Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Molecules ; 28(13)2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37446817

RESUMO

X-linked inhibitor of apoptosis protein (XIAP) exercises its biological function by locking up and inhibiting essential caspase-3, -7 and -9 toward apoptosis execution. It is overexpressed in multiple human cancers, and it plays an important role in cancer cells' death skipping. Inhibition of XIAP-BIR3 domain and caspase-9 interaction was raised as a promising strategy to restore apoptosis in malignancy treatment. However, XIAP-BIR3 antagonists also inhibit cIAP1-2 BIR3 domains, leading to serious side effects. In this study, we worked on a theoretical model that allowed us to design and optimize selective synthetic XIAP-BIR3 antagonists. Firstly, we assessed various MM-PBSA strategies to predict the XIAP-BIR3 binding affinities of synthetic ligands. Molecular dynamics simulations using hydrogen mass repartition as an additional parametrization with and without entropic term computed by the interaction entropy approach produced the best correlations. These simulations were then exploited to generate 3D pharmacophores. Following an optimization with a training dataset, five features were enough to model XIAP-BIR3 synthetic ligands binding to two hydrogen bond donors, one hydrogen bond acceptor and two hydrophobic groups. The correlation between pharmacophoric features and computed MM-PBSA free energy revealed nine residues as crucial for synthetic ligand binding: Thr308, Glu314, Trp323, Leu307, Asp309, Trp310, Gly306, Gln319 and Lys297. Ultimately, and three of them seemed interesting to use to improve XIAP-BR3 versus cIAP-BIR3 selectivity: Lys297, Thr308 and Asp309.


Assuntos
Apoptose , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X , Humanos , Ligantes , Ligação Proteica , Simulação de Dinâmica Molecular
2.
Bioorg Med Chem Lett ; 34: 127676, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33166687

RESUMO

We recently reported the biological evaluations of monovalent IAP antagonist 7 with good potency (MDA-MB-231, IC50 = 19 nM). In an effort to increase cellular activity and improve favorable drug-like properties, we newly designed and synthesized bivalent analogues based on quinazoline structure of 7. Optimization of cellular potency and CYP inhibition led to the identification of 27, which showed dramatic increase of over 100-fold (IC50 = 0.14 nM) and caused substantial tumor regressions in MDA-MB-231 xenograft model. These results strongly support 27 as a promising bivalent antagonist for the development of an effective anti-tumor approaches.


Assuntos
Antineoplásicos/farmacologia , Desenho de Fármacos , Proteínas Inibidoras de Apoptose/antagonistas & inibidores , Quinazolinas/farmacologia , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Cães , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Proteínas Inibidoras de Apoptose/metabolismo , Camundongos , Estrutura Molecular , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Quinazolinas/síntese química , Quinazolinas/química , Ratos , Relação Estrutura-Atividade
3.
Biochim Biophys Acta Gen Subj ; 1862(7): 1602-1611, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29631059

RESUMO

BACKGROUND: Regulating apoptosis is a common and essential therapeutic strategy for cancer and neurodegenerative disorders. Based on basic studies of apoptotic mechanisms, various researches have attempted to overcome the pathogenesis of such diseases by activating or inhibiting apoptosis. Generally, the biochemical characteristics of the target molecules should be evaluated along with understanding of their mechanisms of action during drug development. Among apoptotic regulators, XIAP serves as a potent negative regulator to block apoptosis through the inhibition of caspase (CASP)-9 and -3/7. Although XIAP is an attractive target with such apoptotic-modulating property, biochemical and biophysical studies of XIAP are still challenging. METHODS: In this study, the CASP-9 and -3/7 inhibitors XIAP, 242Δ and Δ230 were prepared using the pGEX expression system and biochemically characterized. RESULTS: These inhibitors were expressed in Escherichia coli at a concentration of ≥20 mg/L culture under a native condition with 0.01 mM IPTG induction. Notably, using a simple and rapid affinity purification technique, these CASP-9 and -3/7 inhibitors have been purified, yielding ≥5 mg/L culture at approximately 90% purity. CONCLUSIONS: We have determined that HtrA2 specifically binds to the BIR2 and BIR3 of XIAP at a 1:1 molecular ratio. Moreover, in vitro cell-free CASP-9 and -3/7 activation-apoptosis assays have demonstrated that these purified XIAP proteins dramatically inhibit CASP-9 and -3/7 action. GENERAL SIGNIFICANCE: Our system is suitable for biochemical studies, such as quantitation of the number of molecules acting on the apoptosis regulation, and provides a basis and insights that can be applied to the development of therapeutic agents for neurodegenerative disorders and cancer.


Assuntos
Apoptose/efeitos dos fármacos , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/farmacologia , Caspases/metabolismo , Avaliação Pré-Clínica de Medicamentos , Ativação Enzimática/efeitos dos fármacos , Células HEK293 , Serina Peptidase 2 de Requerimento de Alta Temperatura A/metabolismo , Humanos , Neoplasias/tratamento farmacológico , Doenças Neurodegenerativas/tratamento farmacológico , Ligação Proteica , Domínios Proteicos , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/análise , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/genética , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/isolamento & purificação
4.
Bioorg Med Chem ; 21(17): 5004-11, 2013 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-23886811

RESUMO

The N-terminal sequence of the Smac/DIABLO protein is known to be involved in binding to the BIR3 domain of the anti-apoptotic proteins IAPs, antagonizing their action. Short peptides and peptide mimetics based on the first 4-residues of Smac/DIABLO have been demonstrated to re-sensitize resistant cancer cells, over-expressing IAPs, to apoptosis. Based on the well-defined structural basis for this interaction, a small focused library of C-terminal capped Smac/DIABLO-derived peptides was designed in silico using docking to the XIAP BIR3 domain. The top-ranked computational hits were conveniently synthesized employing Solid Phase Synthesis (SPS) on an alkane sulfonamide 'Safety-Catch' resin. This novel approach afforded the rapid synthesis of the target peptide library with high flexibility for the introduction of various C-terminal amide-capping groups. The library members were obtained in high yield (>65%) and purity (>85%), upon nucleophilic release from the activated resin by treatment with various amine nucleophiles. In vitro caspase-9 activity reconstitution assays of the peptides in the presence of the recombinant BIR3-domain of human XIAP (500nM) revealed N-methylalanyl-tertiarybutylglycinyl-4-(R)-phenoxyprolyl-N-biphenylmethyl carboxamide (11a) to be the most potent XIAP BIR3 antagonist of the series synthesized inducing 93% recovery of caspase-9 activity, when used at 1µM concentration. Compound (11a) also demonstrated moderate cytotoxicity against the breast cancer cell lines MDA-MB-231 and MCF-7, compared to the Smac/DIABLO-derived wild-type peptide sequences that were totally inactive in the same cell lines.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/química , Proteínas Mitocondriais/química , Peptídeos/síntese química , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/antagonistas & inibidores , Proteínas Reguladoras de Apoptose , Caspase 9/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Humanos , Células MCF-7 , Micro-Ondas , Peptídeos/toxicidade , Peptidomiméticos , Estrutura Terciária de Proteína , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Resinas Sintéticas/química , Técnicas de Síntese em Fase Sólida , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/genética , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/metabolismo
5.
Cell Host Microbe ; 30(12): 1717-1731.e6, 2022 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-36446350

RESUMO

Arabidopsis BAK1/SERK3, a co-receptor of leucine-rich repeat pattern recognition receptors (PRRs), mediates pattern-triggered immunity (PTI). Genetic inactivation of BAK1 or BAK1-interacting receptor-like kinases (BIRs) causes cell death, but the direct mechanisms leading to such deregulation remains unclear. Here, we found that the TIR-NBS-LRR protein CONSTITUTIVE SHADE AVOIDANCE 1 (CSA1) physically interacts with BIR3, but not with BAK1. CSA1 mediates cell death in bak1-4 and bak1-4 bir3-2 mutants via components of effector-triggered immunity-(ETI) pathways. Effector HopB1-mediated perturbation of BAK1 also results in CSA1-dependent cell death. Likewise, microbial pattern pg23-induced cell death, but not PTI responses, requires CSA1. Thus, we show that CSA1 guards BIR3 BAK1 homeostasis and integrates pattern- and effector-mediated cell death pathways downstream of BAK1. De-repression of CSA1 in the absence of intact BAK1 and BIR3 triggers ETI cell death. This suggests that PTI and ETI pathways are activated downstream of BAK1 for efficient plant immunity.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Imunidade Vegetal , Imunidade , Homeostase
6.
J Biomol Struct Dyn ; 39(2): 743-752, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31914860

RESUMO

X-chromosome-linked inhibitor of apoptosis (XIAP) inhibits cell apoptosis. Overexpression of XIAP is widely found in human cancers. Second mitochondria-derived activator of caspase (SMAC) protein inhibits XIAP through binding with Baculovirus Inhibitor of apoptosis protein Repeat (BIR) 3 or BIR2 domain of XIAP. In this study, molecular dynamics (MD) simulations and the alanine scanning calculations by MM-GBSA_IE method were used to investigate the protein-peptide interaction between BIR3 and BIR2 domains of XIAP and SMAC peptide. Energetic contribution of each binding residue is calculated and hotspots on both XIAP and SMAC were identified using computational alanine scanning with interaction entropy method. We found that electrostatic polarization is important in stabilizing the protein-protein complex structure in MD simulation. By using polarized protein-specific charges, much better agreement with experimental result is obtained for calculated binding free energies compared to those using standard (nonpolarizable) AMBER force field. In particular, excellent correlation between calculated binding free energies in alanine scanning with mutational experimental data was obtained for BIR3/SMAC binding.Communicated by Ramaswamy H. Sarma.


Assuntos
Apoptose , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X , Humanos , Mitocôndrias/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Eletricidade Estática , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/genética , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/metabolismo
7.
Cancers (Basel) ; 11(9)2019 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-31505859

RESUMO

X-linked inhibitor of apoptosis protein (XIAP) is an emerging crucial therapeutic target in cancer. We report on the discovery and characterisation of small organic molecules from Piper genus plants exhibiting XIAP antagonism, namely erioquinol, a quinol substituted in the 4-position with an alkenyl group and the alkenylphenols eriopodols A-C. Another isolated compound was originally identified as gibbilimbol B. Erioquinol was the most potent inhibitor of human cancer cell viability when compared with gibbilimbol B and eriopodol A was listed as intermediate. Gibbilimbol B and eriopodol A induced apoptosis through mitochondrial permeabilisation and caspase activation while erioquinol acted on cell fate via caspase-independent/non-apoptotic mechanisms, likely involving mitochondrial dysfunctions and aberrant generation of reactive oxygen species. In silico modelling and molecular approaches suggested that all molecules inhibit XIAP by binding to XIAP-baculoviral IAP repeat domain. This demonstrates a novel aspect of XIAP as a key determinant of tumour control, at the molecular crossroad of caspase-dependent/independent cell death pathway and indicates molecular aspects to develop tumour-effective XIAP antagonists.

8.
Comput Struct Biotechnol J ; 17: 1217-1225, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31673305

RESUMO

X-linked inhibitor of apoptosis protein (XIAP) is an important regulator of cancer cell survival whose BIR3 domain (XIAP-BIR3) recognizes the Smac N-terminal tetrapeptide sequence (AVPI), making it an attractive protein-protein interaction (PPI) target for cancer therapies. We used the fragment molecular orbital (FMO) method to study the binding modes and affinities between XIAP-BIR3 and a series of its inhibitors (1-8) that mimic the AVPI binding motif; the inhibitors had common interactions with key residues in a hot spot region of XIAP-BIR3 (P1-P4 subpockets) with increased binding affinity mainly attributed to specific interactions with the P1 and P4 subpockets. Based on the structural information from FMO results, we proposed a novel XIAP natural product inhibitor, neoeriocitrin 10, which was derived from our preciously reported XIAP-BIR3 inhibitor 9, can be used as a highly potent candidate for XIAP-BIR3 inhibition. We also performed pair interaction energy decomposition analysis to investigate the binding energies between specific binding residues and individual ligands, showing that the novel natural product neoeriocitrin 10 had a higher binding affinity than epicatechin gallate 9. Molecular docking and dynamics simulations were performed to explore the mode of binding between 10 and XIAP-BIR3, demonstrating that 10 binds more strongly to the P1 and P4 pockets than 9. Overall, we present a novel natural product, neoeriocitrin 10, and demonstrate that the FMO method can be used to identify hot spots in PPIs and design new compounds for XIAP inhibition.

9.
Future Med Chem ; 10(8): 961-976, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29620447

RESUMO

Natural products have been gaining recognition and are becoming a significant part of research in the area of drug development and discovery. Phytochemicals derived from these sources have been comprehensively studied and have displayed a wide range of activities against many fatal diseases including cancer. One such product that has gained recognition from its pharmacological properties and nontoxic nature is embelin, obtained from Embelia ribes. Amid all the vivid pharmacological activities, embelin has gained its prominence in the area of cancer research. Embelin binds to the BIR3 domain of XIAP, preventing the association of XIAP and caspase-9 resulting in the suppression of cell growth, proliferation and migration of various types of cancer cells. Furthermore, embelin modulates anti-apoptotic pathways by suppressing the activity of NF-κB, PI3-kinase/AKT, JAK/STAT pathway - among others. The present review summarizes the various reported effects of embelin on different types of cancer cells and highlights the cellular mechanisms of action.


Assuntos
Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/farmacologia , Benzoquinonas/química , Benzoquinonas/farmacologia , Embelia/química , Neoplasias/tratamento farmacológico , Animais , Antineoplásicos Fitogênicos/uso terapêutico , Apoptose/efeitos dos fármacos , Benzoquinonas/uso terapêutico , Proliferação de Células/efeitos dos fármacos , Humanos , Neoplasias/metabolismo , Neoplasias/patologia , Transdução de Sinais/efeitos dos fármacos
10.
Biosens Bioelectron ; 61: 57-62, 2014 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-24858673

RESUMO

In this work, we report a reagentless electrochemical peptide (AVPFAQKG) sensor to directly detect the BIR3 domain of X-linked inhibitor of apoptosis protein (XIAP-BIR3). The bioreceptor was based on a conducting copolymer film electrosynthesized from juglone and a juglone-peptide conjugate (JP) newly designed. The peptide-protein interactions generated an important increase of steric hindrance at the interface and a current decrease (signal off) of the redox reaction from quinone embedded in the polymer backbone as evidenced by Square Wave Voltammetry. This allowed a specific and sensitive detection of XIAP-BIR3 with a detection limit of 1 nM (13 ng mL(-1)). The peptide-protein complex could be then dissociated by adding the free precursor peptide (AVPFAQKG) into solution, causing a shift-back on the signal, i.e. an increase in the current intensity (signal-on). This "off-on" detection sequence was used in this work as a double verification of the specificity and this approach can be employed as a general way to increase the reliability of the results. In general, the approach described in this work may be inspired to develop other direct and reagentless electrochemical protein assays with high specificity and sensitivity.


Assuntos
Técnicas Biossensoriais/instrumentação , Técnicas Eletroquímicas/instrumentação , Naftoquinonas/química , Oligopeptídeos/química , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/análise , Sequência de Aminoácidos , Desenho de Equipamento , Limite de Detecção , Modelos Moleculares , Naftoquinonas/metabolismo , Oligopeptídeos/metabolismo , Estrutura Terciária de Proteína , Reprodutibilidade dos Testes , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/metabolismo
11.
FEBS Open Bio ; 4: 659-71, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25161875

RESUMO

Defects in the regulation of apoptosis are one main cause of cancer development and may result from overexpression of anti-apoptotic proteins such as the X-linked inhibitor of apoptosis protein (XIAP). XIAP is frequently overexpressed in human leukemia and prostate and breast tumors. Inhibition of apoptosis by XIAP is mainly coordinated through direct binding to the initiator caspase-9 via its baculovirus-IAP-repeat-3 (BIR3) domain. XIAP inhibits caspases directly making it to an attractive target for anti-cancer therapy. In the search for novel, non-peptidic XIAP inhibitors in this study we focused on the chemical constituents of sang bái pí (mulberry root bark). Most promising candidates of this plant were tested biochemically in vitro by a fluorescence polarization (FP) assay and in vivo via protein fragment complementation analysis (PCA). We identified the Diels Alder adduct Sanggenon G (SG1) as a novel, small-molecular weight inhibitor of XIAP. As shown by FP and PCA analyses, SG1 binds specifically to the BIR3 domain of XIAP with a binding affinity of 34.26 µM. Treatment of the transgenic leukemia cell line Molt3/XIAP with SG1 enhances caspase-8, -3 and -9 cleavage, displaces caspase-9 from XIAP as determined by immunoprecipitation experiments and sensitizes these cells to etoposide-induced apoptosis. SG1 not only sensitizes the XIAP-overexpressing leukemia cell line Molt3/XIAP to etoposide treatment but also different neuroblastoma cell lines endogenously expressing high XIAP levels. Taken together, Sanggenon G (SG1) is a novel, natural, non-peptidic, small-molecular inhibitor of XIAP that can serve as a starting point to develop a new class of improved XIAP inhibitors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA