Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Ano de publicação
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Astrobiology ; 24(S1): S76-S106, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38498817

RESUMO

Within the first billion years of Earth's history, the planet transformed from a hot, barren, and inhospitable landscape to an environment conducive to the emergence and persistence of life. This chapter will review the state of knowledge concerning early Earth's (Hadean/Eoarchean) geochemical environment, including the origin and composition of the planet's moon, crust, oceans, atmosphere, and organic content. It will also discuss abiotic geochemical cycling of the CHONPS elements and how these species could have been converted to biologically relevant building blocks, polymers, and chemical networks. Proposed environments for abiogenesis events are also described and evaluated. An understanding of the geochemical processes under which life may have emerged can better inform our assessment of the habitability of other worlds, the potential complexity that abiotic chemistry can achieve (which has implications for putative biosignatures), and the possibility for biochemistries that are vastly different from those on Earth.


Assuntos
Planeta Terra , Planetas , Lua , Atmosfera/química , Oceanos e Mares
2.
Astrobiology ; 24(2): 190-226, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38393828

RESUMO

The NASA Mars 2020 Perseverance rover is actively exploring Jezero crater to conduct analyses on igneous and sedimentary rock targets from outcrops located on the crater floor (Máaz and Séítah formations) and from the delta deposits, respectively. The rock samples collected during this mission will be recovered during the Mars Sample Return mission, which plans to bring samples back to Earth in the 2030s to conduct in-depth studies using sophisticated laboratory instrumentation. Some of these samples may contain traces of ancient martian life that may be particularly difficult to detect and characterize because of their morphological simplicity and subtle biogeochemical expressions. Using the volcanic sediments of the 3.45 Ga Kitty's Gap Chert (Pilbara, Australia), containing putative early life forms (chemolithotrophs) and considered as astrobiological analogues for potential early Mars organisms, we document the steps required to demonstrate the syngenicity and biogenicity of such biosignatures using multiple complementary analytical techniques to provide information at different scales of observation. These include sedimentological, petrological, mineralogical, and geochemical analyses to demonstrate macro- to microscale habitability. New approaches, some unavailable at the time of the original description of these features, are used to verify the syngenicity and biogenicity of the purported fossil chemolithotrophs. The combination of elemental (proton-induced X-ray emission spectrometry) and molecular (deep-ultraviolet and Fourier transform infrared) analyses of rock slabs, thin sections, and focused ion beam sections reveals that the carbonaceous matter present in the samples is enriched in trace metals (e.g., V, Cr, Fe, Co) and is associated with aromatic and aliphatic molecules, which strongly support its biological origin. Transmission electron microscopy observations of the carbonaceous matter documented an amorphous nanostructure interpreted to correspond to the degraded remains of microorganisms and their by-products (extracellular polymeric substances, filaments…). Nevertheless, a small fraction of carbonaceous particles has signatures that are more metamorphosed. They probably represent either reworked detrital biological or abiotic fragments of mantle origin. This study serves as an example of the analytical protocol that would be needed to optimize the detection of fossil traces of life in martian rocks.


Assuntos
Meio Ambiente Extraterreno , Marte , Meio Ambiente Extraterreno/química , Sedimentos Geológicos/química , Exobiologia , Fósseis
3.
Redox Biol ; 69: 103012, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38183797

RESUMO

We address the chemical/biological history of H2O2 back at the times of the Archean eon (2.5-3.9 billion years ago (Gya)). During the Archean eon the pO2 was million-fold lower than the present pO2, starting to increase gradually from 2.3 until 0.6 Gya, when it reached ca. 0.2 bar. The observation that some anaerobic organisms can defend themselves against O2 has led to the view that early organisms could do the same before oxygenic photosynthesis had developed at about 3 Gya. This would require the anaerobic generation of H2O2, and here we examine the various mechanisms which were suggested in the literature for this. Given the concentration of Fe2+ at 20-200 µM in the Archean ocean, the estimated half-life of H2O2 is ca. 0.7 s. The oceanic H2O2 concentration was practically zero. We conclude that early organisms were not exposed to H2O2 before the arrival of oxygenic photosynthesis.


Assuntos
Peróxido de Hidrogênio , Ferro , Oxigênio , Archaea , Fotossíntese , Oceanos e Mares , Compostos Ferrosos , Oxirredução
4.
Redox Biol ; 71: 103111, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38521703

RESUMO

Recent research has hypothesized that hydrogen peroxide (H2O2) may have emerged from abiotic geochemical processes during the Archean eon (4.0-2.5 Ga), stimulating the evolution of an enzymatic antioxidant system in early life. This eventually led to the evolution of cyanobacteria, and in turn, the accumulation of oxygen on Earth. In the latest issue of Redox Biology, Koppenol and Sies (vol. 29, no. 103012, 2024) argued against this hypothesis and suggested instead that early organisms would not have been exposed to H2O2 due to its short half-life in the ferruginous oceans of the Archean. We find these arguments to be factually incomplete because they do not consider that freshwater or some coastal marine environments during the Archean could indeed have led to H2O2 generation and accumulation. In these environments, abiotic oxidants could have interacted with early life, thus steering its evolutionary course.


Assuntos
Peróxido de Hidrogênio , Ferro , Ferro/química , Peróxido de Hidrogênio/química , Oxigênio/química , Fotossíntese , Oceanos e Mares , Compostos Ferrosos
5.
Redox Biol ; 71: 103110, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38492556

RESUMO

We obviously agree with Wu et al. that H2O2 might accumulate in the Archean land waters devoid of Fe2+. We do disagree on the topic of the half-life of H2O2, as the work cited in support for a longer half-live is not relevant to the conditions in the Archean ocean. While the existence of radicals in quartz is not in doubt, we do question the hypothesis that these radicals oxidize water to HO• and H2O2.


Assuntos
Peróxido de Hidrogênio , Oxigênio , Fotossíntese , Radical Hidroxila , Oxirredução
6.
Front Microbiol ; 15: 1369263, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38873164

RESUMO

A comprehensive study was conducted in the Cuatro Ciénegas Basin (CCB) in Coahuila, Mexico, which is known for its diversity of microorganisms and unique physicochemical properties. The study focused on the "Archaean Domes" (AD) site in the CCB, which is characterized by an abundance of hypersaline, non-lithifying microbial mats. In AD, we analyzed the small domes and circular structures using metagenome assembly genomes (MAGs) with the aim of expanding our understanding of the prokaryotic tree of life by uncovering previously unreported lineages, as well as analyzing the diversity of bacteria and archaea in the CCB. A total of 325 MAGs were identified, including 48 Archaea and 277 Bacteria. Remarkably, 22 archaea and 104 bacteria could not be classified even at the genus level, highlighting the remarkable novel diversity of the CCB. Besides, AD site exhibited significant diversity at the phylum level, with Proteobacteria being the most abundant, followed by Desulfobacteria, Spirochaetes, Bacteroidetes, Nanoarchaeota, Halobacteriota, Cyanobacteria, Planctomycetota, Verrucomicrobiota, Actinomycetes and Chloroflexi. In Archaea, the monophyletic groups of MAGs belonged to the Archaeoglobi, Aenigmarchaeota, Candidate Nanoarchaeota, and Halobacteriota. Among Bacteria, monophyletic groups were also identified, including Spirochaetes, Proteobacteria, Planctomycetes, Actinobacteria, Verrucomicrobia, Bacteroidetes, Candidate Bipolaricaulota, Desulfobacteria, and Cyanobacteria. These monophyletic groups were possibly influenced by geographic isolation, as well as the extreme and fluctuating environmental conditions in the pond AD, such as stoichiometric imbalance of C:N:P of 122:42:1, fluctuating pH (5-9.8) and high salinity (5.28% to saturation).

7.
Braz. arch. biol. technol ; jubilee: 169-288, dez. 2001. ilus, mapas, tab
Artigo em Português | LILACS | ID: lil-622644

RESUMO

The present short survey of the geology of the States of Paraná and Santa Catarina was written as a text to accompany sketches for the revision of the GEOLOGICAL MAP OF SOUTH AMERICA. It contains the results of geologic research up to the year 1947 in most concise form, without going into detail. As requested, the occurrence of useful minerals was not considered in the summary, and the list of bibliographical references has been condensed to the uttermost. Inasmuch as the author treated the Passa Dois Series in more detail, due to the reorganization of the Gondwana beds, the Archean and the Algonkian had to be reduced to the minimum. This was possible, since the innumerable details of the phenomena in the crystalline complex could not be represented in a geologic map of the given scale. The reorganization of the geologic constituents of Paraná and Santa Catarina is summarized in Stratigraphic Table nº 2, and is explained by the enclosed sketches.


Die vorliegende kurze Übersicht zur Geologie der Staaten Paraná und Santa Catarina wurde als Begleittext zur Skizze für die Revision der GEOLOGICAL MAP OF SOUTH AMERICA verfasst. Sie enthält die Ergebnisse der geologischen Forschung bis zum Jahre 1947 in gedrängtester Form, wobei auf Einzelheiten nicht eingegangen wird. Auf ausdrücklichen Wunsch sind die Vorkommen nutzbarer Mineralien in der Übersicht nicht berücksichtigt, und auch das Literatur-Verzeichnis auf das Äusserste eingeschränkt worden. Da der Verfasser im Hinblick auf die Neugliederung der Gondwana-Schichten die Serie Passa Dois etwas eingehender behandelte, mussten dafür Archaeikum und Algonkium auf das Mindestmass gekürzt werden. Das war dadurch möglich, dass bei den mannigfachen Einzelheiten der Erscheinungen im kristallinen Komplex diese bei dem für die geologische Karte vorgesehenen Masstab doch nicht dargestellt werden konnten. Die Neugliederung der geologischen Baustoffe von Paraná und Santa Catarina ist in der stratigrafischen Tabelle nº 2 zusammengefasst und wird durch die beigefügten Skizzen erläutert.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA