RESUMO
Auxin regulates plant growth and development through downstream signaling pathways, including the best-known SCFTIR1/AFB-Aux/IAA-ARF pathway and several other less characterized "noncanonical" pathways. Recently, one SCFTIR1/AFB-independent noncanonical pathway, mediated by Transmembrane Kinase 1 (TMK1), was discovered through the analyses of its functions in Arabidopsis apical hook development. Asymmetric accumulation of auxin on the concave side of the apical hook triggers DAR1-catalyzed release of the C-terminal of TMK1, which migrates into the nucleus, where it phosphorylates and stabilizes IAA32/34 to inhibit cell elongation, which is essential for full apical hook formation. However, the molecular factors mediating IAA32/34 degradation have not been identified. Here, we show that proteins in the CYTOKININ INDUCED ROOT WAVING 1 (CKRW1)/WAVY GROWTH 3 (WAV3) subfamily act as E3 ubiquitin ligases to target IAA32/34 for ubiquitination and degradation, which is inhibited by TMK1c-mediated phosphorylation. This antagonistic interaction between TMK1c and CKRW1/WAV3 subfamily E3 ubiquitin ligases regulates IAA32/34 levels to control differential cell elongation along opposite sides of the apical hook.
Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas F-Box , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Ácidos Indolacéticos/metabolismo , Transdução de Sinais , Ubiquitinas/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas F-Box/genética , Proteínas F-Box/metabolismoRESUMO
AUXIN/INDOLE 3-ACETIC ACID (Aux/IAA) transcriptional repressor proteins and the TRANSPORT INHIBITOR RESISTANT 1/AUXIN SIGNALING F-BOX (TIR1/AFB) proteins to which they bind act as auxin coreceptors. While the structure of TIR1 has been solved, structural characterization of the regions of the Aux/IAA protein responsible for auxin perception has been complicated by their predicted disorder. Here, we use NMR, CD and molecular dynamics simulation to investigate the N-terminal domains of the Aux/IAA protein IAA17/AXR3. We show that despite the conformational flexibility of the region, a critical W-P bond in the core of the Aux/IAA degron motif occurs at a strikingly high (1:1) ratio of cis to trans isomers, consistent with the requirement of the cis conformer for the formation of the fully-docked receptor complex. We show that the N-terminal half of AXR3 is a mixture of multiple transiently structured conformations with a propensity for two predominant and distinct conformational subpopulations within the overall ensemble. These two states were modeled together with the C-terminal PB1 domain to provide the first complete simulation of an Aux/IAA. Using MD to recreate the assembly of each complex in the presence of auxin, both structural arrangements were shown to engage with the TIR1 receptor, and contact maps from the simulations match closely observations of NMR signal-decreases. Together, our results and approach provide a platform for exploring the functional significance of variation in the Aux/IAA coreceptor family and for understanding the role of intrinsic disorder in auxin signal transduction and other signaling systems.
Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas F-Box , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Receptores de Superfície Celular/metabolismo , Ácidos Indolacéticos/metabolismo , Proteínas F-Box/metabolismo , Regulação da Expressão Gênica de PlantasRESUMO
BACKGROUND: The auxin/indole-3-acetic acid (Aux/IAA) gene family is a crucial element of the auxin signaling pathway, significantly influencing plant growth and development. Hence, we conducted a comprehensive investigation of Aux/IAAs gene family using the Sp75 and Monoe-Viroflay genomes in spinach. RESULTS: A total of 24 definitive Aux/IAA genes were identified, exhibiting diverse attributes in terms of amino acid length, molecular weight, and isoelectric points. This diversity underscores potential specific roles within the family, such as growth regulation and stress response. Structural analysis revealed significant variations in gene length and molecular weight. These variations indicate distinct roles within the Aux/IAA gene family. Chromosomal distribution analysis exhibited a dispersed pattern, with chromosomes 4 and 1 hosting the highest and lowest numbers of Aux/IAA genes, respectively. Phylogenetic analysis grouped the identified genes into distinct clades, revealing potential evolutionary relationships. Notably, the phylogenetic tree highlighted specific gene clusters suggesting shared genetic ancestry and potential functional synergies within spinach. Expression analysis under NAA treatment unveiled gene-specific and time-dependent responses, with certain genes exhibiting distinct temporal expression patterns. Specifically, SpoIAA5 displayed a substantial increase at 2 h post-NAA treatment, while SpoIAA7 and SpoIAA9 demonstrated continuous rises, peaking at the 4-hour time point. CONCLUSIONS: These observations indicate a complex interplay of gene-specific and temporal regulation in response to auxin. Moreover, the comparison with other plant species emphasized both shared characteristics and unique features in Aux/IAA gene numbers, providing insights into the evolutionary dynamics of this gene family. This comprehensive characterization of Aux/IAA genes in spinach not only establishes the foundation for understanding their specific functions in spinach development but also provides a valuable resource for experimental validation and further exploration of their roles in the intricate network of auxin signaling pathways.
Assuntos
Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos , Família Multigênica , Filogenia , Spinacia oleracea , Spinacia oleracea/genética , Spinacia oleracea/metabolismo , Ácidos Indolacéticos/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Genoma de Planta , Cromossomos de Plantas/genética , Evolução MolecularRESUMO
BACKGROUND: Auxin/induced-3-acetic acid (Aux/IAA) is an important plant hormone that affects plant growth and resistance to abiotic stresses. Drought stress is a vital factor in reducing plant biomass yield and production quality. Alfalfa (Medicago sativa L.) is the most widely planted leguminous forage and one of the most economically valuable crops in the world. Aux/IAA is one of the early responsive gene families of auxin, playing a crucial role in response to drought stress. However, the characteristics of the Aux/IAA gene family in alfalfa and its potential function in response to drought stress are still unknown. RESULT: A total of 41 Aux/IAA gene members were identified in alfalfa genome. The physicochemical, peptide structure, secondary and tertiary structure analysis of proteins encoded by these genes revealed functional diversity of the MsIAA gene. A phylogenetic analysis classified the MsIAA genes into I-X classes in two subgroups. And according to the gene domain structure, these genes were classified into typical MsIAA and atypical MsIAA. Gene structure analysis showed that the MsIAA genes contained 1-4 related motifs, and except for the third chromosome without MsIAAs, they were all located on 7 chromosomes. The gene duplication analysis revealed that segmental duplication and tandem duplication greatly affected the amplification of the MsIAA genes. Analysis of the Ka/Ks ratio of duplicated MsAux/IAA genes suggested purification selection pressure was high and functional differences were limited. In addition, identification and classification of promoter cis-elements elucidated that MsIAA genes contained numerous elements associated to phytohormone response and abiotic stress response. The prediction protein-protein interaction network showed that there was a complex interaction between the MsAux/IAA genes. Gene expression profiles were tissue-specific, and MsAux/IAA had a broad response to both common abiotic stress (ABA, salt, drought and cold) and heavy metal stress (Al and Pb). Furthermore, the expression patterns analysis of 41 Aux/IAA genes by the quantitative reverse transcription polymerase chain reaction (qRT-PCR) showed that Aux/IAA genes can act as positive or negative factors to regulate the drought resistance in alfalfa. CONCLUSION: This study provides useful information for the alfalfa auxin signaling gene families and candidate evidence for further investigation on the role of Aux/IAA under drought stress. Future studies could further elucidate the functional mechanism of the MsIAA genes response to drought stress.
Assuntos
Secas , Medicago sativa , Medicago sativa/genética , Filogenia , Proteínas de Plantas/metabolismo , Ácidos Indolacéticos/metabolismo , Reguladores de Crescimento de Plantas , Estresse Fisiológico/genética , Regulação da Expressão Gênica de PlantasRESUMO
AUXIN/INDOLE-3-ACETIC ACIDs are transcriptional repressors for auxin signalling. Aux/IAAs of Arabidopsis thaliana display some functional redundancy. The IAA3/SHY2 clade (IAA1, IAA2, IAA3 and IAA4) show strong sequence similarity, but no higher-order mutants have been reported. Here, through CRISPR/Cas9 genome editing, we generated loss-of-function iaa1/2/3/4 mutants. The quadruple mutants only exhibited a weak phenotype. Thus, we additionally knocked out IAA7/AXR2 and IAA16, which are coexpressed with IAA1/2/3/4. Remarkably, under white light control conditions, the iaa1/2/3/4/7/16 mutants exhibited a shade avoidance-like phenotype with over-elongated hypocotyls and petioles and hyponastic leaves. The sextuple mutants were highly sensitive to low light intensity, and the hypocotyl cells of the mutants were excessively elongated. Transcriptome profiling and qRT-PCR analyses revealed that the sextuple mutation upregulated IAA19/MSG2 and IAA29, two shared shade/auxin signalling targets. Besides, genes encoding cell wall-remodelling proteins and shade-responsive transcription regulators were upregulated. Using dual-luciferase reporter assays, we verified that IAA2/IAA7 targeted the promoters of cell wall-remodelling genes to inhibit their transcription. Our work indicates that the IAA1/2/3/4/7/16 gene set is required for the optimal integration of auxin and shade signalling. The mutants generated here should be valuable for exploring the complex interactions among signal sensors, transcription activators and transcription repressors during hormone/environmental responses.
RESUMO
KEY MESSAGE: Twenty-five VvIAA genes and eighteen VaIAA genes were identified from Pinot Noir and Shanputao, respectively. The overexpression of VaIAA3 in transgenic Arabidopsis increased cold tolerance by regulating auxin, ABA and ethylene signaling. Aux/IAA genes are key genes involved in regulating auxin signal transduction in plants. Although IAA genes have been characterized in various plant species, the role of IAA genes in grape cold resistance is unclear. To further explore the members of the Aux/IAA gene family in grape and their functions, in this study, using genomic data for Pinot Noir (Vitis vinifera cv. 'Pinot Noir') and Shanputao (Vitis amurensis), 25 VvIAA genes and 18 VaIAA genes were identified. The VaIAA genes presented different expression patterns at five different temperatures (28 ± 1 °C, 5 ± 1 °C, 0 ± 1 °C, -5 ± 1 °C, and -10 ± 1 °C) according to qRTPCR results. VaIAA3 was selected as a candidate gene for further functional analysis because of its high expression level under low-temperature stress. Subcellular localization experiments revealed that VaIAA3 was localized in the nucleus. Additionally, under 4 °C treatment for 24 h, relative expression level of VaIAA3, antioxidant enzyme activity, survival rate, and cold-responsive gene expression in three transgenic lines (OE-1, OE-2, OE-3) were greater, whereas relative electrolytic conductivity (REC), malondialdehyde (MDA) content and hydrogen peroxide (H2O2) content were lower than those of the wild type (WT). Transcriptome sequencing analysis revealed that VaIAA3 regulated cold stress resistance in Arabidopsis thaliana (Arabidopsis) through pathways involving auxin, ABA, JA, or ethylene. Importantly, heterologous overexpression of VaIAA3 increased the resistance of Arabidopsis to cold stress, which provides a theoretical basis for the further use of VaIAA3 to improve cold resistance in grape.
Assuntos
Arabidopsis , Resposta ao Choque Frio , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos , Proteínas de Plantas , Plantas Geneticamente Modificadas , Vitis , Vitis/genética , Vitis/fisiologia , Vitis/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Arabidopsis/genética , Arabidopsis/fisiologia , Ácidos Indolacéticos/metabolismo , Resposta ao Choque Frio/genética , Família Multigênica , Etilenos/metabolismo , Temperatura Baixa , Filogenia , Reguladores de Crescimento de Plantas/metabolismo , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacologiaRESUMO
Panax ginseng C. A. Meyer (Ginseng) is one of the most used traditional Chinese herbal medicines, with its roots being used as the main common medicinal parts; its therapeutic potential has garnered significant attention. AUXIN/INDOLE-3-ACETIC ACID (Aux/IAA) is a family of early auxin-responsive genes capable of regulating root development in plants through the auxin signaling pathway. In the present study, 84 Aux/IAA genes were identified from the ginseng genome and their complexity and diversity were determined through their protein domains, phylogenetic relationships, gene structures, and cis-acting element predictions. Phylogenetic analyses classified PgIAA into six subgroups, with members in the same group showing greater sequence similarity. Analyses of interspecific collinearity suggest that segmental duplications likely drove the evolution of PgIAA genes, followed by purifying selection. An analysis of cis-regulatory elements suggested that PgIAA family genes may be involved in the regulation of plant hormones. RNA-seq data show that the expression pattern of Aux/IAA genes in Ginseng is tissue-specific, and PgIAA02 and PgIAA36 are specifically highly expressed in lateral, fibrous, and arm roots, suggesting their potential function in root development. The PgIAA02 overexpression lines exhibited an inhibition of lateral root growth in Ginseng. In addition, yeast two-hybrid and subcellular localization experiments showed that PgIAA02 interacted with PgARF22/PgARF36 (ARF: auxin response factor) in the nucleus and participated in the biological process of root development. The above results lay the foundation for an in-depth study of Aux/IAA and provide preliminary information for further research on the role of the Aux/IAA gene family in the root development of Ginseng.
Assuntos
Panax , Proteínas de Plantas , Proteínas de Plantas/metabolismo , Filogenia , Panax/genética , Panax/metabolismo , Ácidos Indolacéticos/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Regulação da Expressão Gênica de PlantasRESUMO
BACKGROUND: The auxin indole-3-acetic acid (IAA) is a vital phytohormone that influences plant growth and development. Our previous work showed that IAA content decreased during flower development in the medicinally important orchid Dendrobium officinale, while Aux/IAA genes were downregulated. However, little information about auxin-responsive genes and their roles in D. officinale flower development exists. RESULTS: This study validated 14 DoIAA and 26 DoARF early auxin-responsive genes in the D. officinale genome. A phylogenetic analysis classified the DoIAA genes into two subgroups. An analysis of cis-regulatory elements indicated that they were related by phytohormones and abiotic stresses. Gene expression profiles were tissue-specific. Most DoIAA genes (except for DoIAA7) were sensitive to IAA (10 µmol/L) and were downregulated during flower development. Four DoIAA proteins (DoIAA1, DoIAA6, DoIAA10 and DoIAA13) were mainly localized in the nucleus. A yeast two-hybrid assay showed that these four DoIAA proteins interacted with three DoARF proteins (DoARF2, DoARF17, DoARF23). CONCLUSIONS: The structure and molecular functions of early auxin-responsive genes in D. officinale were investigated. The DoIAA-DoARF interaction may play an important role in flower development via the auxin signaling pathway.
Assuntos
Dendrobium , Dendrobium/genética , Dendrobium/metabolismo , Filogenia , Proteínas de Plantas/metabolismo , Ácidos Indolacéticos/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Flores/genética , Flores/metabolismo , Regulação da Expressão Gênica de PlantasRESUMO
BACKGROUND: Auxin plays an important role in plant resistance to abiotic stress. The modulation of gene expression by Auxin response factors (ARFs) and the inhibition of auxin/indole-3-acetic acid (Aux/IAA) proteins play crucial regulatory roles in plant auxin signal transduction. However, whether the stress resistance of Masson pine (Pinus massoniana), as a representative pioneer species, is related to Aux/IAA and ARF genes has not been thoroughly studied and explored. RESULTS: The present study provides preliminary evidence for the regulatory role of the PmaIAA27 gene in abiotic stress response in Masson pine. We investigated the effects of drought and hormone treatments on Masson pine by examining the expression patterns of PmaIAA27 and PmaARF15 genes. Subsequently, we conducted gene cloning, functional testing using transgenic tobacco, and explored gene interactions. Exogenous auxin irrigation significantly downregulated the expression of PmaIAA27 while upregulating PmaARF15 in Masson pine seedlings. Moreover, transgenic tobacco with the PmaIAA27 gene exhibited a significant decrease in auxin content compared to control plants, accompanied by an increase in proline content - a known indicator of plant drought resistance. These findings suggest that overexpression of the PmaIAA27 gene may enhance drought resistance in Masson pine. To further investigate the interaction between PmaIAA27 and PmaARF15 genes, we performed bioinformatics analysis and yeast two-hybrid experiments which revealed interactions between PB1 structural region of PmaARF15 and PmaIAA27. CONCLUSION: The present study provides new insights into the regulatory functions of Aux/IAA and ARF genes in Masson pine. Overexpression of PmaIAA gene may have negative effects on the growth of Masson pine, but may improve the drought resistance. Therefore, this study has great application prospects.
Assuntos
Pinus , Proteínas de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Secas , Pinus/genética , Pinus/metabolismo , Ácidos Indolacéticos/metabolismo , Plantas/metabolismo , Regulação da Expressão Gênica de PlantasRESUMO
BACKGROUND: Auxins are known to have roles in the tuberization process in sweet potato (Ipomoea batatas [L.] Lam.) and these effects are mediated by various auxin signalling gene families. In this study, an analysis of the sweet potato genome was performed to identify the ARF, Aux/IAA, GH3, and SAUR auxin signalling gene family members in this crop. RESULTS: A total of 29 ARF, 39 Aux/IAA, 13 GH3, and 200 SAUR sequences were obtained, and their biochemical properties and gene expression profiles were analysed. The sequences were relatively conserved based on exon-intron structure, motif analysis, and phylogenetic tree construction. In silico expression analyses of the genes in fibrous and storage roots indicated that many sequences were not differentially expressed in tuberizing and non-tuberizing roots. However, some ARF, Aux/IAA, and SAUR genes were up-regulated in tuberizing storage roots compared to non-tuberizing fibrous roots while many GH3 genes were down-regulated. Additionally, these genes were expressed in a variety of plant parts, with some genes being highly expressed in shoots, leaves, and stems while others had higher expression in the roots. Some of these genes are up-regulated during the plant's response to various hormone treatments and abiotic stresses. Quantitative RT-PCR confirmation of gene expression was also conducted, and the results were concordant with the in silico analyses. A protein-protein interaction network was predicted for the differentially expressed genes, suggesting that these genes likely form part of a complex regulatory network that controls tuberization. These results confirm those of existing studies that show that auxin signalling genes have numerous roles in sweet potato growth and development. CONCLUSION: This study provides useful information on the auxin signalling gene families in Ipomoea batatas and suggests putative candidates for further studies on the role of auxin signalling in tuberization and plant development.
Assuntos
Ipomoea batatas , Ipomoea batatas/genética , Ipomoea batatas/metabolismo , Filogenia , Ácidos Indolacéticos/metabolismo , Genoma de Planta , Desenvolvimento Vegetal/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismoRESUMO
BACKGROUND: Auxin/indoleacetic acid (AUX/IAA) genes encoding short-lived proteins participate in AUX signaling transduction and play crucial roles in plant growth and development. Although the AUX/IAA gene family has been identified in many plants, a systematic analysis of AUX/IAA genes in Brassica rapa ssp. rapa has not yet been reported. RESULTS: We performed a comprehensive genome-wide analysis and found 89 AUX/IAA genes in turnip based on the conserved AUX/IAA domain (pfam02309). Phylogenetic analysis of AUX/IAA genes from turnip, Arabidopsis, and cabbage revealed that these genes cluster into six subgroups (A1, A2, A3, A4, B1, and B2). The motif distribution was also conservative among the internal members of the clade. Enhanced yellow fluorescent protein (EYFP) signals of BrrIAA-EYFPs showed that BrrIAA members functioned as nucleoproteins. Moreover, transcriptional analysis revealed that the expression patterns of AUX/IAA genes in turnip were tissue-dependent. Because orthologs have similar biological functions and interaction networks in plant growth and development, BrrIAA66 in turnip possibly played a role in embryo axis formation, vascular development, lateral root formation, and floral organ development by interacting with BrrARF19 and BrrTIR1. CONCLUSION: These results provide a theoretical basis for further investigation of BrrAUX/IAA genes and lay the foundation for functional analysis of BrrIAA66 in turnip.
Assuntos
Arabidopsis , Brassica napus , Brassica rapa , Brassica , Brassica napus/metabolismo , Brassica/metabolismo , Brassica rapa/genética , Brassica rapa/metabolismo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ácidos Indolacéticos/metabolismo , Arabidopsis/genética , Regulação da Expressão Gênica de PlantasRESUMO
BACKGROUND: The plant hormone auxin is widely involved in plant growth, development, and morphogenesis, and the TIR1/AFB and AUX/IAA proteins are closely linked to rapid auxin response and signal transmission. However, their evolutionary history, historical patterns of expansion and contraction, and changes in interaction relationships are still unknown. RESULTS: Here, we analyzed the gene duplications, interactions, and expression patterns of TIR1/AFBs and AUX/IAAs to understand their underlying mechanisms of evolution. The ratios of TIR1/AFBs to AUX/IAAs range from 4:2 in Physcomitrium patens to 6:29 in Arabidopsis thaliana and 3:16 in Fragaria vesca. Whole-genome duplication (WGD) and tandem duplication have contributed to the expansion of the AUX/IAA gene family, but numerous TIR1/AFB gene duplicates were lost after WGD. We further analyzed the expression profiles of TIR1/AFBs and AUX/IAAs in different tissue parts of Physcomitrium patens, Selaginella moellendorffii, Arabidopsis thaliana and Fragaria vesca, and found that TIR1/AFBs and AUX/IAAs were highly expressed in all tissues in P. patens, S. moellendorffii. In A. thaliana and F. vesca, TIR1/AFBs maintained the same expression pattern as the ancient plants with high expression in all tissue parts, while AUX/IAAs appeared tissue-specific expression. In F. vesca, 11 AUX/IAAs interacted with TIR1/AFBs with different interaction strengths, and the functional specificity of AUX/IAAs was related to their ability to bind TIR1/AFBs, thus promoting the development of specific higher plant organs. Verification of the interactions among TIR1/AFBs and AUX/IAAs in Marchantia polymorpha and F. vesca also showed that the regulation of AUX/IAA members by TIR1/AFBs became more refined over the course of plant evolution. CONCLUSIONS: Our results indicate that specific interactions and specific gene expression patterns both contributed to the functional diversification of TIR1/AFBs and AUX/IAAs.
Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas F-Box , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas F-Box/genética , Ácidos Indolacéticos/metabolismo , Morfogênese/genética , Regulação da Expressão Gênica de Plantas , Receptores de Superfície Celular/genéticaRESUMO
MAIN CONCLUSION: LBD18 and IAA14 antagonistically interact with ARF7 through the electrostatic faces in the ARF7PB1 domain, modulating ARF7 transcriptional activity. Auxin Response Factor 7 (ARF7)/ARF19 control lateral root development by directly activating Lateral Organ Boundaries Domain 16 (LBD16)/LBD18 genes in Arabidopsis. LBD18 upregulates ARF19 expression by binding to the ARF19 promoter. It also interacts with ARF7 through the Phox and Bem1 (PB1) domain to enhance the ARF7 transcriptional activity, forming a dual mode of positive feedback loop. LBD18 competes with the repressor indole-3-acetic acid 14 (IAA14) for ARF7 binding through the PB1 domain. In this study, we examined the molecular determinant of the ARF7 PB1 domain for interacting with LBD18 and showed that the electronic faces in the ARF7 PB1 domain are critical for interacting with LBD18 and IAA14/17. We used a luminescence complementation imaging assay to determine protein-protein interactions. The results showed that mutation of the invariant lysine residue and the OPCA motif in the PB1 domain in ARF7 significantly reduces the protein interaction between ARF7 and LBD18. Transient gene expression assays with Arabidopsis protoplasts showed that IAA14 suppressed transcription-enhancing activity of LBD18 on the LUC reporter gene fused to the ARF19 promoter harboring an auxin response element, but mutation of the invariant lysine residue and OPCA motif in the PB1 domain of IAA14 reduced the repression capability of IAA14 for transcription-enhancing activity of LBD18. We further showed that the same mutation in the PB1 domain of IAA14 reduces its repression capability, thereby increasing the LUC activity induced by both ARF7 and LBD18 compared with IAA14. These results suggest that LBD18 competes with IAA14 for ARF7 binding via the electrostatic faces of the ARF7 PB1 domain to modulate ARF7 transcriptional activity.
Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Fator VII/genética , Fator VII/metabolismo , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos/metabolismo , Lisina/metabolismo , Raízes de Plantas/metabolismo , Fatores de Transcrição/metabolismoRESUMO
In many plant species, petal abscission can be considered the final step of petal senescence. Cytokinins (CKs) are powerful suppressors of petal senescence; however, their role in petal abscission is ambiguous. Here, we observed that, in rose (Rosa hybrida), biologically active CK is accumulated during petal abscission and acts as an accelerator of the abscission process. Using a combination of reverse genetics, and molecular and biochemical techniques, we explored the roles of a LESION SIMULATING DISEASE1 (LSD1) family member RhLOL1 interacting with a bHLH transcription factor RhILR3 in CK-induced petal abscission. Silencing RhLOL1 delays rose petal abscission, while the overexpression of its ortholog SlLOL1 in tomato (Solanum lycopersicum) promotes pedicel abscission, indicating the conserved function of LOL1 in activating plant floral organ abscission. In addition, we identify a bHLH transcription factor, RhILR3, that interacts with RhLOL1. We show that RhILR3 binds to the promoters of the auxin signaling repressor auxin/indole-3-acetic acid (Aux/IAA) genes to inhibit their expression; however, the interaction of RhLOL1 with RhILR3 activates the expression of the Aux/IAA genes including RhIAA4-1. Silencing RhIAA4-1 delays rose petal abscission. Our results thus reveal a RhLOL1-RhILR3 regulatory module involved in CK-induced petal abscission via the regulation of the expression of the Aux/IAA genes.
Assuntos
Citocininas , Rosa , Citocininas/metabolismo , Etilenos/metabolismo , Rosa/genética , Flores/fisiologia , Ácidos Indolacéticos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/metabolismoRESUMO
Auxin/indole-3-acetic acid (AUX/IAA) and auxin response factor (ARF) proteins are important components of the auxin signalling pathway, but their ubiquitination modification and the mechanism of auxin-mediated anthocyanin biosynthesis remain elusive. Here, the ARF MdARF5-1 was identified as a negative regulator of anthocyanin biosynthesis in apple, and it integrates auxin and ethylene signals by inhibiting the expression of the ethylene response factor MdERF3. The auxin repressor MdIAA29 decreased the inhibitory effect of MdARF5-1 on anthocyanin biosynthesis by attenuating the transcriptional inhibition of MdERF3 by MdARF5-1. In addition, the E3 ubiquitin ligases MdSINA4 and MdSINA11 played negative and positive regulatory roles in anthocyanin biosynthesis by targeting MdIAA29 and MdARF5-1 for ubiquitination degradation, respectively. MdSINA4 destabilized MdSINA11 to regulate anthocyanin accumulation in response to auxin signalling. In sum, our data revealed the crosstalk between auxin and ethylene signals mediated by the IAA29-ARF5-1-ERF3 module and provide new insights into the ubiquitination modification of the auxin signalling pathway.
Assuntos
Malus , Ubiquitina-Proteína Ligases , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Malus/genética , Malus/metabolismo , Antocianinas , Ácidos Indolacéticos/metabolismo , Etilenos , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismoRESUMO
BACKGROUND: AUX/IAA is an essential signaling molecule and has great physiological importance in various plants, but its function in Zoysia japonica remains unknown. METHODS AND RESULTS: Genome-wide identification and analysis of AUX/IAA genes used bioinformatics methods to investigate the ZjIAA genes' expression of exogenous IAA hydroponics treatment for 2 h by qRT-PCR, control and exogenous IAA treated zoysia were subjected to transcriptome sequencing. ZjIAAs were distributed across the 13 subfamilies by phylogenetic analysis with Oryza sativa and Arabidopsis thaliana. Multiple sequence alignment revealed that the majority of genes were non-canonical ZjIAAs with incomplete domain. The optimal growth concentration of the IAA hormone was 0.05 mM, and the qRT-PCR analysis revealed that eight ZjIAAs were differentially expressed, with seven genes considerably upregulating and one gene significantly downregulating. The result of transcriptome sequencing revealed that 515 differentially expressed genes (DEGs) were identified, with 344 upregulated genes and 171 downregulated genes. A total of 18 genes were annotated as involved in the plant hormone signal transduction pathway. And 8 ZjIAAs exhibited distinct expressions, 7 upregulated, and only one downregulated, according to the qRT-PCR study. CONCLUSIONS: Genome-wide identification and analysis increased the understanding of the evolution and function of the IAA family in zoysia. DEGs of control and treatment with 0.05 mM exogenous IAA hormone were investigated by transcriptome sequencing. ZjIAAs had substantial variations in the expression of associated genes, with the majority of genes upregulated and 18 genes implicated in plant hormone signal transduction.
Assuntos
Arabidopsis , Reguladores de Crescimento de Plantas , Reguladores de Crescimento de Plantas/genética , Reguladores de Crescimento de Plantas/farmacologia , Reguladores de Crescimento de Plantas/metabolismo , Filogenia , Ácidos Indolacéticos/farmacologia , Ácidos Indolacéticos/metabolismo , Sequência de Aminoácidos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Perfilação da Expressão Gênica , Poaceae/genética , Arabidopsis/genética , Hormônios , Regulação da Expressão Gênica de Plantas/genética , Transcriptoma/genéticaRESUMO
KEY MESSAGE: Overexpression of the Aux/IAA protein TaIAA15-1A from wheat improves drought tolerance by regulating the ABA signalling pathway in transgenic Brachypodium. Drought is a major abiotic stress that causes severe crop yield loss. Aux/IAA genes have been shown to be involved in drought stress responses. However, to the best of our knowledge, there has been little research on the molecular mechanism of the wheat Aux/IAA gene in the context of drought tolerance. In this study, we found that expression of the wheat Aux/IAA gene TaIAA15-1A was upregulated by PEG6000, NaCl, SA, JA, IAA and ABA. Transgenic plants overexpressing TaIAA15-1A showed higher drought tolerance than wild-type (WT) plants. The physiological analyses showed that the transgenic lines exhibited a higher survival rate, shoot length, and relative water content than the WT plants. The activities of superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD) were enhanced in transgenic lines, causing a reduction in the hydrogen peroxide (H2O2) and superoxide anion radical (O2-) contents. Transcriptome analysis showed that TaIAA15-1A overexpression alters the expression of these genes involved in the auxin signalling pathway, ABA signalling pathway, phenolamides and antioxidant pathways. The results of exogenous ABA treatment suggested that TaIAA15-1A overexpression increased sensitivity to ABA at the germination and postgermination stages compared to WT plants. These results indicate that TaIAA15-1A plays a positive role in plant drought tolerance by regulating ABA-related genes and improving antioxidative stress ability and has potential application in genetically modified crops.
Assuntos
Ácido Abscísico , Brachypodium , Ácido Abscísico/farmacologia , Ácido Abscísico/metabolismo , Brachypodium/genética , Brachypodium/metabolismo , Resistência à Seca , Plantas Geneticamente Modificadas/metabolismo , Peróxido de Hidrogênio/metabolismo , Produtos Agrícolas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estresse Fisiológico/genética , Secas , Transdução de Sinais/genética , Regulação da Expressão Gênica de PlantasRESUMO
Rare earth elements (REEs) have been widely used in traditional and high-tech fields, and high doses of REEs are considered a risk to the ecosystem. Although the influence of arbuscular mycorrhizal fungi (AMF) in promoting host resistance to heavy metal (HM) stress has been well documented, the molecular mechanism by which AMF symbiosis enhances plant tolerance to REEs is still unclear. A pot experiment was conducted to investigate the molecular mechanism by which the AMF Claroideoglomus etunicatum promotes maize (Zea mays) seedling tolerance to lanthanum (La) stress (100 mg·kg-1 La). C. etunicatum symbiosis significantly improved maize seedling growth, P and La uptake and photosynthesis. Transcriptome, proteome, and metabolome analyses performed alone and together revealed that differentially expressed genes (DEGs) related to auxin /indole-3-acetic acid (AUX/IAA) and the DEGs and differentially expressed proteins (DEPs) related to ATP-binding cassette (ABC) transporters, natural resistance-associated macrophage proteins (Nramp6), vacuoles and vesicles were upregulated. In contrast, photosynthesis-related DEGs and DEPs were downregulated, and 1-phosphatidyl-1D-myo-inositol 3-phosphate (PI(3)P) was more abundant under C. etunicatum symbiosis. C. etunicatum symbiosis can promote plant growth by increasing P uptake, regulating plant hormone signal transduction, photosynthesis and glycerophospholipid metabolism pathways and enhancing La transport and compartmentalization in vacuoles and vesicles. The results provide new insights into the promotion of plant REE tolerance by AMF symbiosis and the possibility of utilizing AMF-maize interactions in REE phytoremediation and recycling.
RESUMO
Drought stress is an important factor that reduces plant biomass production and quality. As one of the most important economic forage grasses, orchardgrass (Dactylis glomerata) has high drought tolerance. Auxin/indole-3-acetic acid (Aux/IAA) is one of the early responsive gene families of auxin and plays a key role in the response to drought stress. However, the characteristics of the Aux/IAA gene family in orchardgrass and their potential function in responding to drought stress remain unclear. Here, 30 Aux/IAA members were identified in orchardgrass. Segmental duplication may be an important driving force in the evolution of the Aux/IAA gene family in orchardgrass. Some Aux/IAA genes were induced by IAA, drought, salt, and temperature stresses, implying that these genes may play important roles in responding to abiotic stresses. Heterologous expression in yeast revealed that DgIAA21 can reduce drought tolerance. Similarly, the overexpression of DgIAA21 also reduced drought tolerance in transgenic Arabidopsis, which was supported by lower total chlorophyll content and relative water content as well as higher relative electrolyte leakage and malondialdehyde content (MDA) than Col-0 plants under drought conditions. The results of this study provided valuable insight into the function of DgIAAs in response to drought stress, which can be further used to improve forage grass breeding programs.
Assuntos
Arabidopsis , Dactylis , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Secas , Regulação da Expressão Gênica de Plantas , Melhoramento Vegetal , Ácidos Indolacéticos/metabolismo , Plantas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , FilogeniaRESUMO
It has long been known that the phytohormone auxin plays a promoting role in tuber formation and stress tolerance in potatoes. Our study aimed to identify and characterize the complete sets of auxin-related genes that presumably constitute the entire auxin signaling system in potato (Solanum tuberosum L.). The corresponding genes were retrieved from sequenced genomes of the doubled monoploid S. tuberosum DM1-3-516-R44 (DM) of the Phureja group, the heterozygous diploid line RH89-039-16 (RH), and the autotetraploid cultivar Otava. Both canonical and noncanonical auxin signaling pathways were considered. Phylogenetic and domain analyses of deduced proteins were supplemented by expression profiling and 3D molecular modeling. The canonical and ABP1-mediated pathways of auxin signaling appeared to be well conserved. The total number of potato genes/proteins presumably involved in canonical auxin signaling is 46 and 108 in monoploid DM and tetraploid Otava, respectively. Among the studied potatoes, spectra of expressed genes obviously associated with auxin signaling were partly cultivar-specific and quite different from analogous spectrum in Arabidopsis. Most of the noncanonical pathways found in Arabidopsis appeared to have low probability in potato. This was equally true for all cultivars used irrespective of their ploidy. Thus, some important features of the (noncanonical) auxin signaling pathways may be variable and species-specific.