Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Magn Reson Med ; 2024 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-39188098

RESUMO

PURPOSE: To assess the impact of different B0 shimming algorithms on MRS. METHODS: B0 field maps and single-voxel MR spectroscopy were acquired in the prefrontal cortex of five volunteers at 3 T using five different B0 shimming approaches. B0 shimming was achieved using Siemens' proprietary shim algorithm, in addition to the Pseudo-Inverse (PI), Quadratic Programming (QuadProg), Least Squares (LSq), and Gradient optimization (Grad) algorithms. The standard deviation of the shimmed B0 field, as well as the SNR and FWHM of the measured metabolites, was used to evaluate the performance of each B0 shimming algorithm. RESULTS: Compared to Siemens's shim, significant reductions (p < 0.01) in the standard deviation of the B0 field distribution within the MRS voxel were observed for the PI, QuadProg, and Grad algorithms (3.8 Hz, 7.3 Hz, and 3.9 Hz respectively, compared to 11.5 Hz for Siemens), but not for the LSq (12.9 Hz) algorithm. Moreover, significantly increased SNR and reduced FWHM for the N-acetylaspartate metabolite were consistent with the improvement in B0 homogeneity for the aforementioned shimming algorithms. CONCLUSION: Here, we demonstrate that the choice of B0 shimming algorithm can have a significant impact on the quality of MR spectra and that significant improvements in spectrum quality could be achieved by using alternatives to the default vendor approach.

2.
Magn Reson Med ; 91(2): 842-849, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37849021

RESUMO

PURPOSE: To develop a flexible, lightweight, and multi-purpose integrated parallel reception, excitation, and shimming (iPRES) coil array that can conform to the subject's anatomy and perform MR imaging and localized B0 shimming in different anatomical regions with a high SNR, shimming performance, ease of positioning, and subject comfort. METHODS: A four-channel flexible iPRES coil array was constructed by enabling RF and direct currents to flow on the same flexible coil elements for imaging and shimming, respectively. Shimming experiments were performed with the coil array wrapped around the knee or neck of healthy subjects to demonstrate its high shimming performance and versatility. Additionally, its SNR and shimming performance in the knee were compared to those obtained with the coil array wrapped around a larger rigid tube designed to fit most knee sizes. RESULTS: Shimming with the coil array wrapped around the knee or neck resulted in an average reduction in B0 RMSE of 50.1% and 40.5% relative to first-order and second-order spherical harmonic shimming, respectively, and substantially reduced distortions in DWI images. In contrast, shimming the knee with the coil array wrapped around the rigid tube only provided a 29.6% reduction in B0 RMSE, whereas the SNR was reduced by 58.7%. CONCLUSION: The flexible iPRES coil array can conform to different anatomical regions and perform imaging and localized B0 shimming with a higher SNR, shimming performance, ease of positioning, and comfort compared to a rigid iPRES coil array, which should be valuable for many applications throughout the human body.


Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Humanos , Encéfalo/anatomia & histologia , Imageamento por Ressonância Magnética/métodos , Imagens de Fantasmas , Ondas de Rádio , Articulação do Joelho/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos
3.
Magn Reson Med ; 89(1): 477-486, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36111357

RESUMO

PURPOSE: We aimed to improve B0 magnetic field homogeneity and minimize the interference between RF coils and local B0 shimming coils with few channel numbers. METHODS: To design and construct the prototype for B0 shimming of the rat brain, we first evaluated the interferences of single shimming loops on RF receiver loops. Then, B0 shimming of the whole rat brain was implemented using an optimization procedure. The positions and currents of the local shimming coils with channel numbers from 3 to 6 were optimized to improve shimming performance. Based on the simulation results, a 5-channel local shimming coil, combined with a 3-channel RF receiver coil, was constructed and evaluated by animal experiments. RESULTS: There was marginal SNR loss within 5% after integrating the local shimming coil into the RF receiver coil. With respect to the Siemens standard shims up to second order, the B0 inhomogeneity in one whole rat brain was reduced from 39.6 Hz to 24.7 Hz by using the local shimming coil. A large portion of the EPI distortions was recovered after using the 5-channel local shimming coil. The temporal SNR using the local shimming coil was higher than that using the Siemens standard shims up to second order, with an improvement of more than 24%. CONCLUSIONS: The local shimming coil can improve B0 magnetic field homogeneity despite minor effects on the RF coil and can benefit a variety of applications that are sensitive to B0 inhomogeneity. Nevertheless, EPI for rat brain is still very challenging.


Assuntos
Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Animais , Ratos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Ondas de Rádio , Encéfalo/diagnóstico por imagem , Neuroimagem
4.
Neuroimage ; 261: 119498, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-35917918

RESUMO

Increased static field inhomogeneities are a burden for human brain MRI at Ultra-High-Field. In particular they cause enhanced Echo-Planar image distortions and signal losses due to magnetic susceptibility gradients at air-tissue interfaces in the subject's head. In the past decade, Multi-Coil Arrays (MCA) have been proposed to shim the field in the brain better than the 2nd or 3rd order Spherical Harmonic (SH) coils usually offered by MRI manufacturers. Here we present a novel MCA, named SCOTCH, optimized for whole brain shimming. Based on a cylindrical structure, it features several layers of small coils whose shape, size and location are found from a principal component analysis of ideal stream functions computed from an internal 100-brain fieldmap database. From an Open-Access external database of 126 brains, our SCOTCH implementation is shown to be equivalent to a partial 7th-order SH system with unlimited power, outperforming all known existing MCA prototypes. This result is further confirmed by a low-cost  30-cm diameter SCOTCH prototype built with 48 coils on 3 layers, and tested on 7 volunteers at 7T with a parallel-transmit RF coil made to be inserted in SCOTCH. Echo-Planar images of the subject brains before and after SCOTCH shimming show large signal recoveries, especially in the prefrontal cortex.


Assuntos
Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Encéfalo/diagnóstico por imagem , Humanos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Magnetismo , Ondas de Rádio
5.
Magn Reson Med ; 88(2): 1002-1014, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35468243

RESUMO

PURPOSE: To develop a wireless integrated parallel reception, excitation, and shimming (iPRES-W) coil array for simultaneous imaging and wireless localized B0 shimming, and to demonstrate its ability to correct for distortions in DTI of the spinal cord in vivo. METHODS: A 4-channel coil array was modified to allow an RF current at the Larmor frequency and a direct current to flow on each coil element, enabling imaging and localized B0 shimming, respectively. One coil element was further modified to allow additional RF currents within a wireless communication band to flow on it to wirelessly control the direct currents for shimming, which were supplied from a battery pack within the scanner bore. The RF signals for imaging were transferred via conventional wired connections. Experiments were conducted to evaluate the RF, B0 shimming, and wireless performance of this coil design. RESULTS: The coil modifications did not degrade the SNR. Wireless localized B0 shimming with the iPRES-W coil array substantially reduced the B0 RMSE (-57.5% on average) and DTI distortions in the spinal cord. The antenna radiation efficiency, antenna gain pattern, and battery power consumption of an iPRES-W coil measured in an anechoic chamber were minimally impacted by the introduction of a saline phantom representing tissue. CONCLUSION: The iPRES-W coil array can perform imaging and wireless localized B0 shimming of the spinal cord with no SNR degradation, with minimal change in wireless performance and without any scanner modifications or additional antenna systems within the scanner bore.


Assuntos
Medula Cervical , Imageamento por Ressonância Magnética , Encéfalo , Imageamento por Ressonância Magnética/métodos , Imagens de Fantasmas , Medula Espinal/diagnóstico por imagem
6.
Magn Reson Med ; 87(3): 1218-1230, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34783374

RESUMO

PURPOSE: Slice-wise shimming can improve field homogeneity, but suffers from large noise propagation in the shim calculation. Here, we propose a robust shim current optimization for higher-order dynamic shim updating, based on Tikhonov regularization with a variable regularization parameter, λ . THEORY AND METHODS: λ was selected for each slice separately in a fully automatic procedure based on a combination of boundary constraints and an L-curve search algorithm. Shimming performance was evaluated for second order slice-wise shimming of the brain at 7T, by simulation on a database of field maps from 143 subjects, and by direct measurements in 8 subjects. RESULTS: Simulations yielded on average 36% reduction in the shim current norm for just 0.4 Hz increase in residual field SD as compared to unconstrained unregularized optimization. In vivo results yielded on average 34.0 Hz residual field SD as compared to 34.3 Hz with a constrained unregularized optimization, while simultaneously reducing the shim current norm to 2.8 A from 3.9 A. The proposed regularization also reduced the average step in the shim current between slices. CONCLUSION: Slice-wise variable Tikhonov regularization yielded reduced current norm and current steps to a negligible cost in field inhomogeneity. The method holds promise to increase the robustness, and thereby the utility, of higher-order shim updating.


Assuntos
Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Algoritmos , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico , Humanos
7.
Magn Reson Med ; 87(2): 1074-1092, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34632626

RESUMO

PURPOSE: To test an integrated "AC/DC" array approach at 7T, where B0 inhomogeneity poses an obstacle for functional imaging, diffusion-weighted MRI, MR spectroscopy, and other applications. METHODS: A close-fitting 7T 31-channel (31-ch) brain array was constructed and tested using combined Rx and ΔB0 shim channels driven by a set of rapidly switchable current amplifiers. The coil was compared to a shape-matched 31-ch reference receive-only array for RF safety, signal-to-noise ratio (SNR), and inter-element noise correlation. We characterize the coil array's ability to provide global and dynamic (slice-optimized) shimming using ΔB0 field maps and echo planar imaging (EPI) acquisitions. RESULTS: The SNR and average noise correlation were similar to the 31-ch reference array. Global and slice-optimized shimming provide 11% and 40% improvements respectively compared to baseline second-order spherical harmonic shimming. Birdcage transmit coil efficiency was similar for the reference and AC/DC array setups. CONCLUSION: Adding ΔB0 shim capability to a 31-ch 7T receive array can significantly boost 7T brain B0 homogeneity without sacrificing the array's rdiofrequency performance, potentially improving ultra-high field neuroimaging applications that are vulnerable to off-resonance effects.


Assuntos
Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Encéfalo/diagnóstico por imagem , Imagem Ecoplanar , Imagens de Fantasmas , Ondas de Rádio , Razão Sinal-Ruído
8.
NMR Biomed ; 35(8): e4739, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35393706

RESUMO

B0 inhomogeneity leads to imaging artifacts in cardiac magnetic resonance imaging (MRI), in particular dark band artifacts with steady-state free precession pulse sequences. The limited spatial resolution of MR-derived in vivo B0 maps and the lack of population data prevent systematic analysis of the problem at hand and the development of optimized B0 shim strategies. We used readily available clinical computed tomography (CT) images to simulate the B0 conditions in the human heart at high spatial resolution. Calculated B0 fields showed consistency with MRI-based B0 measurements. The B0 maps for both the simulations and in vivo measurements showed local field inhomogeneities in the vicinity of lung tips with dominant Z3 spherical harmonic terms in the field distribution. The presented simulation approach allows for the derivation of B0 field conditions at high spatial resolution from CT images and enables the development of subject- and population-specific B0 shim strategies for the human heart.


Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Artefatos , Coração/diagnóstico por imagem , Humanos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Tomografia Computadorizada por Raios X
9.
J Magn Reson Imaging ; 55(4): 1026-1042, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34324753

RESUMO

Radio-frequency (RF) coils are to magnetic resonance imaging (MRI) scanners what eyes are to the human body. Because of their critical importance, there have been constant innovations driving the rapid development of RF coil technologies. Over the past four decades, the breadth and depth of the RF coil technology evolution have far exceeded the space allowed for this review article. However, these past developments have laid the very foundation on which some of the recent technical breakthroughs are built upon. Here, we narrow our focus on some of the most recent RF coil advances, specifically, on flexible, wireless, and integrated coil arrays. To provide a detailed review, we discuss the theoretical underpinnings, experimental implementations, promising results, as well as future outlooks covering these exciting topics. These recent innovations have greatly improved patient comfort and ease of scan, while also increasing the signal-to-noise ratio, image resolution, temporal throughput, and diagnostic and treatment accuracy. Together with advances in other MRI subfields, they will undoubtedly continue to drive the field forward and lead us to an ever more exciting future. LEVEL OF EVIDENCE: 5 TECHNICAL EFFICACY: Stage 1.


Assuntos
Processamento de Imagem Assistida por Computador , Ondas de Rádio , Desenho de Equipamento , Humanos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Imagens de Fantasmas , Razão Sinal-Ruído , Tecnologia
10.
MAGMA ; 35(6): 923-941, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35829793

RESUMO

OBJECTIVE: As the MRI main magnetic field rises for improved signal-to-noise ratio, susceptibility-induced B0-inhomogeneity increases proportionally, aggravating related artifacts. Considering only susceptibility disparities between air and biological tissue, we explore the topological conditions for which perfect shimming could be performed in a Region of Interest (ROI) such as the human brain or part thereof. MATERIALS AND METHODS: After theoretical considerations for perfect shimming, spherical harmonic (SH) shimming simulations of very high degree are performed, based on a 100-subject database of 1.7-mm-resolved brain fieldmaps acquired at 3T . In addition to the whole brain, shimmed ROIs include slabs targeting the prefrontal cortex, both or single temporal lobes, or spheres in the frontal brain above the nasal sinus. RESULTS AND DISCUSSION: We show "perfect" SH shimming is possible only if the ROI can be contained in a sphere that does not enclose sources of magnetic field inhomogeneity, which are gathered at the air-tissue interface. We establish a [Formula: see text]Hz inhomogeneity hard shim limit at 7T for whole brain SH shimming, that can only be attained at shimming degree higher than 90. On the other hand, under limited power and SH degree resources, 3D region-specific shimming is shown to greatly improve homogeneity in critical zones such as the prefrontal cortex and around ear canals.


Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Humanos , Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Artefatos , Razão Sinal-Ruído , Campos Magnéticos , Processamento de Imagem Assistida por Computador/métodos
11.
Magn Reson Med ; 85(5): 2892-2903, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33200403

RESUMO

PURPOSE: To propose two innovations to existing eddy current characterization techniques, which include (1) an efficient spatio-temporal sampling scheme and (2) a model-based fitting of spherical harmonic eddy current components. THEORY AND METHODS: This work introduces a three-plane 2D image-based acquisition scheme to efficiently sample eddy current fields. Additionally, a model-based spherical harmonic decomposition is presented, which reduces fitting noise using a rank minimization to impose an exponential decay on the eddy current amplitude evolution. Both techniques are applied in combination and analyzed in simulations for their applicability in reconstructing suitable pre-emphasis parameters. In a proof-of-concept measurement, the routine is tested for its propriety to correctly quantify user-defined field dynamics. Furthermore, based on acquired precompensation and postcompensation eddy current data, the suitability of pre-emphasis parameters calculated based on the proposed technique is evaluated. RESULTS: Simulation results derived from 500 data sets demonstrate the applicability of the acquisition scheme for the spatio-temporal sampling of eddy current fields. Compared with a conventional data processing strategy, the proposed model-based approach yields pre-emphasis parameters that reduce the average maximum residual field offset within a 10-cm-diameter spherical volume from 3.17 Hz to 0.58 Hz. Experimental data prove the proposed routine to be suitable to measure and effectively compensate for eddy currents within 10 minutes of acquisition time. CONCLUSION: The proposed framework was found to be well-suited to efficiently characterize and compensate for eddy current fields in a one-time calibration effort. It can be applied to facilitate pre-emphasis implementations, such as for dynamic B0 shimming applications.


Assuntos
Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Encéfalo , Calibragem , Simulação por Computador
12.
Magn Reson Med ; 86(6): 3067-3081, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34288086

RESUMO

PURPOSE: Gradient-echo echo-planar imaging (EPI), which is typically used for blood oxygenation level-dependent (BOLD) functional MRI (fMRI), suffers from distortions and signal loss caused by localized B0 inhomogeneities. Such artifacts cannot be effectively corrected for with the low-order spherical harmonic (SH) shim coils available on most scanners. The integrated parallel reception, excitation, and shimming (iPRES) coil technology allows radiofrequency (RF) and direct currents to flow on each coil element, enabling imaging and localized B0 shimming with one coil array. iPRES was previously used to correct for distortions in spin-echo EPI and is further developed here to also recover signal loss in gradient-echo EPI. METHODS: The cost function in the shim optimization, which typically uses a single term representing the B0 inhomogeneity, was modified to include a second term representing the signal loss, with an adjustable weight to optimize the trade-off between distortion correction and signal recovery. Simulations and experiments were performed to investigate the shimming performance. RESULTS: Slice-optimized shimming with iPRES and the proposed cost function substantially reduced the signal loss in the inferior frontal and temporal brain regions compared to shimming with iPRES and the original cost function or 2nd -order SH shimming with either cost function. In breath-holding fMRI experiments, the ΔB0 and signal loss root-mean-square errors decreased by -34.3% and -56.2%, whereas the EPI signal intensity and number of activated voxels increased by 60.3% and 174.0% in the inferior frontal brain region. CONCLUSION: iPRES can recover signal loss in gradient-echo EPI, which is expected to improve BOLD fMRI studies in brain regions suffering from signal loss.


Assuntos
Imagem Ecoplanar , Imageamento por Ressonância Magnética , Encéfalo/diagnóstico por imagem , Processamento de Imagem Assistida por Computador , Ondas de Rádio , Tecnologia
13.
Magn Reson Med ; 83(4): 1339-1347, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31592556

RESUMO

PURPOSE: To validate the feasibility of localized B0 shimming based on B0 maps acquired with sodium (23 Na) MRI. METHODS: A localized B0 shimming routine based on a constrained regularized algorithm in combination with 23 Na MRI data acquired with a 3D density-adapted radial readout scheme was implemented on a 7T MR system. Measurements were performed using a dual-tuned 23 Na/1 H head coil. The quality of B0 maps reconstructed from 23 Na images and the resulting shim values was examined depending on the acquisition duration between 10 minutes and 15 seconds to examine clinical applicability. The B0 shimming based on 23 Na B0 maps was performed both for phantom and human head of 6 healthy volunteers, and the resulting B0 homogeneity was compared with the vendor-provided 1 H MRI-based gradient-echo brain shimming routine. RESULTS: The proposed 23 Na MRI-based shimming routine showed a reduction in B0 variation comparable to the vendor-provided shim both in phantom and in vivo measurements. Within the examined multicompartment phantom, the B0 variations could be reduced by up to 77% using the 23 Na MRI-based shim. In human head, B0 variations were reduced by approximately 50% using an acquisition time of 15 seconds for the 23 Na B0 maps and only 1 iteration of B0 shimming. CONCLUSION: The 23 Na MRI-based localized B0 shimming is possible at 7 T within clinically acceptable acquisition durations (< 1 minute). It was shown that using the proposed 23 Na MRI-based shimming approach, the 23 Na image quality at ultrahigh field strength can be strongly improved.


Assuntos
Encéfalo , Processamento de Imagem Assistida por Computador , Algoritmos , Encéfalo/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Imagens de Fantasmas , Sódio
14.
Magn Reson Med ; 83(2): 749-764, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31483527

RESUMO

PURPOSE: A multi-coil shim setup is designed and optimized for human brain shimming. Here, the size and position of a set of square coils are optimized to improve the shim performance without increasing the number of local coils. Utilizing such a setup is especially beneficial at ultrahigh fields where B0 inhomogeneity in the human brain is more severe. METHODS: The optimization started with a symmetric arrangement of 32 independent coils. Three parameters per coil were optimized in parallel, including angular and axial positions on a cylinder surface and size of the coil, which were constrained by cylinder size, construction consideration, and amplifiers specifications. B0 maps were acquired at 9.4T in 8 healthy volunteers for use as training data. The global and dynamic shimming performance of the optimized multi-coil were compared in simulations and measurements to a symmetric design and to the scanner's second-order shim setup, respectively. RESULTS: The optimized multi-coil performs better by 14.7% based on standard deviation (SD) improvement with constrained global shimming in comparison to the symmetric positioning of the coils. Global shimming performance was comparable with a symmetric 65-channel multi-coil and full fifth-order spherical harmonic shim coils. On average, an SD of 48.4 and 31.9 Hz was achieved for in vivo measurements after global and dynamic slice-wise shimming, respectively. CONCLUSIONS: An optimized multi-coil shim setup was designed and constructed for human whole-brain shimming. Similar performance of the multi-coils with many channels can be achieved with a fewer number of channels when the coils are optimally arranged around the target.


Assuntos
Encéfalo/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/instrumentação , Imageamento por Ressonância Magnética/métodos , Adulto , Algoritmos , Artefatos , Mapeamento Encefálico/métodos , Simulação por Computador , Imagem Ecoplanar , Desenho de Equipamento , Voluntários Saudáveis , Humanos , Imagens de Fantasmas , Razão Sinal-Ruído , Adulto Jovem
15.
Magn Reson Med ; 84(3): 1101-1112, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32060951

RESUMO

PURPOSE: To interleave global and local higher order shimming for single voxel MRS. Single voxel MR spectroscopy requires optimization of the B0 field homogeneity in the region of the voxel to obtain a narrow linewidth and provide high data quality. However, the optimization of local higher order fields on a localized MRS voxel typically leads to large field offsets outside that volume. This compromises interleaved MR sequence elements that benefit from global field homogeneity such as water suppression, interleaved MRS-fMRI, and MR motion correction. METHODS: A shimming algorithm was developed to optimize the MRS voxel homogeneity and the whole brain homogeneity for interleaved sequence elements, using static higher order shims and dynamic linear terms (HOS-DLT). Shimming performance was evaluated using 6 brain regions and 10 subjects. Furthermore, the benefits of HOS-DLT was demonstrated for water suppression, MRS-fMRI, and motion corrected MRS using fat-navigators. RESULTS: The HOS-DLT algorithm was shown to improve the whole brain homogeneity compared to an MRS voxel-based shim, without compromising the MRS voxel homogeneity. Improved water suppression over the brain, reduced image distortions in MRS-fMRI, and improved quality of motion navigators were demonstrated using the HOS-DLT method. CONCLUSION: HOS-DLT shimming allowed for both local and global field homogeneity, providing excellent MR spectroscopy data quality, as well as good field homogeneity for interleaved sequence elements, even without the need for dynamic higher order shimming capabilities.


Assuntos
Imageamento por Ressonância Magnética , Água , Algoritmos , Encéfalo/diagnóstico por imagem , Humanos , Espectroscopia de Ressonância Magnética , Movimento (Física)
16.
Magn Reson Med ; 81(3): 2176-2183, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30277273

RESUMO

PURPOSE: An innovative radio-frequency (RF) coil design that allows RF currents both at the Larmor frequency and in a wireless communication band to flow on the same coil is proposed to enable simultaneous MRI signal reception and wireless data transfer, thereby minimizing the number of wired connections in the scanner without requiring any modifications or additional hardware within the scanner bore. METHODS: As a first application, the proposed integrated RF/wireless coil design was further combined with an integrated RF/shim coil design to perform not only MR image acquisition and wireless data transfer, but also localized B0 shimming with a single coil. Proof-of-concept phantom experiments were conducted with such a coil to demonstrate its ability to simultaneously perform these three functions, while maintaining the RF performance, wireless data integrity, and B0 shimming performance. RESULTS: Performing wirelessly controlled shimming of localized B0 inhomogeneities with the coil substantially reduced the B0 root-mean-square error (>70%) and geometric distortions in echo-planar images without degrading the image quality, signal-to-noise ratio (<1.7%), or wireless data throughput (maximum variance = 0.04 Mbps) of the coil. CONCLUSIONS: The RF/wireless coil design can provide a solution for wireless data transfer that can be easily integrated into existing MRI scanners for a variety of applications.


Assuntos
Encéfalo/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Ondas de Rádio , Tecnologia sem Fio , Algoritmos , Calibragem , Simulação por Computador , Imagem Ecoplanar/métodos , Desenho de Equipamento , Humanos , Imageamento por Ressonância Magnética/instrumentação , Imagens de Fantasmas , Razão Sinal-Ruído , Software
17.
Magn Reson Med ; 82(1): 263-275, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30883909

RESUMO

PURPOSE: To overcome existing challenges in dynamic B0 shimming by implementing a shim optimization algorithm which limits shim current amplitudes and their temporal variation through the application of constraints and regularization terms. THEORY AND METHODS: Spherical harmonic dynamic B0 shimming is complicated by eddy currents, ill-posed optimizations, and the need for strong power supplies. Based on the fact that eddy current amplitudes are proportional to the magnitude of the shim current changes, and assuming a smoothness of the B0 inhomogeneity variation in the slice direction, a novel algorithm was implemented to reduce eddy current generation by limiting interslice shim current changes. Shim degeneracy issues and resulting high current amplitudes are additionally addressed by penalizing high solution norms. Applicability of the proposed algorithm was validated in simulations and in phantom and in vivo measurements. RESULTS: High-order dynamic shimming simulations and measurements have shown that absolute shim current amplitudes and their temporal variation can be substantially reduced with negligible loss in achievable B0 homogeneity. Whereas conventional dynamic shim updating optimizations improve the B0 homogeneity, on average, by a factor of 2.1 over second-order static solutions, our proposed routine reached a factor of 2.0, while simultaneously providing a 14-fold reduction of the average maximum shim current changes. CONCLUSIONS: The proposed algorithm substantially reduces the shim amplitudes and their temporal variation, while only marginally affecting the achievable B0  homogeneity. As a result, it has the potential to mitigate the remaining challenges in dynamic B0 shimming and help in making its application more readily available.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Algoritmos , Encéfalo/diagnóstico por imagem , Campos Eletromagnéticos , Humanos , Imagens de Fantasmas
18.
Neuroimage ; 168: 71-87, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-28602943

RESUMO

Functional MRI (fMRI) at 7T and above provides improved Signal-to-Noise Ratio and Contrast-to-Noise Ratio compared to 3T acquisitions. In addition to the beneficial effects on spin polarization and magnetization of deoxyhemoglobin, the increased applied field also further magnetizes air and tissue. While the magnets themselves typically provide a static B0 field with sufficient spatial homogeneity, the diamagnetism of tissue and the paramagnetism of air causes local field deviations inside the human head. These spatially-varying field offsets (ΔB0) cause image artifacts, especially in single shot EPI, including geometric distortion, signal dropout, and blurring. These effects are particularly strong near air-tissue interfaces such as the frontal sinus, and ear canals. Furthermore, if the field offsets are dynamically modulated through physiological processes such as respiration or motion, then the effect on the image time-series can be even more problematic. While post-processing methods have been developed to mitigate these effects, the ideal solution would be to reduce the ΔB0 variations at their source. Typically 7T scanners contain 2nd and some 3rd order spherical harmonic shim coil terms to cancel static ΔB0 variations of low spatial order. In this article, we will motivate the need for improved, higher-order compensation for B0 inhomogeneity and potentially add dynamic control of these fields. We discuss and compare several promising hardware approaches for static and dynamic B0 shimming using either higher-order spherical harmonic shim coils or multi-coil shim arrays as well as passive shimming approaches, and active variants such and adaptive current networks.


Assuntos
Artefatos , Encéfalo/diagnóstico por imagem , Imagem Ecoplanar , Neuroimagem Funcional , Imagem Ecoplanar/instrumentação , Imagem Ecoplanar/métodos , Imagem Ecoplanar/normas , Neuroimagem Funcional/instrumentação , Neuroimagem Funcional/métodos , Neuroimagem Funcional/normas , Humanos
19.
Magn Reson Med ; 80(1): 171-180, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29193340

RESUMO

PURPOSE: In typical MRI protocols, time is spent acquiring a field map to calculate the shim settings for best image quality. We propose a fast template-based field map prediction method that yields near-optimal shims without measuring the field. METHODS: The template-based prediction method uses prior knowledge of the B0 distribution in the human brain, based on a large database of field maps acquired from different subjects, together with subject-specific structural information from a quick localizer scan. The shimming performance of using the template-based prediction is evaluated in comparison to a range of potential fast shimming methods. RESULTS: Static B0 shimming based on predicted field maps performed almost as well as shimming based on individually measured field maps. In experimental evaluations at 7 T, the proposed approach yielded a residual field standard deviation in the brain of on average 59 Hz, compared with 50 Hz using measured field maps and 176 Hz using no subject-specific shim. CONCLUSIONS: This work demonstrates that shimming based on predicted field maps is feasible. The field map prediction accuracy could potentially be further improved by generating the template from a subset of subjects, based on parameters such as head rotation and body mass index. Magn Reson Med 80:171-180, 2018. © 2017 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.


Assuntos
Mapeamento Encefálico/métodos , Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Adulto , Idoso , Algoritmos , Índice de Massa Corporal , Simulação por Computador , Imagem Ecoplanar/métodos , Cabeça/diagnóstico por imagem , Humanos , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Imageamento Tridimensional , Pessoa de Meia-Idade , Método de Monte Carlo , Imagens de Fantasmas , Reprodutibilidade dos Testes , Adulto Jovem
20.
Magn Reson Med ; 80(1): 371-379, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29148102

RESUMO

PURPOSE: Integrated parallel reception, excitation, and shimming coil arrays with N shim loops per radio-frequency (RF) coil element (iPRES(N)) allow an RF current and N direct currents (DC) to flow in each coil element, enabling simultaneous reception/excitation and shimming of highly localized B0 inhomogeneities. The purpose of this work was to reduce the cost and complexity of this design by reducing the number of DC power supplies required by a factor N, while maintaining a high RF and shimming performance. METHODS: In the proposed design, termed adaptive iPRES(N) (iPRES(N)-A), each coil element only requires one DC power supply, but uses microelectromechanical systems switches to adaptively distribute the DC current into the appropriate shim loops to generate the desired magnetic field for B0 shimming. Proof-of-concept phantom experiments with an iPRES(2)-A coil and simulations in the human abdomen with an 8-channel iPRES(4)-A body coil array were performed to demonstrate the advantages of this innovative design. RESULTS: The iPRES(2)-A coil showed no loss in signal-to-noise ratio and provided a much more effective correction of highly localized B0 inhomogeneities and geometric distortions than an equivalent iPRES(1) coil (88.2% vs. 32.2% lower B0 root-mean-square error). The iPRES(4)-A coil array showed a comparable shimming performance as that of an equivalent iPRES(4) coil array (52.6% vs. 54.2% lower B0 root-mean-square error), while only requiring 8 instead of 32 power supplies. CONCLUSION: The iPRES(N)-A design retains the ability of the iPRES(N) design to shim highly localized B0 inhomogeneities, while drastically reducing its cost and complexity. Magn Reson Med 80:371-379, 2018. © 2017 International Society for Magnetic Resonance in Medicine.


Assuntos
Sistemas Microeletromecânicos/instrumentação , Algoritmos , Encéfalo/diagnóstico por imagem , Simulação por Computador , Humanos , Aumento da Imagem/instrumentação , Processamento de Imagem Assistida por Computador , Campos Magnéticos , Imageamento por Ressonância Magnética/instrumentação , Imagens de Fantasmas , Ondas de Rádio , Reprodutibilidade dos Testes , Razão Sinal-Ruído
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA