Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 147
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Vet Pathol ; 61(4): 574-581, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38345009

RESUMO

Apolipoprotein C-III (ApoC-III) amyloidosis in humans is a hereditary amyloidosis caused by a D25V mutation in the APOC3 gene. This condition has only been reported in a French family and not in animals. We analyzed a 19-year-old white lion (Panthera leo) that died in a Japanese safari park and found renal amyloidosis characterized by severe deposition confined to the renal corticomedullary border zone. Mass spectrometry-based proteomic analysis identified ApoC-III as a major component of renal amyloid deposits. Amyloid deposits were also positive for ApoC-III by immunohistochemistry. Based on these results, this case was diagnosed as ApoC-III amyloidosis for the first time in nonhuman animals. Five additional white lions were also tested for amyloid deposition retrospectively. ApoC-III amyloid deposition was detected in 3 white lions aged 19 to 21 years but not in 2 cases aged 0.5 and 10 years. Genetic analysis of white and regular-colored lions revealed that the APOC3 sequences of the lions were identical, regardless of amyloid deposition. These results suggest that ApoC-III amyloidosis in lions, unlike in humans, may not be a hereditary condition but an age-related condition. Interestingly, lion ApoC-III has a Val30 substitution compared with other species of Panthera that have Met30. Structural predictions suggest that the conformation of ApoC-III with Met30 and ApoC-III with Val30 are almost identical, but this substitution may alter the ability to bind to lipids. As with the D25V mutation in human ApoC-III, the Val30 substitution in lions may increase the proportion of free ApoC-III, leading to amyloid formation.


Assuntos
Amiloidose , Apolipoproteína C-III , Leões , Animais , Amiloidose/veterinária , Amiloidose/patologia , Amiloidose/metabolismo , Apolipoproteína C-III/genética , Apolipoproteína C-III/metabolismo , Masculino , Feminino , Rim/patologia , Sequência de Aminoácidos , Amiloide/metabolismo , Nefropatias/veterinária , Nefropatias/patologia , Imuno-Histoquímica/veterinária
2.
Int J Mol Sci ; 25(10)2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38791405

RESUMO

Apolipoprotein-CIII (apo-CIII) inhibits the clearance of triglycerides from circulation and is associated with an increased risk of diabetes complications. It exists in four main proteoforms: O-glycosylated variants containing either zero, one, or two sialic acids and a non-glycosylated variant. O-glycosylation may affect the metabolic functions of apo-CIII. We investigated the associations of apo-CIII glycosylation in blood plasma, measured by mass spectrometry of the intact protein, and genetic variants with micro- and macrovascular complications (retinopathy, nephropathy, neuropathy, cardiovascular disease) of type 2 diabetes in a DiaGene study (n = 1571) and the Hoorn DCS cohort (n = 5409). Mono-sialylated apolipoprotein-CIII (apo-CIII1) was associated with a reduced risk of retinopathy (ß = -7.215, 95% CI -11.137 to -3.294) whereas disialylated apolipoprotein-CIII (apo-CIII2) was associated with an increased risk (ß = 5.309, 95% CI 2.279 to 8.339). A variant of the GALNT2-gene (rs4846913), previously linked to lower apo-CIII0a, was associated with a decreased prevalence of retinopathy (OR = 0.739, 95% CI 0.575 to 0.951). Higher apo-CIII1 levels were associated with neuropathy (ß = 7.706, 95% CI 2.317 to 13.095) and lower apo-CIII0a with macrovascular complications (ß = -9.195, 95% CI -15.847 to -2.543). In conclusion, apo-CIII glycosylation was associated with the prevalence of micro- and macrovascular complications of diabetes. Moreover, a variant in the GALNT2-gene was associated with apo-CIII glycosylation and retinopathy, suggesting a causal effect. The findings facilitate a molecular understanding of the pathophysiology of diabetes complications and warrant consideration of apo-CIII glycosylation as a potential target in the prevention of diabetes complications.


Assuntos
Apolipoproteína C-III , Diabetes Mellitus Tipo 2 , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Apolipoproteína C-III/genética , Apolipoproteína C-III/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/genética , Angiopatias Diabéticas/metabolismo , Angiopatias Diabéticas/genética , Angiopatias Diabéticas/etiologia , Retinopatia Diabética/metabolismo , Retinopatia Diabética/genética , Retinopatia Diabética/etiologia , Glicosilação , Polimorfismo de Nucleotídeo Único
3.
J Proteome Res ; 22(1): 91-100, 2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-36412001

RESUMO

Apolipoprotein C-III (APOC-III) regulates triglyceride levels, associated with a risk of cardiovascular disease. One gene generates several proteoforms, each with a different molecular mass and a unique function. Unlike peptide multiple reaction monitoring (MRM), protein-MRM without digestion is required to analyze clinically relevant individual proteoforms. We developed a protein-MRM method without digestion to individually quantify APOC-III proteoforms in human serum. We optimized the protein-MRM method following 60% acetonitrile extraction with C18 filtration. Bovine serum and myoglobin served as supporting cushions and the internal standard during sample preparation, respectively. Furthermore, we evaluated the LOD, lower limit of quantification, linearity, accuracy, and precision. Good correlation compared with turbidimetric immunoassay (TIA) and peptide-MRM was observed using 30 clinical sera. Individual APOC-III O-glycoforms were identified by top-down proteomics and simultaneously quantified using the protein-MRM method. The sum abundance of APOC-III proteoforms was significantly correlated with TIA and peptide-MRM. Our protein-MRM method provides an affordable and rapid quantification of potential disease-specific proteoforms. Precise quantification of each proteoform allows investigators to identify novel biological roles potentially related to cardiovascular disease or novel biomarkers. We expect our protein-oriented method to be more clinically useful than antibody-based immunoassays and peptide-oriented MRM analysis, especially for quantification of a biomarker proteoform with certain post-translational modifications.


Assuntos
Doenças Cardiovasculares , Humanos , Apolipoproteína C-III/metabolismo , Doenças Cardiovasculares/diagnóstico , Proteínas , Processamento de Proteína Pós-Traducional
4.
Eur Heart J ; 43(34): 3198-3208, 2022 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-35051271

RESUMO

Lipid risk factors for cardiovascular disease depend in part on lifestyle, but optimum control of lipids often demands additional measures. Low-density lipoprotein (LDL) doubtless contributes causally to atherosclerosis. Recent human genetic findings have substantiated a number of novel targets for lipid-lowering therapy including apolipoprotein C-III, angiopoietin-like protein 3 and 4, apolipoprotein V, and ATP citrate lyase. These discoveries coupled with advances in biotechnology development afford new avenues for management of LDL and other aspects of lipid risk. Beyond LDL, new treatments targeting triglyceride-rich lipoproteins and lipoprotein(a) have become available and have entered clinical development. Biological and RNA-directed agents have joined traditional small-molecule approaches, which themselves have undergone considerable refinement. Innovative targeting strategies have increased efficacy of some of these novel interventions and markedly improved their tolerability. Gene-editing approaches have appeared on the horizon of lipid management. This article reviews this progress offering insight into novel biological and therapeutic discoveries, and places them into a practical patient care perspective.


Assuntos
Aterosclerose , Doenças Cardiovasculares , Dislipidemias , Aterosclerose/tratamento farmacológico , Aterosclerose/etiologia , Aterosclerose/prevenção & controle , Doenças Cardiovasculares/complicações , Dislipidemias/complicações , Dislipidemias/tratamento farmacológico , Humanos , Hipolipemiantes/uso terapêutico , Lipoproteína(a) , Triglicerídeos
5.
Int J Mol Sci ; 24(3)2023 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-36768547

RESUMO

Apolipoprotein CIII (ApoCIII) represents a key regulator of plasma lipid metabolism and a recognized risk factor for atherosclerosis and cardiovascular diseases. Beyond the regulation of lipoprotein trafficking, ApoCIII is also involved in endothelial dysfunction and monocyte recruitment related to atherothrombosis. With tissue factor (TF) being the primary initiator of the blood coagulation cascade, we hypothesized that ApoCIII-treated monocytes could express it. Hence, human CD14+-monocytes and autologous neutrophils were incubated with ApoCIII and sera from human subjects containing previously measured ApoCIII amounts. By RT-qPCR and ELISA, CD14+-monocytes, but not neutrophils, were found to show increased mRNA expression and production of TNFα, IL-1ß and IL-6 as well as TF mRNA once exposed to ultra-purified ApoCIII. By flow cytometry, CD14+-monocytes were found to rapidly express TF on their cell surface membrane when incubated with either ApoCIII or sera with known concentrations of ApoCIII. Finally, preincubation with specific ApoCIII-neutralizing antibodies significantly reduced the ability of most sera with known concentrations of ApoCIII to upregulate TF protein, other than partially inhibiting cytokine release, in CD14+-monocytes. In sum, herein we demonstrate that ApoCIII activates CD14+-monocytes to express TF. The data identify a potential mechanism which links circulating apolipoproteins with inflammation and atherothrombosis-related processes underlying cardiovascular risk.


Assuntos
Monócitos , Tromboplastina , Humanos , Apolipoproteína C-III/metabolismo , Apolipoproteínas/genética , Apolipoproteínas/metabolismo , Monócitos/metabolismo , RNA Mensageiro/metabolismo , Tromboplastina/genética , Tromboplastina/metabolismo
6.
Int J Mol Sci ; 24(19)2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37834292

RESUMO

Apolipoprotein-CIII (apo-CIII) is involved in triglyceride-rich lipoprotein metabolism and linked to beta-cell damage, insulin resistance, and cardiovascular disease. Apo-CIII exists in four main proteoforms: non-glycosylated (apo-CIII0a), and glycosylated apo-CIII with zero, one, or two sialic acids (apo-CIII0c, apo-CIII1 and apo-CIII2). Our objective is to determine how apo-CIII glycosylation affects lipid traits and type 2 diabetes prevalence, and to investigate the genetic basis of these relations with a genome-wide association study (GWAS) on apo-CIII glycosylation. We conducted GWAS on the four apo-CIII proteoforms in the DiaGene study in people with and without type 2 diabetes (n = 2318). We investigated the relations of the identified genetic loci and apo-CIII glycosylation with lipids and type 2 diabetes. The associations of the genetic variants with lipids were replicated in the Diabetes Care System (n = 5409). Rs4846913-A, in the GALNT2-gene, was associated with decreased apo-CIII0a. This variant was associated with increased high-density lipoprotein cholesterol and decreased triglycerides, while high apo-CIII0a was associated with raised high-density lipoprotein-cholesterol and triglycerides. Rs67086575-G, located in the IFT172-gene, was associated with decreased apo-CIII2 and with hypertriglyceridemia. In line, apo-CIII2 was associated with low triglycerides. On a genome-wide scale, we confirmed that the GALNT2-gene plays a major role i O-glycosylation of apolipoprotein-CIII, with subsequent associations with lipid parameters. We newly identified the IFT172/NRBP1 region, in the literature previously associated with hypertriglyceridemia, as involved in apolipoprotein-CIII sialylation and hypertriglyceridemia. These results link genomics, glycosylation, and lipid metabolism, and represent a key step towards unravelling the importance of O-glycosylation in health and disease.


Assuntos
Diabetes Mellitus Tipo 2 , Hiperlipidemias , Hipertrigliceridemia , Humanos , Apolipoproteína C-III/genética , Apolipoproteínas C/genética , Diabetes Mellitus Tipo 2/genética , Glicosilação , Estudo de Associação Genômica Ampla , Triglicerídeos , HDL-Colesterol , Receptores Citoplasmáticos e Nucleares/genética , Proteínas de Transporte Vesicular/genética , Proteínas do Citoesqueleto/genética , Proteínas Adaptadoras de Transdução de Sinal/genética
7.
Int J Mol Sci ; 24(3)2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36768645

RESUMO

Atherosclerosis is a chronic inflammatory disease caused by the accumulation of cholesterol in the intima. Proprotein convertase subtilisin/kexin type 9 inhibitors (iPCSK9) can reduce low-density lipoprotein (LDL) cholesterol levels by 60%, but there is still no evidence that they can lower markers of systemic inflammation such as high-sensitivity C-reactive protein (hsCRP). Acute-phase serum glycoproteins are upregulated in the liver during systemic inflammation, and their role as inflammatory biomarkers is under clinical evaluation. In this observational study, we evaluate the effects of iPCSK9 on glycoproteins (Glyc) A, B and F. Thirty-nine patients eligible for iPCSK9 therapy were enrolled. One sample before and after one to six months of iPCSK9 therapy with alirocumab was obtained from each patient. Lipids, apolipoproteins, hsCRP and PCSK9 levels were measured by biochemical analyses, and the lipoprotein and glycoprotein profiles were measured by 1H nuclear magnetic resonance (1H-NMR). The PCSK9 inhibitor reduced total (36.27%, p < 0.001), LDL (55.05%, p < 0.001) and non-high-density lipoprotein (HDL) (45.11%, p < 0.001) cholesterol, apolipoprotein (apo) C-III (10%, p < 0.001), triglycerides (9.92%, p < 0.001) and glycoprotein signals GlycA (11.97%, p < 0.001), GlycB (3.83%, p = 0.017) and GlycF (7.26%, p < 0.001). It also increased apoA-I (2.05%, p = 0.043) and HDL cholesterol levels (11.58%, p < 0.001). Circulating PCSK9 levels increased six-fold (626.28%, p < 0.001). The decrease in Glyc signals positively correlated with the decrease in triglycerides and apoC-III. In conclusion, in addition to LDL cholesterol, iPCSK9 therapy also induces a reduction in systemic inflammation measured by 1H-NMR glycoprotein signals, which correlates with a decrease in triglycerides and apoC-III.


Assuntos
Doenças Cardiovasculares , Pró-Proteína Convertase 9 , Humanos , Pró-Proteína Convertase 9/metabolismo , Inibidores de PCSK9 , Apolipoproteína C-III , Doenças Cardiovasculares/etiologia , Proteína C-Reativa , Espectroscopia de Prótons por Ressonância Magnética , Fatores de Risco , Colesterol , LDL-Colesterol , Triglicerídeos , Espectroscopia de Ressonância Magnética/efeitos adversos , Lipoproteínas , Inflamação/tratamento farmacológico , Inflamação/complicações , Anti-Inflamatórios , Glicoproteínas , Fatores de Risco de Doenças Cardíacas
8.
J Intern Med ; 291(3): 338-349, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34817888

RESUMO

OBJECTIVES: We studied apolipoprotein C-III (apoC-III) in relation to diabetic kidney disease (DKD), cardiovascular outcomes, and mortality in type 1 diabetes. METHODS: The cohort comprised 3966 participants from the prospective observational Finnish Diabetic Nephropathy Study. Progression of DKD was determined from medical records. A major adverse cardiac event (MACE) was defined as acute myocardial infarction, coronary revascularization, stroke, or cardiovascular mortality through 2017. Cardiovascular and mortality data were retrieved from national registries. RESULTS: ApoC-III predicted DKD progression independent of sex, diabetes duration, blood pressure, HbA1c , smoking, LDL-cholesterol, lipid-lowering medication, DKD category, and remnant cholesterol (hazard ratio [HR] 1.43 [95% confidence interval 1.05-1.94], p = 0.02). ApoC-III also predicted the MACE in a multivariable regression analysis; however, it was not independent of remnant cholesterol (HR 1.05 [0.81-1.36, p = 0.71] with remnant cholesterol; 1.30 [1.03-1.64, p = 0.03] without). DKD-specific analyses revealed that the association was driven by individuals with albuminuria, as no link between apoC-III and the outcome was observed in the normal albumin excretion or kidney failure categories. The same was observed for mortality: Individuals with albuminuria had an adjusted HR of 1.49 (1.03-2.16, p = 0.03) for premature death, while no association was found in the other groups. The highest apoC-III quartile displayed a markedly higher risk of MACE and death than the lower quartiles; however, this nonlinear relationship flattened after adjustment. CONCLUSIONS: The impact of apoC-III on MACE risk and mortality is restricted to those with albuminuria among individuals with type 1 diabetes. This study also revealed that apoC-III predicts DKD progression, independent of the initial DKD category.


Assuntos
Apolipoproteína C-III , Doenças Cardiovasculares , Diabetes Mellitus Tipo 1 , Nefropatias Diabéticas , Albuminúria , Diabetes Mellitus Tipo 1/complicações , Finlândia , Humanos
9.
Eur J Clin Invest ; 52(11): e13841, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35851450

RESUMO

BACKGROUND: Patients with severe hypertriglyceridaemia (sHTG) are often refractory to lipid-lowering therapy. Apolipoprotein (Apo) CIII inhibition could be promising to treat subjects with sHTG. The antisense oligonucleotide against APOC3 mRNA volanesorsen was recently introduced to treat sHTG. We performed a systematic review and meta-analysis of RCTs on the efficacy and safety of volanesorsen as compared to placebo treatment in patients with severe HTG. METHODS: Studies were systematically searched in the PubMed, Web of Science and Scopus databases according to PRISMA guidelines. The last search was performed on 7 February 2022. RESULTS: Four studies showed significant reduction in TG after 3 months of treatment with volanesorsen as compared with placebo (MD: -73.9%; 95%CI: -93.5%, -54.2; p < .001 I2  = 89.05%; p < .001); VLDL-C level (MD: -71.0%; 95%CI: -76.6%, -65.4%; p < .001 I2  = 94.1%; p < .001); Apo-B48 level (MD: -69.03%; 95%CI: -98.59.4%, -39.47%; p < .001, I2  = 93.51%; p < .001) and Apo-CIII level (MD: -80.0%; 95%CI: -97.5%, -62.5; p < .001 I2  = 94.1%; p < .001) with an increase in HDL-C level (MD: +45.92%, 95%CI: +37.24%, +54.60%; p < .001 I2  = 94.34%; p < .001) and in LDL-C level (MD: +68.6%, 95%CI: +7.0%, +130.1%; p < .001 I2  = 96.18%; p < .001) without a significant elevation of Apo-B100 level (MD: +4.58%, 95%CI: -5.64%, +14.79%; p = .380 I2  = 95.09%; p < .001) in 139 volanesorsen patients as compared to 100 placebo-treated controls. Most of adverse events were mild and related to local injection site reactions. CONCLUSIONS: In patients with severe HTG, volanesorsen is associated with a significant reduction in TG, VLDL-C, Apo-B48 and non-HDL-C and increment of HDL-C as compared to placebo. Documented efficacy is accompanied by an acceptable safety profile.


Assuntos
Hiperlipidemias , Hipertrigliceridemia , Apolipoproteína B-48 , Apolipoproteína C-III , LDL-Colesterol , Humanos , Hiperlipidemias/tratamento farmacológico , Hipertrigliceridemia/tratamento farmacológico , Oligonucleotídeos , Oligonucleotídeos Antissenso/uso terapêutico , RNA Mensageiro , Ensaios Clínicos Controlados Aleatórios como Assunto , Triglicerídeos
10.
Eur J Neurol ; 29(4): 1155-1164, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34913222

RESUMO

BACKGROUND AND PURPOSE: Guillain-Barré syndrome (GBS) is an acute inflammatory autoimmune and demyelinating disease of the peripheral nervous system. Currently, valid biomarkers are unavailable for the diagnosis of GBS. METHODS: A comparative proteomics analysis was performed on the cerebrospinal fluid (CSF) from 10 patients with GBS and 10 patients with noninflammatory neurological disease (NND) using the tandem mass tags technique. The differentially expressed proteins were analyzed by bioinformatics, and then the candidate proteins were validated by the enzyme-linked immunosorbent assay method in another cohort containing 160 samples (paired CSF and plasma of 40 patients with GBS, CSF of 40 NND patients and plasma of 40 healthy individuals). RESULTS: In all, 298 proteins were successfully identified in the CSF samples, of which 97 differentially expressed proteins were identified in the GBS and NND groups. Three key molecules were identified as candidate molecules for further validation. The CSF levels of TGOLN2 and NCAM1 decreased in GBS patients compared with NND patients, whereas the CSF levels of APOC3 increased. The enzyme-linked immunosorbent assay results were consistent with our proteomics analysis. Interestingly, in the validation cohort, serum APOC3 levels in the GBS group were consistent with those in the CSF samples and significantly higher than those in the healthy control group. CONCLUSIONS: Our preliminary data suggest that the CSF protein expression profile of patients with GBS is different from that of patients with NND. Moreover, alterations of TGOLN2, NCAM1and APOC3 may be used as novel biomarkers for identifying patients with GBS.


Assuntos
Síndrome de Guillain-Barré , Proteômica , Biomarcadores/líquido cefalorraquidiano , Ensaio de Imunoadsorção Enzimática , Humanos , Proteômica/métodos
11.
Nutr Metab Cardiovasc Dis ; 32(2): 295-308, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34895805

RESUMO

AIMS: Recently, Apolipoprotein CIII (Apo-CIII) has gained remarkable attention since its overexpression has been strongly correlated to cardiovascular disease (CVD) occurrence. The aim of this review was to summarize the latest findings of Apo-CIII as a CVDs and diabetes risk factor, as well as the plausible mechanisms involved in the development of these pathologies, with particular emphasis on current clinical and dietetic therapies. DATA SYNTHESIS: Apo-CIII is a small protein (∼8.8 kDa) that, among other functions, inhibits lipoprotein lipase, a key enzyme in lipid metabolism. Apo-CIII plays a fundamental role in the physiopathology of atherosclerosis, type-1, and type-2 diabetes. Apo-CIII has become a potential clinical target to tackle these multifactorial diseases. Dietetic (omega-3 fatty acids, stanols, polyphenols, lycopene) and non-dietetic (fibrates, statins, and antisense oligonucleotides) therapies have shown promising results to regulate Apo-CIII and triglyceride levels. However, more information from clinical trials is required to validate it as a new target for atherosclerosis and diabetes types 1 and 2. CONCLUSIONS: There are still several pathways involving Apo-CIII regulation that might be affected by bioactive compounds that need further research. The mechanisms that trigger metabolic responses following bioactive compounds consumption are mainly related to higher LPL expression and PPARα activation, although the complete pathways are yet to be elucidated.


Assuntos
Dietética , Inibidores de Hidroximetilglutaril-CoA Redutases , Apolipoproteína C-III/genética , Apolipoproteínas C/metabolismo , Humanos , Triglicerídeos
12.
Herz ; 47(3): 220-227, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35451595

RESUMO

Patients with hypertriglyceridemia (> 150 mg/dl) have an increased risk for atherosclerotic cardiovascular disease, and those with severe hypertriglyceridemia (> 880 mg/dl) also for pancreatitis. The currently available medications to decrease triglyceride levels, such as fibrates, statins, and omega­3 fatty acids, are in many cases not able to achieve normal triglyceride levels. Therefore, new drugs are in development to address this unmet need. Recently, icosapent ethyl, a purified formulation of the omega-3-fatty acid eicosapentaenoic acid, was approved in Germany for the reduction of cardiovascular events in patients with hypertriglyceridemia and established cardiovascular disease or with diabetes and other risk factors on top of statins. Other new drugs in development are the more selective peroxisome proliferator-activated receptor α (PPARα) modulator, pemafibrate, already approved for the treatment of hypertriglyceridemia in Japan, and inhibitors of ApoC-III and angiopoietin-like 3 (ANGPTL3) in the form of antisense oligonucleotides or siRNAs or fully human monoclonal binding antibodies. Apolipoprotein C-III and ANGPTL3 protein seem to be quite promising targets based on solid genetic data. Larger studies of long duration, many of them currently ongoing, are needed to establish the role these medications will play in the treatment of hypertriglyceridemia in clinical practice.


Assuntos
Doenças Cardiovasculares , Inibidores de Hidroximetilglutaril-CoA Redutases , Hipertrigliceridemia , Proteína 3 Semelhante a Angiopoietina , Proteínas Semelhantes a Angiopoietina , Apolipoproteína C-III/genética , Doenças Cardiovasculares/tratamento farmacológico , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Hipertrigliceridemia/tratamento farmacológico , Hipertrigliceridemia/metabolismo , Triglicerídeos/uso terapêutico
13.
Curr Atheroscler Rep ; 23(5): 20, 2021 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-33694000

RESUMO

PURPOSE OF REVIEW: Despite significant progress in plasma lipid lowering strategies, recent clinical trials highlight the existence of residual cardiovascular risk. Angiopoietin-like protein 3 (ANGPTL3) and apolipoprotein C-III (Apo C-III) have been identified as novel lipid-lowering targets. RECENT FINDINGS: Apo C-III and ANGPTL3 have emerged as novel regulators of triglyceride (TG) and low-density lipoprotein-cholesterol (LDL-C) levels. ANGPTL3 is an inhibitor of lipoprotein lipase (LPL), reducing lipolysis of Apo B-containing lipoproteins. Loss-of-function ANGPLT3 mutations are associated with reduced plasma cholesterol and TG, while novel ANGPLT3 inhibition strategies, including monoclonal antibodies (evinacumab), ANGPLT3 antisense oligonucleotides (IONIS-ANGPTL3-LRx), and small interfering RNA (siRNA) silencing techniques (ARO-ANG3), result in increased lipolysis and significant reductions of LDL-C and TG levels in phase I and II clinical trials. Similarly, Apo C-III inhibits LPL while promoting the hepatic secretion of TG-rich lipoproteins and preventing their clearance. Loss-of-function APOC3 mutations have been associated with reduced TG levels. Targeting of Apo C-III with volanesorsen, an APOC3 siRNA, results in significant reduction in plasma TG levels but possibly also increased risk for thrombocytopenia, as recently demonstrated in phase I, II, and III clinical trials. ARO-APOC3 is a novel siRNA-based agent targeting Apo C-III which is currently under investigation with regard to its lipid-lowering efficiency. ANGPTL3 and Apo C-III targeting agents have demonstrated striking lipid-lowering effects in recent clinical trials; however, more thorough safety and efficacy data are required. Here, we evaluate the role of ANGPLT3 and Apo C-III in lipid metabolism, present the latest clinical advances targeting those molecules, and outline the remaining scientific challenges on residual lipid-associated cardiovascular risk.


Assuntos
Lipídeos , Oligonucleotídeos Antissenso , Proteína 3 Semelhante a Angiopoietina , Proteínas Semelhantes a Angiopoietina/genética , Apolipoproteína C-III/genética , LDL-Colesterol , Humanos , Triglicerídeos
14.
Arterioscler Thromb Vasc Biol ; 40(9): 2095-2107, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32757647

RESUMO

OBJECTIVE: Apo (apolipoprotein) CIII mediates the metabolism of triglyceride (TG)-rich lipoproteins. High levels of plasma apoCIII are positively correlated with the plasma TG levels and increase the cardiovascular risk. However, whether apoCIII is directly involved in the development of atherosclerosis has not been fully elucidated. Approach and Results: To examine the possible roles of apoCIII in lipoprotein metabolism and atherosclerosis, we generated apoCIII KO (knockout) rabbits using ZFN (zinc finger nuclease) technique. On a normal standard diet, apoCIII KO rabbits exhibited significantly lower plasma levels of TG than those of WT (wild type) rabbits while total cholesterol and HDL (high-density lipoprotein) cholesterol levels were unchanged. Analysis of lipoproteins isolated by sequential ultracentrifugation revealed that reduced plasma TG levels in KO rabbits were accompanied by prominent reduction of VLDLs (very-low-density lipoproteins) and IDLs (intermediate-density lipoproteins). In addition, KO rabbits showed faster TG clearance rate after intravenous fat load than WT rabbits. On a cholesterol-rich diet, KO rabbits exhibited constantly and significantly lower levels of plasma total cholesterol and TG than WT rabbits, which was caused by a remarkable reduction of ß-VLDLs-the major atherogenic lipoproteins. ß-VLDLs of KO rabbits showed higher uptake by cultured hepatocytes and were cleared faster from the circulation than ß-VLDLs isolated from WT rabbits. Both aortic and coronary atherosclerosis was significantly reduced in KO rabbits compared with WT rabbits. CONCLUSIONS: These results indicate that apoCIII deficiency facilitates TG-rich lipoprotein catabolism, and therapeutic inhibition of apoCIII expression may become a novel means not only for the treatment of hyperlipidemia but also for atherosclerosis.


Assuntos
Doenças da Aorta/prevenção & controle , Apolipoproteína C-III/deficiência , Aterosclerose/prevenção & controle , Doença da Artéria Coronariana/prevenção & controle , Triglicerídeos/sangue , Animais , Animais Geneticamente Modificados , Doenças da Aorta/genética , Doenças da Aorta/metabolismo , Doenças da Aorta/patologia , Apolipoproteína C-III/genética , Aterosclerose/genética , Aterosclerose/metabolismo , Aterosclerose/patologia , Biomarcadores/sangue , HDL-Colesterol/sangue , VLDL-Colesterol/sangue , Doença da Artéria Coronariana/genética , Doença da Artéria Coronariana/metabolismo , Doença da Artéria Coronariana/patologia , Modelos Animais de Doenças , Feminino , Células Hep G2 , Hepatócitos/metabolismo , Humanos , Lipoproteínas IDL/sangue , Fígado/metabolismo , Masculino , Oxirredução , Placa Aterosclerótica , Coelhos
15.
Brain ; 143(4): 1114-1126, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32293671

RESUMO

Congenital disorders of glycosylation are a growing group of rare genetic disorders caused by deficient protein and lipid glycosylation. Here, we report the clinical, biochemical, and molecular features of seven patients from four families with GALNT2-congenital disorder of glycosylation (GALNT2-CDG), an O-linked glycosylation disorder. GALNT2 encodes the Golgi-localized polypeptide N-acetyl-d-galactosamine-transferase 2 isoenzyme. GALNT2 is widely expressed in most cell types and directs initiation of mucin-type protein O-glycosylation. All patients showed loss of O-glycosylation of apolipoprotein C-III, a non-redundant substrate for GALNT2. Patients with GALNT2-CDG generally exhibit a syndrome characterized by global developmental delay, intellectual disability with language deficit, autistic features, behavioural abnormalities, epilepsy, chronic insomnia, white matter changes on brain MRI, dysmorphic features, decreased stature, and decreased high density lipoprotein cholesterol levels. Rodent (mouse and rat) models of GALNT2-CDG recapitulated much of the human phenotype, including poor growth and neurodevelopmental abnormalities. In behavioural studies, GALNT2-CDG mice demonstrated cerebellar motor deficits, decreased sociability, and impaired sensory integration and processing. The multisystem nature of phenotypes in patients and rodent models of GALNT2-CDG suggest that there are multiple non-redundant protein substrates of GALNT2 in various tissues, including brain, which are critical to normal growth and development.


Assuntos
Apolipoproteína C-III/sangue , Deficiências do Desenvolvimento/genética , N-Acetilgalactosaminiltransferases/genética , Adolescente , Animais , Apolipoproteína C-III/genética , Criança , Pré-Escolar , Feminino , Glicosilação , Humanos , Mutação com Perda de Função , Masculino , Camundongos , Linhagem , Ratos , Adulto Jovem , Polipeptídeo N-Acetilgalactosaminiltransferase
16.
Int J Mol Sci ; 22(2)2021 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-33477763

RESUMO

It is well known that type-2 diabetes mellitus (T2D) is increasing worldwide, but also the autoimmune form, type-1 diabetes (T1D), is affecting more people. The latest estimation from the International Diabetes Federation (IDF) is that 1.1 million children and adolescents below 20 years of age have T1D. At present, we have no primary, secondary or tertiary prevention or treatment available, although many efforts testing different strategies have been made. This review is based on the findings that apolipoprotein CIII (apoCIII) is increased in T1D and that in vitro studies revealed that healthy ß-cells exposed to apoCIII became apoptotic, together with the observation that humans with higher levels of the apolipoprotein, due to mutations in the gene, are more susceptible to developing T1D. We have summarized what is known about apoCIII in relation to inflammation and autoimmunity in in vitro and in vivo studies of T1D. The aim is to highlight the need for exploring this field as we still are only seeing the top of the iceberg.


Assuntos
Apolipoproteína C-III/genética , Diabetes Mellitus Tipo 1/genética , Inflamação/genética , Células Secretoras de Insulina/metabolismo , Adulto , Cálcio/metabolismo , Diabetes Mellitus Tipo 1/epidemiologia , Diabetes Mellitus Tipo 1/patologia , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/patologia , Regulação da Expressão Gênica/genética , Humanos , Inflamação/patologia , Células Secretoras de Insulina/patologia
17.
Int J Mol Sci ; 23(1)2021 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-35008488

RESUMO

Apolipoprotein CIII (apoCIII) is proinflammatory and increases in high-fat diet (HFD)-induced obesity and insulin resistance. We have previously shown that reducing apoCIII improves insulin sensitivity in vivo by complex mechanisms involving liver and brown adipose tissue. In this study the focus was on subcutaneous (SAT) and visceral (VAT) white adipose tissue (WAT). Mice were either given HFD for 14 weeks and directly from start also treated with antisense oligonucleotide (ASO) against apoCIII or given HFD for 10 weeks and HFD+ASO for an additional 14 weeks. Both groups had animals treated with inactive (Scr) ASO as controls and in parallel chow-fed mice were injected with saline. Preventing an increase or lowering apoCIII in the HFD-fed mice decreased adipocytes' size, reduced expression of inflammatory cytokines and increased expression of genes related to thermogenesis and beiging. Isolated adipocytes from both VAT and SAT from the ASO-treated mice had normal insulin-induced inhibition of lipolysis compared to cells from Scr-treated mice. In conclusion, the HFD-induced metabolic derangements in WATs can be prevented and reversed by lowering apoCIII.


Assuntos
Tecido Adiposo Branco/metabolismo , Apolipoproteína C-III/metabolismo , Inflamação/metabolismo , Resistência à Insulina/fisiologia , Obesidade/metabolismo , Adipócitos/metabolismo , Tecido Adiposo Marrom/metabolismo , Animais , Dieta Hiperlipídica , Insulina/metabolismo , Lipólise/fisiologia , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Termogênese/fisiologia
18.
J Lipid Res ; 61(9): 1254-1262, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32641433

RESUMO

TG-rich lipoprotein (TRL)-related biomarkers, including TRL-cholesterol (TRL-C), remnant-like lipoprotein particle-cholesterol (RLP-C), and apoC-III have been associated with atherosclerosis. However, their prognostic values have not been fully determined, especially in patients with previous CAD. This study aimed to examine the associations of TRL-C, RLP-C, and apoC-III with incident cardiovascular events (CVEs) in the setting of secondary prevention of CAD. Plasma TRL-C, RLP-C, and total apoC-III were directly measured. A total of 4,355 participants with angiographically confirmed CAD were followed up for the occurrence of CVEs. During a median follow-up period of 5.1 years (interquartile range: 3.9-6.4 years), 543 (12.5%) events occurred. Patients with incident CVEs had significantly higher levels of TRL-C, RLP-C, and apoC-III than those without events. Multivariable Cox analysis indicated that a log unit increase in TRL-C, RLP-C, and apoC-III increased the risk of CVEs by 49% (95% CI: 1.16-1.93), 21% (95% CI: 1.09-1.35), and 40% (95% CI: 1.11-1.77), respectively. High TRL-C, RLP-C, and apoC-III were also independent predictors of CVEs in individuals with LDL-C levels ≤1.8 mmol/l (n = 1,068). The addition of RLP-C level to a prediction model resulted in a significant increase in discrimination, and all three TRL biomarkers improved risk reclassification. Thus, TRL-C, RLP-C, and apoC-III levels were independently associated with incident CVEs in Chinese CAD patients undergoing statin therapy.


Assuntos
Doença da Artéria Coronariana/sangue , Doença da Artéria Coronariana/diagnóstico , Lipoproteínas/sangue , Triglicerídeos/sangue , Biomarcadores/sangue , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Prognóstico
19.
J Nutr ; 150(10): 2707-2715, 2020 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-32710763

RESUMO

BACKGROUND: In the settings of primary and secondary prevention for coronary artery disease (CAD), a crucial role is played by some key molecules involved in triglyceride (TG) metabolism, such as ApoCIII. Fatty acid (FA) intake is well recognized as a main determinant of plasma lipids, including plasma TG concentration. OBJECTIVES: The aim was to investigate the possible relations between the intakes of different FAs, estimated by their plasma concentrations, and circulating amounts of ApoCIII. METHODS: Plasma samples were obtained from 1370 subjects with or without angiographically demonstrated CAD (mean ± SD age: 60.6 ± 11.0 y; males: 75.8%; BMI: 25.9 ± 4.6 kg/m2; CAD: 73.3%). Plasma lipid, ApoCIII, and FA concentrations were measured. Data were analyzed by regression models adjusted for FAs and other potential confounders, such as sex, age, BMI, diabetes, smoking, and lipid-lowering therapies. The in vitro effects of FAs were tested by incubating HepG2 hepatoma cells with increasing concentrations of selected FAs, and the mRNA and protein contents in the cells were quantified by real-time RT-PCR and LC-MS/MS analyses. RESULTS: Among all the analyzed FAs, myristic acid (14:0) showed the most robust correlations with both TGs (R = 0.441, P = 2.6 × 10-66) and ApoCIII (R = 0.327, P = 1.1 × 10-31). By multiple regression analysis, myristic acid was the best predictor of both plasma TG and ApoCIII variability. Plasma TG and ApoCIII concentrations increased progressively at increasing concentrations of myristic acid, independently of CAD diagnosis and gender. Consistent with these data, in the in vitro experiments, an ∼2-fold increase in the expression levels of the ApoCIII mRNA and protein was observed after incubation with 250 µM myristic acid. A weaker effect (∼30% increase) was observed for palmitic acid, whereas incubation with oleic acid did not affect ApoCIII protein or gene expression. CONCLUSIONS: Plasma myristic acid is associated with increased ApoCIII concentrations in cardiovascular patients. In vitro experiments indicated that myristic acid stimulates ApoCIII expression in HepG2 cells.


Assuntos
Apolipoproteína C-III/sangue , Doenças Cardiovasculares/sangue , Ácido Mirístico/sangue , Idoso , Regulação da Expressão Gênica/efeitos dos fármacos , Células Hep G2 , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Ácido Mirístico/farmacologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
20.
Curr Atheroscler Rep ; 22(11): 63, 2020 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-32852651

RESUMO

PURPOSE OF REVIEW: Familial chylomicronemia syndrome (FCS) is a rare recessive genetic disorder often underdiagnosed with potentially severe clinical consequences. In this review, we describe the clinical and biological characteristics of the disease together with its main complication, i.e., acute pancreatitis. We focused the paper on new diagnostic tools, progress in understanding the role of two key proteins (apolipoprotein CIII (apo CIII) and angiopoietin-like3 (ANGPTL-3)), and new therapeutic options. RECENT FINDINGS: Recently, a new diagnostic tool has been proposed by European experts to help identify these patients. This tool with two recently identified parameters (low LDL and low body mass index) can help identify patients who should be genetically tested or who may have the disease when genetic testing is not available. FCS is caused by homozygous or compound heterozygous mutations of lipoprotein lipase, apolipoprotein C-II, apolipoprotein A-V, glycosylphosphatidylinositol anchored high-density lipoprotein-binding protein 1, and lipase maturation factor. Two proteins have been identified as important player in the metabolism of triglyceride-rich lipoprotein and its regulation. These two proteins are therapeutic target. Antisense oligonucleotide targeting apo CIII has been shown to significantly decrease triglyceride levels even in FCS and is the first available treatment for these patients. Further development might identify new compounds with reduced risk to develop severe thrombocytopenia. ANGPTL-3 inhibitors have not yet been tested in FCS patients but exert significant hypotriglyceridemic effect in the more frequent and less severe polygenic forms. Beyond these two new targets, microsomal triglyceride transfer protein (MTTP) inhibitors could also be part of the armamentarium, if on-going trials confirm their efficacy. New clinical tools and simple criteria can help select patients with possible FCS and identify patients who should have a genetic testing. Identifying patients with FCS is a major issue since these patients have a high risk to suffer severe episodes of acute pancreatitis and may now benefit from new therapeutic options including antisense oligonucleotide targeting apo CIII.


Assuntos
Proteínas Semelhantes a Angiopoietina/antagonistas & inibidores , Índice de Massa Corporal , Proteínas de Transporte/antagonistas & inibidores , Hiperlipoproteinemia Tipo I/diagnóstico , Hiperlipoproteinemia Tipo I/tratamento farmacológico , Lipoproteínas LDL/sangue , Oligonucleotídeos Antissenso/uso terapêutico , Proteína 3 Semelhante a Angiopoietina , Animais , Apolipoproteína A-V/genética , Apolipoproteína C-III/genética , Testes Genéticos/métodos , Humanos , Hiperlipoproteinemia Tipo I/complicações , Hiperlipoproteinemia Tipo I/genética , Lipase Lipoproteica/genética , Mutação , Pancreatite/tratamento farmacológico , Pancreatite/etiologia , Receptores de Lipoproteínas/genética , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA