Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 436
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Annu Rev Pharmacol Toxicol ; 63: 637-660, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36206988

RESUMO

The coordinated movement of organic anions (e.g., drugs, metabolites, signaling molecules, nutrients, antioxidants, gut microbiome products) between tissues and body fluids depends, in large part, on organic anion transporters (OATs) [solute carrier 22 (SLC22)], organic anion transporting polypeptides (OATPs) [solute carrier organic (SLCO)], and multidrug resistance proteins (MRPs) [ATP-binding cassette, subfamily C (ABCC)]. Depending on the range of substrates, transporters in these families can be considered multispecific, oligospecific, or (relatively) monospecific. Systems biology analyses of these transporters in the context of expression patterns reveal they are hubs in networks involved in interorgan and interorganismal communication. The remote sensing and signaling theory explains how the coordinated functions of drug transporters, drug-metabolizing enzymes, and regulatory proteins play a role in optimizing systemic and local levels of important endogenous small molecules. We focus on the role of OATs, OATPs, and MRPs in endogenous metabolism and how their substrates (e.g., bile acids, short chain fatty acids, urate, uremic toxins) mediate interorgan and interorganismal communication and help maintain and restore homeostasis in healthy and disease states.


Assuntos
Avena , Transportadores de Ânions Orgânicos , Humanos , Avena/metabolismo , Tecnologia de Sensoriamento Remoto , Proteínas de Membrana Transportadoras/metabolismo , Transportadores de Ânions Orgânicos/metabolismo , Trifosfato de Adenosina
2.
Toxicol Appl Pharmacol ; 490: 117040, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39032800

RESUMO

Morphine is a widely used opioid for the treatment of pain. Differences in drug transporter expression and activity may contribute to variability in morphine pharmacokinetics and response. Using appropriate mouse models, we investigated the impact of the efflux transporters ABCB1 and ABCG2 and the OATP uptake transporters on the pharmacokinetics of morphine, morphine-3-glucuronide (M3G), and M6G. Upon subcutaneous administration of morphine, its plasma exposure in Abcb1a/1b-/-;Abcg2-/--, Abcb1a/1b-/-;Abcg2-/-;Oatp1a/1b-/-;Oatp2b1-/- (Bab12), and Oatp1a/1b-/-;Oatp2b1-/- mice was similar to that found in wild-type mice. Forty minutes after dosing, morphine brain accumulation increased by 2-fold when mouse (m)Abcb1 and mAbcg2 were ablated. Relative recovery of morphine in small intestinal content was significantly reduced in all the knockout strains. In the absence of mOatp1a/1b and mOatp2b1, plasma levels of M3G were markedly increased, suggesting a lower elimination rate. Moreover, Oatp-deficient mice displayed reduced hepatic and intestinal M3G accumulation. Mouse Oatps similarly affected plasma and tissue disposition of subcutaneously administered M6G. Human OATP1B1/1B3 transporters modestly contribute to the liver accumulation of M6G. In summary, mAbcb1, in combination with mAbcg2, limits morphine brain penetration and its net intestinal absorption. Variation in ABCB1 activity due to genetic polymorphisms/mutations and/or environmental factors might, therefore, partially affect morphine tissue exposure in patients. The ablation of mOatp1a/1b increases plasma exposure and decreases the liver and small intestinal disposition of M3G and M6G. Since the contribution of human OATP1B1/1B3 to M6G liver uptake was quite modest, the risks of undesirable drug interactions or interindividual variation related to OATP activity are likely negligible.


Assuntos
Camundongos Knockout , Derivados da Morfina , Morfina , Animais , Morfina/farmacocinética , Morfina/metabolismo , Derivados da Morfina/metabolismo , Derivados da Morfina/sangue , Camundongos , Distribuição Tecidual , Masculino , Encéfalo/metabolismo , Analgésicos Opioides/farmacocinética , Analgésicos Opioides/metabolismo , Analgésicos Opioides/sangue , Camundongos Endogâmicos C57BL , Transportadores de Ânions Orgânicos/metabolismo , Transportadores de Ânions Orgânicos/genética , Fígado/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética
3.
Am J Obstet Gynecol ; 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38908653

RESUMO

BACKGROUND: It is estimated that over 2 million cases of fetal death occur worldwide every year, but, despite the high incidence, several basic and clinical characteristics of this disorder are still unclear. Placenta is suggested to play a central role in fetal death. Placenta produces hormones, cytokines and growth factors that modulate functions of the placental-maternal unit. Fetal death has been correlated with impaired secretion of some of these regulatory factors. OBJECTIVE: The aim of the present study was to evaluate, in placentas collected from fetal death, the gene expression of inflammatory, proliferative and protective factors. STUDY DESIGN: Cases of fetal death in singleton pregnancy were retrospectively selected, excluding pregnancies complicated by fetal anomalies, gestational diabetes, intrauterine growth restriction and moderate to severe maternal diseases. A group of placentas collected from healthy singleton term pregnancies were used as controls. Groups were compared regarding maternal and gestational age, fetal sex and birthweight. Placental messenger RNA expression of inflammatory (interleukin 6), proliferative (activin A, transforming growth factor ß1) and regulatory (vascular endothelial growth factor, vascular endothelial growth factor receptor 2, ATP-binding cassette transporters (ABC) ABCB1 and ABCG2, sphingosine 1-phosphate signaling pathway) markers was conducted using real-time polymerase chain reaction. Statistical analysis and graphical representation of the data were performed using the GraphPad Prism 5 software. For the statistical analysis, Student's t test was used, and P values<.05 were considered significant. RESULTS: Placental mRNA expression of interleukin 6 and vascular endothelial growth factor receptor 2 resulted significantly higher in the fetal death group compared to controls (P<.01), while activin A, ABCB1, and ABCG2 expression resulted significantly lower (P<.01). A significant alteration in the sphingosine 1-phosphate signaling pathway was found in the fetal death group, with an increased expression of the specific receptor isoforms sphingosine 1-phosphate receptor 1, 3, and 4 (sphingosine 1-phosphate1, sphingosine 1-phosphate3, sphingosine 1-phosphate4) and of sphingosine kinase 2, 1 of the enzyme isoforms responsible for sphingosine 1-phosphate synthesis (P<.01). CONCLUSION: The present study confirmed a significantly increased expression of placental interleukin 6 and vascular endothelial growth factor receptor 2 mRNA, and for the first time showed an increased expression of sphingosine 1-phosphate receptors and sphingosine kinase 2 as well as a decreased expression of activin A and of selected ATP-binding cassette transporters, suggesting that multiple inflammatory and protective factors are deranged in placenta of fetal death.

4.
Inhal Toxicol ; 36(4): 250-260, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38738559

RESUMO

OBJECTIVE: The purpose of these studies was to investigate the uptake of atrazine across the nasal mucosa to determine whether direct transport to the brain through the olfactory epithelium is likely to occur. These studies were undertaken to provide important new information about the potential for the enhanced neurotoxicity of herbicides following nasal inhalation. MATERIALS AND METHODS: Transport of atrazine from aqueous solution and from commercial atrazine-containing herbicide products was assessed using excised nasal mucosal tissues. The permeation rate and the role of membrane transporters in the uptake of atrazine across the nasal mucosa were also investigated. Histological examination of the nasal tissues was conducted to assess the effects of commercial atrazine-containing products on nasal tissue morphology. RESULTS: Atrazine showed high flux across both nasal respiratory and olfactory tissues, and efflux transporters were found to play an essential role in limiting its uptake at low exposure concentrations. Commercial atrazine-containing herbicide products showed remarkably high transfer across the nasal tissues, and histological evaluation showed significant changes in the morphology of the nasal epithelium following exposure to the herbicide products. DISCUSSION: Lipophilic herbicides such as atrazine can freely permeate across the nasal mucosa despite the activity of efflux transporters. The adjuvant compounds in commercial herbicide products disrupt the nasal mucosa's epithelial barrier, resulting in even greater atrazine permeation across the tissues. The properties of the herbicide itself and those of the formulated products play crucial roles in the potential for the enhanced neurotoxicity of herbicides following nasal inhalation.


Assuntos
Atrazina , Herbicidas , Mucosa Nasal , Atrazina/toxicidade , Atrazina/farmacocinética , Herbicidas/toxicidade , Herbicidas/farmacocinética , Mucosa Nasal/efeitos dos fármacos , Mucosa Nasal/metabolismo , Animais , Proteínas de Membrana Transportadoras/metabolismo , Masculino , Administração Intranasal , Absorção Nasal/efeitos dos fármacos
5.
J Vet Pharmacol Ther ; 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38847265

RESUMO

Orthologs of breast cancer resistance protein (BCRP/ABCG2), an ATP-binding cassette (ABC) efflux transmembrane transporter, are present in several species. The list of compounds known to interact with BCRP is growing, and many questions remain concerning species-specific variations in substrate specificity and affinity and the potency of inhibitors. As the most abundant efflux transporter known to be present in the blood-milk barrier, BCRP can increase the elimination of certain xenobiotics to milk, posing a risk for suckling offspring and dairy product consumers. Here we developed a model that can be employed to investigate species-specific differences between BCRP substrates and inhibitors. Membrane vesicles were isolated from transiently transduced human embryonic kidney (HEK) 293 cells, overexpressing BCRP, with human, bovine, caprine, and ovine cDNA sequences. To confirm BCRP transport activity in the transduced cells, D-luciferin efflux was measured and to confirm transport activity in the membrane vesicles, [3H] estrone-3-sulfate ([3H]E1S) influx was measured. We also determined the Michaelis-Menten constant (Km) and Vmax of [3H]E1S for each species. We have developed an in vitro transport model to study differences in compound interactions with BCRP orthologs from milk-producing animal species and humans. BCRP transport activity was demonstrated in the species-specific transduced cells by a reduced accumulation of D-luciferin compared with the control cells, indicating BCRP-mediated efflux of D-luciferin. Functionality of the membrane vesicle model was demonstrated by confirming ATP-dependent transport and by quantifying the kinetic parameters, Km and Vmax for the model substrate [3H]E1S. The values were not significantly different between species for the model substrates tested. This model can be insightful for appropriate inter-species extrapolations and risk assessments of xenobiotics in lactating woman and dairy animals.

6.
Molecules ; 29(6)2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38542901

RESUMO

In CNS drug discovery, the estimation of brain exposure to lead compounds is critical for their optimization. Compounds need to cross the blood-brain barrier (BBB) to reach the pharmacological targets in the CNS. The BBB is a complex system involving passive and active mechanisms of transport and efflux transporters such as P-glycoproteins (P-gp) and breast cancer resistance protein (BCRP), which play an essential role in CNS penetration of small molecules. Several in vivo, in vitro, and in silico methods are available to estimate human brain penetration. Preclinical species are used as in vivo models to understand unbound brain exposure by deriving the Kp,uu parameter and the brain/plasma ratio of exposure corrected with the plasma and brain free fraction. The MDCK-mdr1 (Madin Darby canine kidney cells transfected with the MDR1 gene encoding for the human P-gp) assay is the commonly used in vitro assay to estimate compound permeability and human efflux. The in silico methods to predict brain exposure, such as CNS MPO, CNS BBB scores, and various machine learning models, help save costs and speed up compound discovery and optimization at all stages. These methods enable the screening of virtual compounds, building of a CNS penetrable compounds library, and optimization of lead molecules for CNS penetration. Therefore, it is crucial to understand the reliability and ability of these methods to predict CNS penetration. We review the in silico, in vitro, and in vivo data and their correlation with each other, as well as assess published experimental and computational approaches to predict the BBB penetrability of compounds.


Assuntos
Encéfalo , Proteínas de Neoplasias , Humanos , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Reprodutibilidade dos Testes , Proteínas de Neoplasias/metabolismo , Encéfalo/metabolismo , Sistema Nervoso Central/metabolismo , Barreira Hematoencefálica/metabolismo
7.
Curr Issues Mol Biol ; 45(4): 3462-3478, 2023 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-37185751

RESUMO

The blood-brain barrier (BBB) is part of a neurovascular structure located in the brain's micro vessels, that is essential to maintain brain homeostasis, but prevents the brain uptake of most drugs. Because of its importance in neuro-pharmacotherapy, the BBB has been the subject of extensive research since its discovery over 100 years ago. Major advances in understanding the structure and function of the barrier have been made. Drugs are re-designed to cross the BBB. However, despite these efforts, overcoming the BBB efficiently to treat brain diseases safely remains challenging. The majority of BBB research studies focus on the BBB as a homogenous structure throughout the different brain regions. However, this simplification may lead to an inadequate understanding of the BBB function with significant therapeutic consequences. From this perspective, we analyzed the gene and protein expression profiles of the BBB in the micro vessels from the brains of mice that were isolated from two different brain regions, namely the cortex and the hippocampus. The expression profile of the inter-endothelial junctional protein (claudin-5), three ABC transporters (P-glycoprotein, Bcrp and Mrp-1), and three BBB receptors (lrp-1, TRF and GLUT-1) were analyzed. Our gene and protein analysis showed that the brain endothelium in the hippocampus exhibits different expression profiles compared to the brain cortex. Specifically, brain endothelial cells (BECs) of the hippocampus express higher gene levels of abcb1, abcg2, lrp1, and slc2a1 compared to the BECs of the cortex regions with a trend of increase for claudin-5, while BECs of the cortex express higher gene levels of abcc1 and trf compared to the hippocampus. At the protein levels, the P-gp expression was found to be significantly higher in the hippocampus compared to the cortex, while TRF was found to be up-regulated in the cortex. These data suggest that the structure and function of the BBB are not homogeneous, and imply that drugs are not delivered similarly among the different brain regions. Appreciation of the BBB heterogeneity by future research programs is thus critical for efficient drug delivery and the treatment of brain diseases.

8.
Toxicol Appl Pharmacol ; 459: 116344, 2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-36526072

RESUMO

P-glycoprotein (P-gp, encoded by the ABCB1 gene) and breast cancer resistance protein (BCRP/ABCG2) are efflux multidrug resistance (MDR) transporters localized at the syncytiotrophoblast barrier of the placenta and protect the conceptus from drug and toxin exposure throughout pregnancy. Infection is an important modulator of MDR expression and function. This review comprehensively examines the effect of infection on the MDR transporters, P-gp and BCRP in the placenta. Infection PAMPs such as bacterial lipopolysaccharide (LPS) and viral polyinosinic-polycytidylic acid (poly I:C) and single-stranded (ss)RNA, as well as infection with Zika virus (ZIKV), Plasmodium berghei ANKA (modeling malaria in pregnancy - MiP) and polymicrobial infection of intrauterine tissues (chorioamnionitis) all modulate placental P-gp and BCRP at the levels of mRNA, protein and or function; with specific responses varying according to gestational age, trophoblast type and species (human vs. mice). Furthermore, we describe the expression and localization profile of Toll-like receptor (TLR) proteins of the innate immune system at the maternal-fetal interface, aiming to better understand how infective agents modulate placental MDR. We also highlight important gaps in the field and propose future research directions. We conclude that alterations in placental MDR expression and function induced by infective agents may not only alter the intrauterine biodistribution of important MDR substrates such as drugs, toxins, hormones, cytokines, chemokines and waste metabolites, but also impact normal placentation and adversely affect pregnancy outcome and maternal/neonatal health.


Assuntos
Infecção por Zika virus , Zika virus , Gravidez , Feminino , Humanos , Camundongos , Animais , Placenta/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Distribuição Tecidual , Proteínas de Neoplasias/genética , Resistência a Múltiplos Medicamentos , Proteínas de Membrana Transportadoras/metabolismo
9.
FASEB J ; 36(4): e22245, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35262963

RESUMO

Antenatal synthetic glucocorticoids (sGCs) are a life-saving treatment in managing pre-term birth. However, off-target effects of sGCs can impact blood-brain barrier (BBB) drug transporters essential for fetal brain protection, including P-glycoprotein (P-gp/Abcb1) and breast cancer resistance protein (BCRP/Abcg2). We hypothesized that maternal antenatal sGC treatment modifies BBB function in juvenile offspring in a sex-dependent manner. Thus, the objective of this study was to determine the long-term impact of a single or multiple courses of betamethasone on P-gp/Abcb1 and BCRP/Abcg2 expression and function at the BBB. Pregnant guinea pigs (N = 42) received 3 courses (gestation days (GDs) 40, 50, and 60) or a single course (GD50) of betamethasone (1 mg/kg) or vehicle (saline). Cerebral microvessels and brain endothelial cells (BEC) were collected from the post-natal day (PND) 14 offspring to measure protein, gene expression, and function of the drug transporters P-gp/Abcb1 and BCRP/Abcg2. P-gp protein expression was decreased (p < .05) in microvessels from male offspring that had been exposed to multiple courses and a single course of sGC, in utero. Multiple courses of sGC resulted in a significant decrease in P-gp function in BECs from males (p < .05), but not females. There was a very strong trend for increased P-gp function in males compared to females (p = .055). Reduced P-gp expression and function at the BBB of young male offspring following multiple prenatal sGC exposures, is clinically relevant as many drugs administered postnatally are P-gp substrates. These novel sex differences in drug transporter function may underlie potential sexual dimorphism in drug sensitivity and toxicity in the newborn and juvenile brain.


Assuntos
Barreira Hematoencefálica , Glucocorticoides , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Betametasona/metabolismo , Betametasona/farmacologia , Barreira Hematoencefálica/metabolismo , Células Endoteliais/metabolismo , Feminino , Glucocorticoides/metabolismo , Glucocorticoides/farmacologia , Cobaias , Masculino , Proteínas de Neoplasias/metabolismo , Gravidez
10.
Mol Pharm ; 20(11): 5877-5887, 2023 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-37883694

RESUMO

P-glycoprotein (P-gp) and breast cancer resistance protein (BCRP) are two ATP-binding cassette efflux transporters that are coexpressed at the human blood-brain barrier (BBB) and blood-retina barrier (BRB). While pharmacological inhibition of P-gp and/or BCRP results in increased brain distribution of dual P-gp/BCRP substrate drugs, such as the tyrosine kinase inhibitor erlotinib, the effect of P-gp and/or BCRP inhibition on the retinal distribution of such drugs has hardly been investigated. In this study, we used positron emission tomography (PET) imaging to assess the effect of transporter inhibition on the distribution of [11C]erlotinib to the human retina and brain. Twenty two healthy volunteers underwent two PET scans after intravenous (i.v.) injection of a microdose (<5 µg) of [11C]erlotinib, a baseline scan, and a second scan either with concurrent i.v. infusion of tariquidar to inhibit P-gp (n = 5) or after oral intake of single ascending doses of erlotinib (300 mg, 650 mg, or 1000 mg, n = 17) to saturate erlotinib transport. In addition, transport of [3H]erlotinib to the retina and brain was assessed in mice by in situ carotid perfusion under various drug transporter inhibition settings. In comparison to the baseline PET scan, coadministration of tariquidar or erlotinib led to a significant decrease of [11C]erlotinib total volume of distribution (VT) in the human retina by -25 ± 8% (p ≤ 0.05) and -41 ± 16% (p ≤ 0.001), respectively. In contrast, erlotinib intake led to a significant increase in [11C]erlotinib VT in the human brain (+20 ± 16%, p ≤ 0.001), while administration of tariquidar did not result in any significant changes. In situ carotid perfusion experiments showed that both P-gp and BCRP significantly limit the distribution of erlotinib to the mouse retina and brain but revealed a similar discordant effect at the mouse BRB and BBB following co-perfusion with tariquidar and erlotinib as in humans. Co-perfusion with prototypical inhibitors of solute carrier transporters did not reveal a significant contribution of organic cation transporters (e.g., OCTs and OCTNs) and organic anion-transporting polypeptides (e.g., OATP2B1) to the retinal and cerebral distribution of erlotinib. In conclusion, we observed a dissimilar effect after P-gp and/or BCRP inhibition on the retinal and cerebral distribution of [11C]erlotinib. The exact mechanism for this discrepancy remains unclear but may be related to the function of an unidentified erlotinib uptake carrier sensitive to tariquidar inhibition at the BRB. Our study highlights the great potential of PET to study drug distribution to the human retina and to assess the functional impact of membrane transporters on ocular drug distribution.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP , Neoplasias da Mama , Humanos , Camundongos , Animais , Feminino , Cloridrato de Erlotinib , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas de Neoplasias/metabolismo , Encéfalo/metabolismo , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Barreira Hematoencefálica/metabolismo , Transportadores de Cassetes de Ligação de ATP/metabolismo , Barreira Hematorretiniana/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Neoplasias da Mama/metabolismo
11.
Br J Clin Pharmacol ; 89(5): 1695-1700, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36541130

RESUMO

The effects of polymorphisms of ABCB1 and ABCG2 on the dose-adjusted plasma trough concentrations and cerebrospinal fluid (CSF)-to-plasma ratios of ponatinib were evaluated. Blood (C4 ) and CSF (CSF4 ) concentrations at 4 h after administration were determined. The median (95% confidence interval) CSF4 -to-C4 ratio of ponatinib in subjects homozygous for ABCB1 variants 1236T/T, 2677T/T + T/A or 3435T/T were significantly higher than that in a group of subjects with other genotypes (P = .026, .012 and .015, respectively). The median (95% confidence interval) CSF4 -to-C4 ratio of ponatinib in 4 patients with the combination of ABCB1 variants 1236T/T-2677T/T + T/A-3435T/T was 2.62% (1.42-3.42%); this ratio was significantly higher than that in subjects with other genotypes (1.08% [0.89-1.47%]; P = .006). The brain distribution of ponatinib was affected by ABCB1 polymorphisms and therefore seems to be modulated by P-glycoprotein at the blood-brain and blood-CSF barriers.


Assuntos
Cromossomo Filadélfia , Leucemia-Linfoma Linfoblástico de Células Precursoras , Humanos , População do Leste Asiático , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Polimorfismo de Nucleotídeo Único
12.
Pharm Res ; 40(8): 1885-1899, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37344602

RESUMO

BACKGROUND & PURPOSE: Heroin (diacetylmorphine; diamorphine) is a highly addictive opioid prodrug. Heroin prescription is possible in some countries for chronic, treatment-refractory opioid-dependent patients and as a potent analgesic for specific indications. We aimed to study the pharmacokinetic interactions of heroin and its main pharmacodynamically active metabolites, 6-monoacetylmorphine (6-MAM) and morphine, with the multidrug efflux transporters P-glycoprotein/ABCB1 and BCRP/ABCG2 using wild-type, Abcb1a/1b and Abcb1a/1b;Abcg2 knockout mice. METHODS & RESULTS: Upon subcutaneous (s.c.) heroin administration, its blood levels decreased quickly, making it challenging to detect heroin even shortly after dosing. 6-MAM was the predominant active metabolite present in blood and most tissues. At 10 and 30 min after heroin administration, 6-MAM and morphine brain accumulation were increased about 2-fold when mouse (m)Abcb1a/1b and mAbcg2 were ablated. Fifteen minutes after direct s.c. administration of an equimolar dose of 6-MAM, we observed good intrinsic brain penetration of 6-MAM in wild-type mice. Still, mAbcb1 limited brain accumulation of 6-MAM and morphine without affecting their blood exposure, and possibly mediated their direct intestinal excretion. A minor contribution of mAbcg2 to these effects could not be excluded. CONCLUSIONS: We show that mAbcb1a/1b can limit 6-MAM and morphine brain exposure. Pharmacodynamic behavioral/postural observations, while non-quantitative, supported moderately increased brain levels of 6-MAM and morphine in the knockout mouse strains. Variation in ABCB1 activity due to genetic polymorphisms or environmental factors (e.g., drug interactions) might affect 6-MAM/morphine exposure in individuals, but only to a limited extent.


Assuntos
Heroína , Morfina , Camundongos , Animais , Heroína/metabolismo , Heroína/farmacologia , Morfina/metabolismo , Analgésicos Opioides/metabolismo , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas de Neoplasias/metabolismo , Encéfalo/metabolismo , Derivados da Morfina/metabolismo , Derivados da Morfina/farmacologia , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Camundongos Knockout
13.
Xenobiotica ; 53(3): 215-222, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37039301

RESUMO

BCRP (breast cancer resistance protein) is a crucial efflux transporter involved in the regulation of the pharmacokinetics and pharmacodynamics of a wide range of drugs. Herein, we aimed to investigate a potential role for the nuclear receptor REV-ERBα in the regulation of BCRP expression and sulfasalazine (a BCRP probe substrate) pharmacokinetics.Regulation of BCRP expression by REV-ERBα was assessed using Rev-erbα-/- mice and AML12 and CT26 cells. Pharmacokinetic analysis was performed with Rev-erbα-/- and wild-type mice after sulfasalazine administration.We found that the expression levels of BCRP mRNA and protein were downregulated in the liver and small intestine of Rev-erbα-dificient mice. In line with this, Rev-erbα ablation increased the systemic exposures of oral sulfasalazine.Positive regulation of BCRP expression and function by REV-ERBα was furtherly confirmed in AML12 and CT26 cells. Moreover, indirect regulation of Bcrp expression by REV-ERBα was potentially mediated by a negative transcription factor DEC2, which is a downstream target of REV-ERBα.In conclusion, REV-ERBα positively regulates BCRP expression in mice, thereby affecting sulfasalazine pharmacokinetics.


Assuntos
Proteínas de Neoplasias , Sulfassalazina , Camundongos , Animais , Sulfassalazina/farmacologia , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Proteínas de Neoplasias/genética , Regulação da Expressão Gênica , Receptores Citoplasmáticos e Nucleares
14.
Biopharm Drug Dispos ; 44(1): 7-25, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36692150

RESUMO

One challenge in central nervous system (CNS) drug discovery has been ensuring the blood-brain barrier (BBB) penetration of compounds at an efficacious concentration that provides suitable safety margins for clinical investigation. Research providing for the accurate prediction of brain penetration of compounds during preclinical discovery is important to a CNS program. In the BBB, P-glycoprotein (P-gp) (ABCB1) and breast cancer resistance protein (BCRP) (ABCG2) transporters have been demonstrated to play a major role in the active efflux of endogenous compounds and xenobiotics out of the brain microvessel cells and back to the systemic circulation. In the past 10 years, there has been significant technological improvement in the sensitivity of quantitative proteomics methods, in vivo imaging, in vitro methods of organoid and microphysiological systems, as well as in silico quantitative physiological based pharmacokinetic and systems pharmacology models. Scientists continually leverage these advancements to interrogate the distribution of compounds in the CNS which may also show signals of substrate specificity of P-gp and/or BCRP. These methods have shown promise toward predicting and quantifying the unbound concentration(s) within the brain relevant for efficacy or safety. In this review, the authors have summarized the in vivo, in vitro, and proteomics advancements toward understanding the contribution of P-gp and/or BCRP in restricting the entry of compounds to the CNS of either healthy or special populations. Special emphasis has been provided on recent investigations on the application of a proteomics-informed approach to predict steady-state drug concentrations in the brain. Moreover, future perspectives regarding the role of these transporters in newer modalities are discussed.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP , Neoplasias da Mama , Humanos , Feminino , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas de Neoplasias/metabolismo , Subfamília B de Transportador de Cassetes de Ligação de ATP , Encéfalo/metabolismo , Barreira Hematoencefálica/metabolismo , Fármacos do Sistema Nervoso Central/metabolismo , Neoplasias da Mama/metabolismo
15.
J Vet Pharmacol Ther ; 46(3): 185-194, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36448496

RESUMO

Monepantel (MNP), a novel anthelmintic drug from amino-acetonitrile derivatives, is a substrate for breast cancer resistance protein (BCRP). BCRP-mediated milk secretion of drugs can be altered by isoflavones. In this study, we aimed to show how soy isoflavones and BCRP inhibitors genistein (GEN) and daidzein (DAI) can modulate the secretion of MNP into milk. Moreover, we observed that the expression of BCRP in the lactating mammary gland of sheep was significantly higher than in non-lactating sheep using Western blot analysis. These properties of MNP and MNPSO2 (monepantel sulfone, the major active metabolite of MNP), identified as a BCRP substrate in determining the interaction with BCRP, were examined by vesicular transport (VT) inhibition assays. In pharmacokinetic studies, we demonstrated the transport of MNP into milk in three experimental groups: G1 fed standard forage; G2 fed soy-enriched forage; G3 fed standard forage paired with orally administered exogenous GEN and DAI. The concentrations of MNP and MNPSO2 were analyzed by high-performance liquid chromatography. Compared to the control group (3.27 ± 1.13 vs. 5.46 ± 2.23), the AUC (0-840 h) milk/plasma ratio decreased by 40% in the soy-enriched diet group. The concentrations of GEN and DAI were determined using liquid chromatography coupled with tandem mass spectrometry in soy. A VT inhibition assay was conducted to determine the IC50 values for MNP and MNPSO2 as BCRP inhibitors. This study showed that milk excretion of a BCRP substrate, such as monepantel, can be diminished by the presence of isoflavones in the diet.


Assuntos
Isoflavonas , Leite , Animais , Ovinos , Leite/química , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Proteínas de Neoplasias , Isoflavonas/análise , Isoflavonas/farmacologia , Genisteína/farmacologia , Genisteína/análise
16.
Int J Mol Sci ; 24(17)2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37685897

RESUMO

ABC transporters are ubiquitous in the human body and are responsible for the efflux of drugs. They are present in the placenta, intestine, liver and kidney, which are the major organs that can affect the pharmacokinetic and pharmacologic properties of drugs. P-gp and BCRP transporters are the best-characterized transporters in the ABC superfamily, and they have a pivotal role in the barrier tissues due to their efflux mechanism. Moreover, during pregnancy, drug efflux is even more important because of the developing fetus. Recent studies have shown that placental and intestinal ABC transporters have great importance in drug absorption and distribution. Placental and intestinal P-gp and BCRP show gestational-age-dependent expression changes, which determine the drug concentration both in the mother and the fetus during pregnancy. They may have an impact on the efficacy of antibiotic, antiviral, antihistamine, antiemetic and oral antidiabetic therapies. In this review, we would like to provide an overview of the pharmacokinetically relevant expression alterations of placental and intestinal ABC transporters during pregnancy.


Assuntos
Proteínas de Neoplasias , Placenta , Feminino , Humanos , Gravidez , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/genética , Intestinos , Proteínas de Membrana Transportadoras
17.
Antimicrob Agents Chemother ; 66(4): e0225121, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35315687

RESUMO

Fostemsavir is a prodrug of temsavir, a first-in-class attachment inhibitor that binds directly to HIV-1 gp120, preventing initial viral attachment and entry into host CD4+ T cells with demonstrated efficacy in phase 2 and 3. Temsavir is a P-glycoprotein and breast cancer resistance protein (BCRP) substrate; its metabolism is mediated by esterase and CYP3A4 enzymes. Drugs that induce or inhibit CYP3A, P-glycoprotein, and BCRP may affect temsavir concentrations. Understanding potential drug-drug interactions (DDIs) following fostemsavir coadministration with antiretrovirals approved for HIV-1-infected treatment-experienced patients, including darunavir plus cobicistat (DRV/c) or DRV plus low-dose ritonavir (DRV/r) and etravirine, is clinically relevant. Open-label, single-sequence, multiple-dose, multicohort DDI studies were conducted in healthy participants (n = 46; n = 32). The primary objective was to assess the effects of DRV/r, etravirine, DRV/r plus etravirine, cobicistat, and DRV/c on temsavir systemic exposures; safety was a secondary objective. Compared with fostemsavir alone, coadministration with DRV/r increased the temsavir maximum observed plasma concentration (Cmax), area under the concentration-time curve in one dosing interval (AUCtau), and plasma trough concentration (Ctau) by 52%, 63%, and 88%, respectively, while etravirine decreased the temsavir Cmax, AUCtau, and Ctau by ∼50% each. DRV/r plus etravirine increased the temsavir Cmax, AUCtau, and Ctau by 53%, 34%, and 33%, respectively. Compared with fostemsavir alone, coadministration with cobicistat increased the temsavir Cmax, AUCtau, and Ctau by 71%, 93%, and 136%, respectively; DRV/c increased the temsavir Cmax, AUCtau, and Ctau by 79%, 97%, and 124%, respectively. Fostemsavir with all combinations was generally well tolerated. No dose adjustment is required for fostemsavir when coadministered with strong CYP3A inhibitors, P-glycoprotein inhibitors, and modest inducers, including regimens with DRV/r, DRV/c, cobicistat, etravirine, and DRV/r plus etravirine based on the therapeutic margin for temsavir (ClinicalTrials.gov registration no. NCT02063360 and NCT02277600).


Assuntos
Fármacos Anti-HIV , Infecções por HIV , HIV-1 , Pró-Fármacos , Membro 1 da Subfamília B de Cassetes de Ligação de ATP , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Fármacos Anti-HIV/uso terapêutico , Estudos Clínicos como Assunto , Cobicistat/farmacocinética , Darunavir/farmacocinética , Infecções por HIV/tratamento farmacológico , Voluntários Saudáveis , Humanos , Proteínas de Neoplasias , Nitrilas , Organofosfatos , Piperazinas , Pró-Fármacos/farmacologia , Pirimidinas , Ritonavir
18.
Toxicol Appl Pharmacol ; 436: 115883, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35031325

RESUMO

The occurrence of multidrug resistance (MDR) is one of the impediments in the clinical treatment of breast cancer, and MDR breast cancer has abnormally high breast cancer resistance protein (BCRP/ABCG2) expression. However, there are currently no clinical drugs that inhibit this target. Our previous study found that 2-Methoxy-5((3,4,5-trimethosyphenyl)seleninyl) phenol (SQ0814061/SQ), a small molecule drug with low toxicity to normal tissues, could target microtubules, inhibit the proliferation of breast cancer, and reduce its migration and invasion abilities. However, the effect and the underlying mechanism of SQ on MDR breast cancers are still unknown. Therefore, in this study, we investigated the effect of SQ on adriamycin-resistant MCF-7 (MCF-7/ADR) cells and explored the underlying mechanism. The MTT assay showed that SQ had potent cytotoxicity to MCF-7/ADR cells. In particular, the results of western blot and flow cytometry proved that SQ could effectively inhibit the expression of BCRP in MCF-7/ADR cells to decrease its drug delivery activity. In addition, SQ could block the cell cycle at G2/M phase in parental and MCF-7/ADR cells, thereby mediating cell apoptosis, which was related with the inhibition of PI3K-Akt-MDM2 pathway. Taken together, our findings indicate that SQ overcomes multidrug resistance in MCF-7/ADR cells by inhibiting BCRP function and mediating apoptosis through PI3K-Akt-MDM2 pathway inhibition.


Assuntos
Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Apoptose/efeitos dos fármacos , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Microtúbulos/efeitos dos fármacos , Proteínas de Neoplasias/antagonistas & inibidores , Compostos Organosselênicos/farmacologia , Moduladores de Tubulina/antagonistas & inibidores , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Células MCF-7 , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos
19.
Mol Pharm ; 19(7): 2506-2517, 2022 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-35675046

RESUMO

Determining the amount of drug transferred into human milk is critical for benefit-risk analysis of taking medication while breastfeeding. In this study, we developed an in vitro and in vivo extrapolation (IVIVE) model to predict human milk/plasma (M/P) drug concentration ratios. Drug unionized fractions at pH 7.0 (Fni,7.0) and 7.4 (Fni,7.4), drug fractions unbound in human plasma (fup) and milk (fum), and in vitro cell permeability in both directions (efflux ratio, ER) were incorporated into the IVIVE model. A multiple regression Emax model was chosen to predict fum from fup and polar surface area (PSA). A total of 97 drugs with experimental ER from Caco-2 cells were used to test the IVIVE model. The M/P ratios predicted by the IVIVE model had a 1.93-fold geometric mean fold error (GMFE) and 72% of predictions were within two-fold error (Pw2FE), which were superior to the performance of previously reported five models. The IVIVE model showed a reasonable prediction accuracy for passive diffusion drugs (GMFE = 1.71-fold, Pw2FE = 82%, N = 50), BCRP substrates (BCRP: GMFE = 1.91-fold, Pw2FE = 60%, N = 5), and substrates of P-gp and BCRP (GMFE = 1.74-fold, Pw2FE = 75%, N = 8) and a lower prediction performance for P-gp substrates (GMFE = 2.51-fold, Pw2FE = 55%, N = 22). By fitting the observed M/P ratios of 39 P-gp substrates, an optimized ER (1.61) was generated to predict the M/P ratio of P-gp substrates using the developed IVIVE model. Compared with currently available in vitro models, the developed IVIVE model provides a more accurate prediction of the drug M/P ratio, especially for passive diffusion drugs. The model performance is expected to be further improved when more experimental fum and ER data are available.


Assuntos
Leite Humano , Proteínas de Neoplasias , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Transporte Biológico , Células CACO-2 , Humanos , Leite Humano/metabolismo , Modelos Biológicos , Proteínas de Neoplasias/metabolismo
20.
Pharmacol Res ; 178: 105954, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34700018

RESUMO

Abemaciclib is the third cyclin-dependent kinase (CDK) 4/6 inhibitor approved for the treatment of breast cancer and currently under investigation for other malignancies, including brain cancer. Primarily CYP3A4 metabolizes abemaciclib, forming three active metabolites (M2, M20 and M18) that are likely relevant for abemaciclib efficacy and toxicity. We investigated the impact of ABCB1 (P-gp), ABCG2 (BCRP) and CYP3A on the pharmacokinetics and tissue distribution of abemaciclib and its metabolites using genetically modified mice. In vitro, abemaciclib was efficiently transported by hABCB1 and mAbcg2, and slightly by hABCG2, but the active metabolites were transported even better. Upon oral administration of 10 mg/kg abemaciclib, absence of Abcg2 and especially Abcb1a/1b significantly increased the plasma AUC0-24 h and Cmax of M2 and M18. Furthermore, the relative brain penetration of abemaciclib, M2 and M20 was dramatically increased by 25-, 4- and 60-fold, respectively, in Abcb1a/1b;Abcg2-/- mice, and to a lesser extent in single Abcb1a/1b- or Abcg2-deficient mice. The recovery of all active compounds in the small intestine content was profoundly reduced in Abcb1a/1b;Abcg2-/- mice, with smaller effects in single Abcb1a/1b-/- and Abcg2-/- mice. Our results indicate that Abcb1a/1b and Abcg2 cooperatively and profoundly limit the brain penetration of abemaciclib and its active metabolites, and likely also participate in their hepatobiliary or direct intestinal elimination. Moreover, transgenic human CYP3A4 drastically reduced the abemaciclib plasma AUC0-24 h and Cmax by 7.5- and 5.6-fold, respectively, relative to Cyp3a-/- mice. These insights may help to optimize the clinical development of abemaciclib, especially for the treatment of brain malignancies.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Aminopiridinas , Benzimidazóis , Citocromo P-450 CYP3A , Proteínas de Neoplasias , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Aminopiridinas/metabolismo , Aminopiridinas/farmacologia , Animais , Benzimidazóis/metabolismo , Benzimidazóis/farmacologia , Encéfalo/metabolismo , Citocromo P-450 CYP3A/genética , Citocromo P-450 CYP3A/metabolismo , Cães , Humanos , Células Madin Darby de Rim Canino , Camundongos , Camundongos Knockout , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Preparações Farmacêuticas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA