Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Environ Manage ; 352: 120152, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38266528

RESUMO

Production of artificial humic substances (AHS) from waste biomass will contribute to environmental protection and agricultural productivity. However, there is still a lack of a faster, more efficient and eco-friendly way for sustainable production. In this study, we proposed a method to accelerate the production of AHS from cotton stalks by mild pyrolysis and H2O2 oxidation in only 4 hours, and investigated the formation of AHS during biomass transformation. We found that the process increased the aromatic matrix and facilitated biomass transformation by enhancing the depolymerization of lignin into micromolecular phenolics (e.g., guaiacol, p-ethyl guaiacol, etc.). The optimum conditions of pyrolysis at 250 °C and oxidation with 6 mL H2O2 (5 wt%) yielded up to 19.28 ± 1.30 wt% artificial humic acid (AHA) from cotton stalks. In addition, we used iron oxyhydroxide (FeOOH) to catalyze biomass transformation and investigated the effect of FeOOH on the composition and properties of AHS. 1.5 wt% FeOOH promoted the increased content of artificial fulvic acid (AFA) in AHS from 10.1% to 26.5%, eventually improving the activity of AHS. FeOOH raised the content of oxygen-containing groups, such as carboxylic acids and aldehyde, and significantly increased polysaccharide (10.94%-18.95%) and protein (1.95%-2.18%) derivatives. Polymerization of amino acid analogs and many small-molecule carbohydrates (e.g., furans, aldehydes, ketones, and their derivatives) promoted AFA formation. Finally, carbon flow analysis and maize incubation tests confirmed that AHS were expected to achieve carbon emission reductions and reduce environmental pollution from fertilizers. This study provides a sustainable strategy for the accelerated production of AHS, which has important application value for waste biomass resource utilization.


Assuntos
Compostos Férricos , Substâncias Húmicas , Peróxido de Hidrogênio , Substâncias Húmicas/análise , Biomassa , Carbono/química , Guaiacol
2.
Sci Total Environ ; 951: 174838, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39029757

RESUMO

The suppression of soil carbon mineralization has been demonstrated to be effectively facilitated by carbon­iron interactions, yet the specific mechanisms by which artificial humic substances (A-HS) coupled with ferrihydrite influence this process remain insufficiently explored. This study is to investigate how the A-HS, specifically artificial fulvic acid (A-FA) and artificial humic acid (A-HA), coupled with ferrihydrite, affect carbon mineralization under anaerobic system that simulates paddy flooding conditions. The object is to investigate trends in carbon emissions and to delineate microbial community structure and functional pathways. The findings indicate that A-HA and A-FA substantially reduce CO2 and CH4 emissions, with A-FA having a particularly pronounced effect on carbon fixation, halving CO2 concentrations. The low concentration of Fe(II) observed suggest that A-FA and A-HA impede the dissimilatory iron reduction (DIR) process. Detailed 16S rDNA sequencing and gene prediction analyses reveal changes in microbial community structures and functions, highlighting Methanobacterium as the dominant hydrogenotrophic methanogens. The reductive citric acid cycle, predominantly utilized by Clostridium carboxidivorans, was identified as the principal carbon fixation pathway. This work provides a novel insight into the microbial mechanisms of carbon sequestration and highlights the potential of A-HS in improving soil fertility and contributing to climate change mitigation through enhancing soil carbon storage.

3.
Chemosphere ; 250: 126606, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32234628

RESUMO

A cost-effective artificial humic substances (humic acid-modified biochar, HA-BCs) is fabricated by using conventional hydrothermal-assisted pyrolysis technique, and then is considered as a promising adsorbent material for removing mercury ions from aqueous solution. Artificial humic acid (A-HA), humic acid-modified biochar (HA-BCs) are analyzed by using SEM, EA, XRD, FTIR, XPS, and BET techniques. The removal efficiency of mercury ions was greater than 95% after reaching the adsorption equilibrium. Meanwhile, the adsorption kinetics coincided with the pseudo-second-order model and the isotherms for mercury ion sorption can be best interpreted using Freundlich isotherm model, with high regression coefficients (R2 = 0.967-0.990). Furthermore, the surface properties of HA-BCs before and after mercury adsorption are compared and evaluated, realizing that the mechanisms of removal of mercury ions on HA-BCs mainly include surface complexation with oxygen/nitrogen functional groups (-OH, -COOH and -NH2) and formation of precipitation with CO32- and OH-. Furthermore, the used HA-BCs can be regenerated via 0.05 mol/L KI solution and the adsorption capacity of mercury still reaches at 32.57 mg/g after four cyclic utilization.


Assuntos
Substâncias Húmicas/análise , Mercúrio/química , Poluentes Químicos da Água/química , Adsorção , Carvão Vegetal , Concentração de Íons de Hidrogênio , Íons , Cinética , Mercúrio/análise , Espectroscopia de Infravermelho com Transformada de Fourier , Propriedades de Superfície , Água , Poluentes Químicos da Água/análise , Purificação da Água/métodos
4.
Sci Total Environ ; 686: 1140-1151, 2019 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-31412510

RESUMO

A novel preparation protocol for synthetic, look-a-like humic substances (i.e., fulvic and humic acids) simulating geochemical processes through hydrothermal reaction is presented, with crude waste biomass as an omnipresent and universal precursor. The chemical nature of the organic scaffold and the type and abundance of oxygen-containing functional groups of the synthetic humic substances (A-FA and A-HA) are revealed by a series of examinations. Results from EA, XPS analyze, FTIR spectra and NMR technology matched well each other, suggesting high similarity on chemical structure (abundant aromatic frameworks) and contents (e.g. N and S elements) in both humic acids. Pyrolysis-gas-chromatography/mass spectrometry (Py-GC/MS) analysis is employed on the organic structure and is directly compared to extracted natural humic matter from black soils (Harbin, China). Dehydrated carbohydrates and their condensates with low molecular weight that are rich in oxygen are the main structural components of the artificial fulvic acids, while aromatic structures and aliphatic side chains are almost absent. Aromatics (7.43%) and in some cases long-chain aliphatics (7.15%) are more prominent in the A-HA sample. The combination of the diverse analytical techniques not only allows a better understanding of artificial fulvic and humic acids, but also supports the high similarity to natural humic substances in structure and morphology. As the technology can be easily scaled and is comparable cheap, the as obtained products can be discussed to rehabilitate used up farm land.


Assuntos
Benzopiranos/análise , Poluição Ambiental/prevenção & controle , Recuperação e Remediação Ambiental/métodos , Substâncias Húmicas/análise , Eliminação de Resíduos/métodos , Resíduos Sólidos/análise , Biomassa , Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA