase/genética , Rotavirus/efeitos dos fármacos , Rotavirus/fisiologia , Suínos , Replicação Viral/efeitos dos fármacos , Linhagem Celular , Células Epiteliais/virologia , Células Epiteliais/microbiologia , Ligação Viral/efeitos dos fármacos , Ácido N-Acetilneuramínico/metabolismo , Ácido N-Acetilneuramínico/farmacologia , Antivirais/farmacologia , Haplorrinos , Doenças dos Suínos/virologia , Doenças dos Suínos/microbiologia
8.
Arch Biochem Biophys ; 758: 110080, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38960345

RESUMO

Glycyrrhizinic acid (GA) is one of the active substances in licorice root. It exhibits antiviral activity against various enveloped viruses, for example, SARS-CoV-2. GA derivatives are promising biologically active compounds from perspective of developing broad-spectrum antiviral agents. Given that GA nicotinate derivatives (Glycyvir) demonstrate activity against various DNA- and RNA-viruses, a search for a possible mechanism of action of these compounds is required. In the present paper, the interaction of Glycyvir with the transmembrane domain of the SARS-CoV-2 E-protein (ETM) in a model lipid membrane was investigated by NMR spectroscopy and molecular dynamics simulation. The lipid-mediated influence on localization of the SARS-CoV-2 E-protein by Glycyvir was observed. The presence of Glycyvir leads to deeper immersion of the ETM in lipid bilayer. Taking into account that E-protein plays a significant role in virus production and takes part in virion assembly and budding, the data on the effect of potential antiviral agents on ETM localization and structure in the lipid environment may provide a basis for further studies of potential coronavirus E-protein inhibitors.


Assuntos
Antivirais , Ácido Glicirrízico , Bicamadas Lipídicas , Simulação de Dinâmica Molecular , SARS-CoV-2 , Bicamadas Lipídicas/metabolismo , Bicamadas Lipídicas/química , Ácido Glicirrízico/farmacologia , Ácido Glicirrízico/química , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/metabolismo , Antivirais/farmacologia , Antivirais/química , Proteínas do Envelope de Coronavírus/metabolismo , Proteínas do Envelope de Coronavírus/química , Humanos , Domínios Proteicos , Tratamento Farmacológico da COVID-19
9.
Virol J ; 21(1): 150, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38965549

RESUMO

Porcine reproductive and respiratory syndrome (PRRS) is endemic worldwide, seriously affecting the development of the pig industry, but vaccines have limited protective effects against PRRSV transmission. The aim of this study was to identify potential anti-PRRSV drugs. We examined the cytotoxicity of seven compounds formulated based on the mass ratio of glycyrrhizic acid to matrine and calculated their inhibition rates against PRRSV in vitro. The results showed that the seven compounds all had direct killing and therapeutic effects on PRRSV, and the compounds inhibited PRRSV replication in a time- and dose-dependent manner. The compound with the strongest anti-PRRSV effect was selected for subsequent in vivo experiments. Pigs were divided into a control group and a medication group for the in vivo evaluation. The results showed that pigs treated with the 4:1 compound had 100% morbidity after PRRSV challenge, and the mortality rate reached 75% on the 8th day of the virus challenge. These results suggest that this compound has no practical anti-PRRSV effect in vivo and can actually accelerate the death of infected pigs. Next, we further analyzed the pigs that exhibited semiprotective effects following vaccination with the compound to determine whether the compound can synergize with the vaccine in vivo. The results indicated that pigs treated with the compound had higher mortality rates and more severe clinical reactions after PRRSV infection (p < 0.05). The levels of proinflammatory cytokines (IL-6, IL-8, IL-1ß, IFN-γ, and TNF-α) were significantly greater in the compound-treated pigs than in the positive control-treated pigs (p < 0.05), and there was no synergistic enhancement with the live attenuated PRRSV vaccine (p < 0.05). The compound enhanced the inflammatory response, prompted the body to produce excessive levels of inflammatory cytokines and caused body damage, preventing a therapeutic effect. In conclusion, the present study revealed that the in vitro effectiveness of these agents does not indicate that they are effective in vivo or useful for developing anti-PRRSV drugs. Our findings also showed that, to identify effective anti-PRRSV drugs, comprehensive drug screening is needed, for compounds with solid anti-inflammatory effects both in vitro and in vivo. Our study may aid in the development of new anti-PRRSV drugs.


Assuntos
Alcaloides , Antivirais , Ácido Glicirrízico , Matrinas , Síndrome Respiratória e Reprodutiva Suína , Vírus da Síndrome Respiratória e Reprodutiva Suína , Quinolizinas , Replicação Viral , Animais , Vírus da Síndrome Respiratória e Reprodutiva Suína/efeitos dos fármacos , Alcaloides/farmacologia , Quinolizinas/farmacologia , Quinolizinas/uso terapêutico , Suínos , Antivirais/farmacologia , Antivirais/uso terapêutico , Ácido Glicirrízico/farmacologia , Ácido Glicirrízico/uso terapêutico , Síndrome Respiratória e Reprodutiva Suína/tratamento farmacológico , Síndrome Respiratória e Reprodutiva Suína/virologia , Síndrome Respiratória e Reprodutiva Suína/prevenção & controle , Replicação Viral/efeitos dos fármacos , Citocinas/metabolismo , Análise de Sobrevida
10.
Arch Microbiol ; 206(6): 269, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38767708

RESUMO

Bacteriocins are ribosomally synthesized bacterial peptides endowed with antibacterial, antiprotozoal, anticancer and antiviral activities. In the present study, we evaluated the antiviral activities of two bacteriocins, enterocin DD14 (EntDD14) and lacticaseicin 30, against herpes simplex virus type 1 (HSV-1), human coronavirus 229E (HCoV-229E) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in Vero, Huh7 and Vero E6 cells, respectively. In addition, the interactions of these bacteriocins with the envelope glycoprotein D of HSV-1 and the receptor binding domains of HCoV-229E and SARS-CoV-2 have been computationally evaluated using protein-protein docking and molecular dynamics simulations. HSV-1 replication in Vero cells was inhibited by EntDD14 and, to a lesser extent, by lacticaseicin 30 added to cells after virus inoculation. EntDD14 and lacticaseicin 30 had no apparent antiviral activity against HCoV-229E; however, EntDD14 was able to inhibit SARS-CoV-2 in Vero E6 cells. Further studies are needed to elucidate the antiviral mechanism of these bacteriocins.


Assuntos
Antivirais , Bacteriocinas , SARS-CoV-2 , Bacteriocinas/farmacologia , Chlorocebus aethiops , Animais , Antivirais/farmacologia , Células Vero , Humanos , SARS-CoV-2/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Herpesvirus Humano 1/efeitos dos fármacos , Herpesvirus Humano 1/fisiologia , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Hidrocarbonetos Aromáticos com Pontes
11.
Nitric Oxide ; 147: 26-41, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38614230

RESUMO

Nitric oxide (NO) acts in different physiological processes, such as blood pressure control, antiparasitic activities, neurotransmission, and antitumor action. Among the exogenous NO donors, ruthenium nitrosyl/nitro complexes are potential candidates for prodrugs, due to their physicochemical properties, such as thermal and physiological pH stability. In this work, we proposed the synthesis and physical characterization of the new nitro terpyridine ruthenium (II) complexes of the type [RuII(L)(NO2)(tpy)]PF6 where tpy = 2,2':6',2″-terpyridine; L = 3,4-diaminobenzoic acid (bdq) or o-phenylenediamine (bd) and evaluation of influence of diimine bidentate ligand NH.NHq-R (R = H or COOH) in the HSA/DNA interaction as well as antiviral activity. The interactions between HSA and new nitro complexes [RuII(L)(NO2)(tpy)]+ were evaluated. The Ka values for the HSA-[RuII(bdq)(NO2)(tpy)]+ is 10 times bigger than HSA-[RuII(bd)(NO2)(tpy)]+. The sites of interaction between HSA and the complexes via synchronous fluorescence suppression indicate that the [RuII(bdq)(NO2)(tpy)]+ is found close to the Trp-241 residue, while the [RuII(bd)(NO2)(tpy)]+ complex is close to Tyr residues. The interaction with fish sperm fs-DNA using direct spectrophotometric titration (Kb) and ethidium bromide replacement (KSV and Kapp) showed weak interaction in the system fs-DNA-[RuII(bdq)(NO)(tpy)]+. Furthermore, fs-DNA-[RuII(bd)(NO2)(tpy)]+ and fs-DNA-[RuII(bd)(NO)(tpy)]3+ system showed higher intercalation constant. Circular dichroism spectra for fs-DNA-[RuII(bd)(NO2)(tpy)]+ and fs-DNA-[RuII(bd)(NO)(tpy)]3+, suggest semi-intercalative accompanied by major groove binding interaction modes. The [RuII(bd)(NO2)(tpy)]+ and [RuII(bd)(NO)(tpy)]3+ inhibit replication of Zika and Chikungunya viruses based in the nitric oxide release under S-nitrosylation reaction with cysteine viral.


Assuntos
Antivirais , DNA , Rutênio , Humanos , DNA/metabolismo , DNA/química , Rutênio/química , Rutênio/farmacologia , Antivirais/farmacologia , Antivirais/química , Antivirais/metabolismo , Ligantes , Animais , Albumina Sérica Humana/química , Albumina Sérica Humana/metabolismo , Piridinas/química , Piridinas/farmacologia , Iminas/química , Iminas/farmacologia , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química , Complexos de Coordenação/metabolismo
12.
Microb Cell Fact ; 23(1): 117, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38644470

RESUMO

Several antiviral agents lost their efficacy due to their severe side effects and virus mutations. This study aimed to identify and optimize the conditions for exopolysaccharide (EPS) production from a newly isolated cyanobacterium, Acaryochloris Al-Azhar MNE ON864448.1, besides exploring its antiviral activity. The cyanobacterial EPS was purified through DEAE-52 cellulose column with a final yield of 83.75%. Different analysis instruments were applied for EPS identification, including Fourier-transform infrared (FT-IR) spectroscopy, thermogravimetric analysis (TGA), and gas chromatographic-mass spectrometry (GC-MS). Plackett-Burman's design demonstrated that working volume (X1), EDTA (X2), inoculum size (X3), CaCl2 (X4), and NaCl (X5) are the most important variables influencing EPS production. Central composite design (CCD) exhibited maximum EPS yield (9.27 mg/mL) at a working volume of 300 mL in a 1 L volumetric flask, EDTA 0.002 g/L, inoculum size 7%, CaCl2 0.046 g/L, and NaCl 20 g/L were applied. EPS showed potent antiviral activities at different stages of herpes simplex virus type-1 and 2 (HSV-1, HSV-2), adenovirus (ADV) and coxsackievirus (A16) infections. The highest half-maximal inhibitory concentration (IC50) (6.477 µg/mL) was recorded during HSV-1 internalization mechanism, while the lowest IC50 (0.005669 µg/mL) was recorded during coxsackievirus neutralization mechanism.


Assuntos
Antivirais , Cianobactérias , Polissacarídeos Bacterianos , Antivirais/farmacologia , Antivirais/química , Antivirais/isolamento & purificação , Cianobactérias/química , Polissacarídeos Bacterianos/farmacologia , Polissacarídeos Bacterianos/química , Polissacarídeos Bacterianos/isolamento & purificação , Polissacarídeos Bacterianos/biossíntese , Animais , Humanos , Espectroscopia de Infravermelho com Transformada de Fourier , Chlorocebus aethiops
13.
Bioorg Med Chem Lett ; 101: 129651, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38342391

RESUMO

A novel kind of potent HIV-1 protease inhibitors, containing diverse hydroxyphenylacetic acids as the P2-ligands and 4-substituted phenyl sulfonamides as the P2' ligands, were designed, synthesized and evaluated in this work. Majority of the target compounds exhibited good to excellent activity against HIV-1 protease with IC50 values below 200 nM. In particular, compound 18d with a 2-(3,4-dihydroxyphenyl) acetamide as the P2 ligand and a 4- methoxybenzene sulfonamide P2' ligand exhibited inhibitory activity IC50 value of 0.54 nM, which was better than that of the positive control darunavir (DRV). More importantly, no significant decline of the potency against HIV-1DRVRS (DRV-resistant mutation) and HIV-1NL4_3 variant (wild type) for 18d was detected. The molecular docking study of 18d with HIV-1 protease (PDB-ID: 1T3R, www.rcsb.org) revealed possible binding mode with the HIV-1 protease. These results suggested the validity of introducing phenol-derived moieties into the P2 ligand and deserve further optimization which was of great value for future discovery of novel HIV-1 protease.


Assuntos
Benzenoacetamidas , Inibidores da Protease de HIV , HIV-1 , Darunavir/metabolismo , Darunavir/farmacologia , HIV-1/genética , Simulação de Acoplamento Molecular , Ligantes , Protease de HIV/metabolismo , Sulfonamidas/química , Desenho de Fármacos , Cristalografia por Raios X , Relação Estrutura-Atividade
14.
Fish Shellfish Immunol ; 149: 109553, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38615704

RESUMO

Viral diseases have caused great economic losses to the aquaculture industry. However, there are currently no specific drugs to treat these diseases. Herein, we utilized Siniperca chuatsi as an experimental model, and successfully extracted two tissue factor pathway inhibitors (TFPIs) that were highly distributed in different tissues. We then designed four novel peptides based on the TFPIs, named TS20, TS25, TS16, and TS30. Among them, TS25 and TS30 showed good biosafety and high antiviral activity. Further studies showed that TS25 and TS30 exerted their antiviral functions by preventing viruses from invading Chinese perch brain (CPB) cells and disrupting Siniperca chuatsi rhabdovirus (SCRV)/Siniperca chuatsi ranairidovirus (SCRIV) viral structures. Additionally, compared with the control group, TS25 and TS30 could significantly reduce the mortality of Siniperca chuatsi, the relative protection rates of TS25 against SCRV and SCRIV were 71.25 % and 53.85 % respectively, and the relative protection rate of TS30 against SCRIV was 69.23 %, indicating that they also had significant antiviral activity in vivo. This study provided an approach for designing peptides with biosafety and antiviral activity based on host proteins, which had potential applications in the prevention and treatment of viral diseases.


Assuntos
Doenças dos Peixes , Infecções por Rhabdoviridae , Rhabdoviridae , Animais , Doenças dos Peixes/virologia , Infecções por Rhabdoviridae/veterinária , Infecções por Rhabdoviridae/imunologia , Infecções por Rhabdoviridae/prevenção & controle , Rhabdoviridae/fisiologia , Antivirais/farmacologia , Antivirais/química , Percas , Proteínas de Peixes/química , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Peptídeos/farmacologia , Peptídeos/química , Infecções por Vírus de RNA/veterinária , Infecções por Vírus de RNA/imunologia , Infecções por Vírus de RNA/prevenção & controle
15.
Fish Shellfish Immunol ; 148: 109519, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38508540

RESUMO

Viperin, also known as radical S-Adenosyl methionine domain containing 2 (RSAD2), is an IFN stimulated protein that plays crucial roles in innate immunity. Here, we identified a viperin gene from the koi carp (Cyprinus carpio) (kVip). The ORF of kVip is 1047 bp in length, encoding a polypeptide of 348 amino acids with neither signal peptide nor transmembrane protein. The predicted molecular weight is 40.37 kDa and the isoelectric point is 7.7. Multiple sequence alignment indicated that putative kVip contains a radical SAM superfamily domain and a conserved C-terminal region. kVip was highly expressed in the skin and spleen of healthy koi carps, and significantly stimulated in both natural and artificial CEV-infected koi carps. In vitro immune stimulation analysis showed that both extracellular and intracellular poly (I: C) or poly (dA: dT) caused a significant increase in kVip expression of spleen cells. Furthermore, intraperitoneal injection of recombinant kVip (rkVip) not only reduced the CEV load in the gills, but also improved the survival of koi carps following CEV challenge. Additionally, rkVip administration effectively regulated inflammatory and anti-inflammatory cytokines (IL-6, IL-1ß, TNF-α, IL-10) and interferon-related molecules (cGAS, STING, MyD88, IFN-γ, IFN-α, IRF3 and IRF9). Collectively, kVip effectively responded to CEV infection and exerted antiviral function against CEV partially by regulation of inflammatory and interferon responses.


Assuntos
Carpas , Doenças dos Peixes , Infecções por Poxviridae , Poxviridae , Animais , Carpas/genética , Edema , Interferons , Antivirais/farmacologia
16.
Bioorg Med Chem ; 98: 117552, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38128296

RESUMO

Decoration of nucleoside analogues with lipophilic groups often leads to compounds with improved antiviral activity. For example, N6-benzyladenosine derivatives containing elongated lipophilic substituents in the benzyl core efficiently inhibit reproduction of tick-borne encephalitis virus (TBEV), while N6-benzyladenosine itself potently inhibits reproduction of human enterovirus A71 (EV-A71). We have extended a series of N6-benzyladenosine analogues using effective synthetic methods of CC bond formation based on Pd-catalyzed cross-coupling reactions (Sonogashira and Suzuki) in order to study the influence of bulky lipophilic substituents in the N6 position of adenosine on the antiviral activity against flaviviruses, such as TBEV, yellow fever virus (YFV) and West Nile virus (WNV), as well as a panel of enteroviruses including EV-A71, Echovirus 30 (E30), and poliovirus type 2 (PV2). Reproduction of tested flaviviruses appeared to be inhibited by the micromolar concentrations of the compounds, while cytotoxicity in most cases was beyond the detection limit. Time-of-addition studies demonstrated that the hit compounds inhibited the stage of viral RNA synthesis, but not the stages of the viral entry or protein translation. As a result, several new promising antiflaviviral leads have been identified. On the other hand, none of the synthesized compounds inhibited enterovirus reproduction, indicating a possibility of involvement of flavivirus-specific pathways in their mechanism of action.


Assuntos
Adenosina/análogos & derivados , Vírus da Encefalite Transmitidos por Carrapatos , Vírus do Nilo Ocidental , Humanos , Paládio , Antivirais/farmacologia , Antivirais/química
17.
J Pept Sci ; 30(1): e3534, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37501572

RESUMO

The recent pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has highlighted how urgent and necessary the discovery of new antiviral compounds is for novel therapeutic approaches. Among the various classes of molecules with antiviral activity, antimicrobial peptides (AMPs) of innate immunity are among the most promising ones, mainly due to their different mechanisms of action against viruses and additional biological properties. In this review, the main physicochemical characteristics of AMPs are described, with particular interest toward peptides derived from amphibian skin. Living in aquatic and terrestrial environments, amphibians are one of the richest sources of AMPs with different primary and secondary structures. Besides describing the various antiviral activities of these peptides and the underlying mechanism, this review aims at emphasizing the high potential of these small molecules for the development of new antiviral agents that likely reduce the selection of resistant strains.


Assuntos
COVID-19 , Humanos , SARS-CoV-2 , Pandemias , Peptídeos Antimicrobianos , Peptídeos/farmacologia , Peptídeos/uso terapêutico , Antivirais/farmacologia , Antivirais/uso terapêutico
18.
Bioorg Chem ; 146: 107322, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38555797

RESUMO

Porcine Delta Coronavirus (PDCoV) infection can induce serious dehydration, diarrhea and even death of piglets, which has caused huge losses to the breeding industry. PDCoV has been reported to have the potential for cross species transmission, and even reports of infecting humans have emerged. At present, there are still no effective prevention and control measures for PDCoV. In this study, we have designed and synthesized a series of unreported Dihydropteridone derivatives. All of these compounds were evaluated for the against PDCoV in vivo and in vitro for the first time. In this study, antiviral activity (17.34 ± 7.20 µM) and low cytotoxicity (>800 µM) was found in compound W8. Compound W8 exerts antiviral effect on PDCoV by inhibiting cell apoptosis and inflammatory factors caused by virus infection in vitro. In addition, lung and small intestinal lesions caused by PDCoV infection in mice could be significantly reduced by compound W8. These findings highlight the potential of compound W8 as a valuable therapeutic option against PDCoV infection, and lay a foundation for further research and development in this field.


Assuntos
Infecções por Coronavirus , Coronavirus , Sulfonamidas , Suínos , Animais , Humanos , Camundongos , Intestino Delgado , Antivirais/farmacologia
19.
Bioorg Chem ; 147: 107353, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38615475

RESUMO

Dialkyl/aryl aminophosphonates, 3a-g and 4a-e were synthesized using the LiClO4 catalyzed Kabachnic Fields-type reaction straightforwardly and efficiently. The synthesized phosphonates structures were characterized using elemental analyses, FT-IR, 1H NMR, 13C NMR, and MS spectroscopy. The new compounds were subjected to in-silico molecular docking simulations to evaluate their potential inhibition against Influenza A Neuraminidase and RNA-dependent RNA polymerase of human coronavirus 229E. Subsequently, the compounds were further tested in vitro using a cytopathic inhibition assay to assess their antiviral activity against both human Influenza (H1N1) and human coronavirus (HCoV-229E). Diphenyl ((2-(5-cyano-6-oxo-4-phenyl-1,6-dihydropyrimidin-2-yl) hydrazinyl) (furan-2-yl) methyl) phosphonate (3f) and diethyl ((2-(5-cyano-6-oxo-4-phenyl-1,6-dihydropyrimidin-2-yl) hydrazinyl) (1,5-dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol-4-yl) methyl) phosphonate (4e) were demonstrated direct inhibition activity against Influenza A Neuraminidase and RNA-dependent RNA polymerase. This was supported by their highly favorable binding energies in-silico, with top-ranked values of -12.5 kcal/mol and -14.2 kcal/mol for compound (3f), and -13.5 kcal/mol and -9.89 kcal/mol for compound (4e). Moreover, they also displayed notable antiviral efficacy in vitro against both viruses. These compounds demonstrated significant antiviral activity, as evidenced by selectivity indices (SI) of 101.7 and 51.8, respectively against H1N1, and 24.5 and 5.1 against HCoV-229E, respectively.


Assuntos
Antivirais , Coronavirus Humano 229E , Desenho de Fármacos , Vírus da Influenza A Subtipo H1N1 , Simulação de Acoplamento Molecular , Organofosfonatos , Pirimidinonas , Antivirais/farmacologia , Antivirais/síntese química , Antivirais/química , Vírus da Influenza A Subtipo H1N1/efeitos dos fármacos , Humanos , Pirimidinonas/farmacologia , Pirimidinonas/síntese química , Pirimidinonas/química , Relação Estrutura-Atividade , Organofosfonatos/farmacologia , Organofosfonatos/química , Organofosfonatos/síntese química , Coronavirus Humano 229E/efeitos dos fármacos , Estrutura Molecular , Relação Dose-Resposta a Droga , Testes de Sensibilidade Microbiana , Neuraminidase/antagonistas & inibidores , Neuraminidase/metabolismo , RNA Polimerase Dependente de RNA/antagonistas & inibidores , RNA Polimerase Dependente de RNA/metabolismo
20.
Acta Pharmacol Sin ; 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38987389

RESUMO

Influenza A virus (IAV) is a widespread pathogen that poses a significant threat to human health, causing pandemics with high mortality and pathogenicity. Given the emergence of increasingly drug-resistant strains of IAV, currently available antiviral drugs have been reported to be inadequate to meet clinical demands. Therefore, continuous exploration of safe, effective and broad-spectrum antiviral medications is urgently required. Here, we found that the small molecule compound J1 exhibited low toxicity both in vitro and in vivo. Moreover, J1 exhibits broad-spectrum antiviral activity against enveloped viruses, including IAV, respiratory syncytial virus (RSV), severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), human coronavirus OC43 (HCoV-OC43), herpes simplex virus type 1 (HSV-1) and HSV-2. In this study, we explored the inhibitory effects and mechanism of action of J1 on IAV in vivo and in vitro. The results showed that J1 inhibited infection by IAV strains, including H1N1, H7N9, H5N1 and H3N2, as well as by oseltamivir-resistant strains. Mechanistic studies have shown that J1 blocks IAV infection mainly through specific interactions with the influenza virus hemagglutinin HA2 subunit, thereby blocking membrane fusion. BALB/c mice were used to establish a model of acute lung injury (ALI) induced by IAV. Treatment with J1 increased survival rates and reduced viral titers, lung index and lung inflammatory damage in virus-infected mice. In conclusion, J1 possesses significant anti-IAV effects in vitro and in vivo, providing insights into the development of broad-spectrum antivirals against future pandemics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA