Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 269
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Gene Med ; 26(1): e3617, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37935422

RESUMO

OBJECTIVE: Erxian Decoction (EXD) is traditionally employed in the treatment of menopausal syndromes, although its underlying mechanisms remain largely undefined. Given that the senescence of bone marrow mesenchymal stem cells (BMSCs) is intertwined with organismal aging and associated diseases, this study endeavored to elucidate the influence of EXD on aging BMSCs and uncover the mechanisms through which EXD impedes BMSC senescence. METHODS: Initially, we probed the anti-senescent mechanisms of EXD on BMSCs via network pharmacology. We subsequently isolated and identified exosomes from the serum of EXD-fed rats (EXD-Exos) and administered these to H2 O2 -induced aging BMSC. Assays were conducted to assess BMSC senescence indicators and markers pertinent to mitochondrial autophagy. Treatments with mitophagy inhibitors and activators were then employed to substantiate our findings. RESULTS: Protein-protein interaction (PPI) network analyses spotlighted AKT1, TP53, TNF, JUN, VEGFA, IL6, CASP3 and EGFR as focal targets. Gene Ontology and Kyoto Encylcopedia of Genes and Genomes pathway analyses underscored oxidative stress, mitophagy and cell proliferation as pivotal processes. Our cellular assays ascertained that EXD-Exos mitigated H2 O2 -induced senescence phenotypes in BMSCs. Moreover, EXD-Exos ameliorated disrupted mitophagy in BMSCs, as evidenced by enhanced cellular membrane potential and diminished reactive oxygen species levels. Intriguingly, EXD-Exos also preserved the osteogenic differentiation potential of BMSCs while curtailing their adipogenic propensity. CONCLUSION: Our findings compellingly suggest that EXD counteracts BMSC senescence by fostering mitophagy.


Assuntos
Dissulfetos , Medicamentos de Ervas Chinesas , Exossomos , Células-Tronco Mesenquimais , Tionas , Ratos , Animais , Osteogênese , Mitofagia , Exossomos/metabolismo , Células-Tronco Mesenquimais/metabolismo
2.
Mol Cell Biochem ; 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38652214

RESUMO

Chronic liver damage (CLD) encompasses a spectrum of conditions and poses a significant global health challenge, affecting millions of individuals. Currently, there is a deficiency of clinically validated therapeutics with minimal side effects. Emerging evidence underscores the significant potential of extracellular vesicles derived from bone marrow mesenchymal stem cells (BMSC-EVs) as a promising therapeutic method for CLD. This study aimed to evaluate the influence of BMSC-EVs containing microRNA-136-5p (BMSC-EVs-miR-136-5p) on macrophage polarization during chronic liver injury and elucidate the mechanisms associated with the GNAS/PI3K/ERK/STAT3 axis. Surface markers of BMSCs were detected via Immunofluorescent Staining. Subsequently, EVs were harvested from the BMSC culture medium. In vivo fluorescence imaging was employed to locate the BMSC-EVs. Additionally, fluorescence microscopy was used to visualize the uptake of DIR-labeled BMSC-EVs by RAW264.7 cells. Various methods were employed to assess the impact of BMSC-EVs on the expression levels of inflammatory factors (IL-1ß, IL-6, IL-10, and TNF-α), M1/M2 macrophage markers (iNOS and Arg-1), and members of inflammation-related signaling pathways (GNAS, PI3K, ERK, and STAT3) in RAW264.7 cells co-cultured with BMSC-EVs. Loss-of-function approaches targeting miR-136-5p in RAW264.7 cells were subsequently utilized to validate the role of BMSC-EVs-miR-136-5p. The Luciferase Reporter Assay indicates that GNAS was identified to be a target of miR-136-5p, and miR-136-5p demonstrating increased within BMSC-EVs compared to Raw264.7-EVs. BMSC-EVs-miR-136-5p mitigated CCl4-induced liver inflammation and improved liver function by Suppressing the GNAS/STAT3 Signaling. Notably, miR-136-5p suppressed lipopolysaccharide (LPS)-induced inflammation in RAW264.7 cells. BMSC-EVs-miR-136-5p alleviates CLD by activating M2 polarization through the GNAS-mediated PI3K/ERK/STAT3 axis. Accordingly, the members of this axis may serve as therapeutic targets.

3.
Mol Biol Rep ; 51(1): 206, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38270688

RESUMO

BACKGROUND: Bone marrow mesenchymal stem cells (BMSCs) have been widely recognized as a highly promising option for cell-based tissue engineering therapy targeting osteoporosis. However, the osteogenic differentiation of BMSCs is impeded by the limited viability and diminished capacity for bone formation within the osteoporotic microenvironment. METHODS: In this study, the COL6A3 gene was confirmed through an extensive analysis of the preceding single-cell sequencing database. The generation of an inflammatory microenvironment resembling osteoporotic cell transplantation was achieved by employing lipopolysaccharide (LPS). A lentivirus targeting the COL6A3 gene was constructed, and a Western blotting assay was used to measure the marker proteins of osteogenesis, adipogenesis, and mitophagy. Immunofluorescence was utilized to observe the colocalization of mitochondria and lysosomes. The apoptosis rate of each group was evaluated using the TUNEL assay, and the mitochondrial membrane potential was assessed using JC-1 staining. RESULTS: This investigation discovered that the impaired differentiation capacity and decreased viability of BMSCs within the inflammatory microenvironment were markedly ameliorated upon overexpression of the specific COL6A3 gene. Moreover, the administration of COL6A3 gene overexpression successfully mitigated the inhibitory impacts of LPS on mitophagy and the expression of inflammatory mediators, specifically inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), in BMSCs. To clarify the underlying mechanism, the role of mitophagy during the differentiation of COL6A3 gene-modified BMSCs in the inflammatory microenvironment was evaluated using the mitophagy inhibitor Mdivi-1. CONCLUSIONS: In the context of lipopolysaccharide (LPS) stimulation, COL6A3 enhances the differentiation of BMSCs into osteogenic and adipogenic lineages through the promotion of mitophagy and the maintenance of mitochondrial health. Our findings may provide a novel therapeutic approach utilizing stem cells in the treatment of osteoporosis.


Assuntos
Colágeno Tipo VI , Células-Tronco Mesenquimais , Osteoporose , Lipopolissacarídeos/farmacologia , Mitofagia/genética , Osteogênese/genética
4.
J Cell Physiol ; 238(10): 2228-2242, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37682901

RESUMO

Adolescent idiopathic scoliosis (AIS) is a common spinal deformity in young women, but its pathogenesis remains unclear. The primary pathogenic factors contributing to its development include genetics, abnormal bone metabolism, and endocrine factors. Bone marrow stem cells (BMSCs) play a crucial role in the pathogenesis of AIS by regulating its occurrence and progression. Noncoding RNAs (ncRNAs) are also involved in the pathogenesis of AIS, and their role in regulating BMSCs in patients with AIS requires further evaluation. In this review, we discuss the relevant literature regarding the osteogenic, chondrogenic, and lipogenic differentiation of BMSCs. The corresponding mechanisms of ncRNA-mediated BMSC regulation in patients with AIS, recent advancements in AIS and ncRNA research, and the importance of ncRNA translation profiling and multiomics are highlighted.

5.
Mol Med ; 29(1): 3, 2023 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-36627572

RESUMO

BACKGROUND: Cerebral ischemia/reperfusion (I/R) is a pathological process that occurs in ischemic stroke. Bone marrow mesenchymal stem cell-derived exosomes (BMSC-Exos) have been verified to relieve cerebral I/R-induced inflammatory injury. Hence, we intended to clarify the function of BMSC-Exos-delivered lncRNA KLF3-AS1 (BMSC-Exos KLF3-AS1) in neuroprotection and investigated its potential mechanism. METHODS: To mimic cerebral I/R injury in vivo and in vitro, middle cerebral artery occlusion (MCAO) mice model and oxygen-glucose deprivation (OGD) BV-2 cell model were established. BMSC-Exos KLF3-AS1 were administered in MCAO mice or OGD-exposed cells. The modified neurological severity score (mNSS), shuttle box test, and cresyl violet staining were performed to measure the neuroprotective functions, while cell injury was evaluated with MTT, TUNEL and reactive oxygen species (ROS) assays. Targeted genes and proteins were detected using western blot, qRT-PCR, and immunohistochemistry. The molecular interactions were assessed using RNA immunoprecipitation, co-immunoprecipitation and luciferase assays. RESULTS: BMSC-Exos KLF3-AS1 reduced cerebral infarction and improved neurological function in MCAO mice. Similarly, it also promoted cell viability, suppressed apoptosis, inflammatory injury and ROS production in cells exposed to OGD. BMSC-Exos KLF3-AS1 upregulated the decreased Sirt1 induced by cerebral I/R. Mechanistically, KLF3-AS1 inhibited the ubiquitination of Sirt1 protein through inducing USP22. Additionally, KLF3-AS1 sponged miR-206 to upregulate USP22 expression. Overexpression of miR-206 or silencing of Sirt1 abolished KLF3-AS1-mediated protective effects. CONCLUSION: BMSC-Exos KLF3-AS1 promoted the Sirt1 deubiquitinating to ameliorate cerebral I/R-induced inflammatory injury via KLF3-AS1/miR-206/USP22 network.


Assuntos
Isquemia Encefálica , Exossomos , Células-Tronco Mesenquimais , MicroRNAs , RNA Longo não Codificante , Traumatismo por Reperfusão , Animais , Camundongos , Apoptose/genética , Isquemia Encefálica/genética , Isquemia Encefálica/metabolismo , Exossomos/metabolismo , Infarto da Artéria Cerebral Média/metabolismo , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Células-Tronco Mesenquimais/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Traumatismo por Reperfusão/genética , Traumatismo por Reperfusão/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Sirtuína 1/genética , Sirtuína 1/metabolismo
6.
J Gene Med ; 25(8): e3510, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36998238

RESUMO

BACKGROUND: Osteoarthritis (OA) is a prevalent degenerative articular disease for which there is no effective treatment. Progress has been made in mesenchymal stem cell (MSC)-based therapy in OA, and the efficacy has been demonstrated to be a result of paracrine exosomes from MSCs. Decellularized extracellular matrix (dECM) provides an optimum microenvironment for the expansion of MSCs. In the present study, we aimed to investigate whether exosomes isolated from bone marrow mesenchymal stem cells (BMSCs) with dECM pretreatment (dECM-BMSC-Exos) enhance the amelioration of OA. METHODS: Exosomes from BMSCs with or without dECM pretreatment were isolated. We measured and compared the effect of the BMSC-Exo and dECM-BMSC-Exo on interleukin (IL)-1ß-induced chondrocytes by analyzing proliferation, anabolism and catabolism, migration and apoptosis in vitro. The in vivo experiment was performed by articular injection of exosomes into DMM mice, followed by histological evaluation of cartilage. MicroRNA sequencing of exosomes was performed on BMSC-Exo and dECM-BMSC-Exo to investigate the underlying mechanism. The function of miR-3473b was validated by rescue studies in vitro and in vivo using antagomir-3473b. RESULTS: IL-1ß-treated chondrocytes treated with dECM-BMSC-Exos showed enhanced proliferation, anabolism, migration and anti-apoptosis properties compared to BMSC-Exos. DMM mice injected with dECM-BMSC-Exo showed better cartilage regeneration than those injected with BMSC-Exo. Interestingly, miR-3473b was significantly elevated in dECM-BMSC-Exos and was found to mediate the protective effect in chondrocytes by targeting phosphatase and tensin homolog (PTEN), which activated the PTEN/AKT signaling pathway. CONCLUSIONS: dECM-BMSC-Exo can enhance the alleviation of osteoarthritis via promoting migration, improving anabolism and inhibiting apoptosis of chondrocytes by upregulating miR-3473b, which targets PTEN.


Assuntos
Exossomos , Células-Tronco Mesenquimais , MicroRNAs , Osteoartrite , Camundongos , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , Matriz Extracelular Descelularizada , Tensinas/metabolismo , Exossomos/genética , Exossomos/metabolismo , Exossomos/patologia , Osteoartrite/genética , Osteoartrite/terapia , Osteoartrite/metabolismo , Células-Tronco Mesenquimais/metabolismo
7.
Pharmacol Res ; 192: 106798, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37211240

RESUMO

Exosomes, small extracellular vesicles that function as a key regulator of cell-to-cell communication, are emerging as a promising candidate for bone regeneration. Here, we aimed to investigate the effect of exosomes from pre-differentiated human alveolar bone-derived bone marrow mesenchymal stromal cells (AB-BMSCs) carrying specific microRNAs on bone regeneration. Exosomes secreted from AB-BMSCs pre-differentiated for 0 and 7 days were cocultured with BMSCs in vitro to investigate their effect on the differentiation of the BMSCs. MiRNAs from AB-BMSCs at different stages of osteogenic differentiation were analyzed. BMSCs seeded on poly-L-lactic acid(PLLA) scaffolds were treated with miRNA antagonist-decorated exosomes to verify their effect on new bone regeneration. Exosomes pre-differentiated for 7 days effectively promoted the differentiation of BMSCs. Bioinformatic analysis revealed that miRNAs within the exosomes were differentially expressed, including the upregulation of osteogenic miRNAs (miR-3182, miR-1468) and downregulation of anti-osteogenic miRNAs (miR-182-5p, miR-335-3p, miR-382-5p), causing activation of the PI3K/Akt signaling pathway. The treatment of BMSC-seeded scaffolds with anti-miR-182-5p decorated exosomes demonstrated enhanced osteogenic differentiation and efficient formation of new bone. In conclusion, Osteogenic exosomes secreted from pre-differentiated AB-BMSCs were identified and the gene modification of exosomes provides great potential as a bone regeneration strategy. DATA AVAILABILITY STATEMENT: Data generated or analyzed in this paper partly are available in the GEO public data repository(http://www.ncbi.nlm.nih.gov/geo).


Assuntos
Exossomos , Células-Tronco Mesenquimais , MicroRNAs , Humanos , Osteogênese , Exossomos/genética , Exossomos/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Regeneração Óssea/genética , Células-Tronco Mesenquimais/metabolismo , Diferenciação Celular
8.
Exp Cell Res ; 414(2): 113085, 2022 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-35292240

RESUMO

BACKGROUND: The physical health and quality of life of the elderly are severely affected by osteoporosis (OP). METHODS: We explored the regulatory mechanism of ICA in vivo and in vitro by constructing OP rats and inducing osteogenic differentiation of BMSCs. First, we determined the expression of miR-335-5p in bone tissues of OP patients, bone tissues of OP rats, and osteogenic BMSCs by RT-qPCR. Alizarin red staining was employed to detect the formation of calcium nodules in the cells. MTT was used to detect cell viability. Finally, we detected the bone tissue changes in OP rats by overexpression of miR-335-5p or oral ICA. RESULTS: miR-335-5p was lowly expressed in bone tissues of OP patients and OP rats. ICA treatment reversed the inhibitory effect of miR-335-5p inhibitor on BMSCs matrix mineralization. Moreover, PTEN was verified to be a downstream effector of miR-335-5p. During ICA induction, overexpression of PTEN reversed the promotive effect of miR-335-5p mimics on the osteogenic differentiation of BMSCs. In vivo experiments also found that overexpression of miR-335-5p or ICA treatment improved the pathogenesis of OP in rats. CONCLUSION: ICA improved OP by up-regulating miR-335-5p to inhibit PTEN, thereby providing a new strategy for the prevention and treatment of OP.


Assuntos
Células-Tronco Mesenquimais , MicroRNAs , Osteoporose , Idoso , Animais , Células da Medula Óssea/metabolismo , Diferenciação Celular , Células Cultivadas , Flavonoides , Humanos , Células-Tronco Mesenquimais/metabolismo , MicroRNAs/metabolismo , Osteogênese/genética , Osteoporose/tratamento farmacológico , Osteoporose/genética , Osteoporose/metabolismo , Qualidade de Vida , Ratos
9.
Curr Osteoporos Rep ; 21(1): 32-44, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36564571

RESUMO

PURPOSE OF REVIEW: Bone marrow adipose tissue (BMAT) in the skeleton likely plays a variety of physiological and pathophysiological roles that are not yet fully understood. In elucidating the complex relationship between bone and BMAT, glucocorticoids (GCs) are positioned to play a key role, as they have been implicated in the differentiation of bone marrow mesenchymal stem cells (BMSCs) between osteogenic and adipogenic lineages. The purpose of this review is to illuminate aspects of both endogenous and exogenous GC signaling, including the influence of GC receptors, in mechanisms of bone aging including relationships to BMAT. RECENT FINDINGS: Harmful effects of GCs on bone mass involve several cellular pathways and events that can include BMSC differentiation bias toward adipogenesis and the influence of mature BMAT on bone remodeling through crosstalk. Interestingly, BMAT involvement remains poorly explored in GC-induced osteoporosis and warrants further investigation. This review provides an update on the current understanding of the role of glucocorticoids in the biology of osteoblasts and bone marrow adipocytes (BMAds).


Assuntos
Medula Óssea , Glucocorticoides , Humanos , Glucocorticoides/metabolismo , Medula Óssea/metabolismo , Adipócitos/metabolismo , Diferenciação Celular , Osteoblastos , Adipogenia , Osteogênese , Envelhecimento , Células da Medula Óssea
10.
Photodermatol Photoimmunol Photomed ; 39(3): 235-245, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-35950642

RESUMO

BACKGROUND: Mesenchymal stem cells-derived exosome (MSCs-exo) was identified to reduce photoaging. The purpose of this study was to investigate the potential role of microRNA (miR)-29b-3p derived from bone marrow MSCs-exo (BMSCs-exo) in photoaging. METHODS: Exosomes were isolated from BMSCs and verified by Western blot. A photoaging cell model was constructed by UVB irradiation of human dermal fibroblasts (HDFs). Quantitative real-time PCR (RT-qPCR) was performed to detect the mRNA levels of miR-29b-3p, collagen type I and matrix metalloproteinases (MMPs). CCK-8, Transwell and flow cytometry were applicated to examine cell viability, migration and apoptosis. Commercial kits are used to measure levels of oxidative stress indicators. Finally, a dual-luciferase reporter assay was applied to validate the target of miR-29b-3p. RESULTS: Extracted exosomes were positive for HSP70 and CD9. Survival of HDFs increased in an exosome concentration-dependent manner. UVB irradiation inhibited miR-29b-3p levels compared with controls, but BMSCs-exo treatment restored miR-29b-3p levels (p < .05). Additionally, BMSCs-exo-miR-29b-3p reversed the inhibition of HDFs migration and oxidative stress by UVB irradiation, as well as the promotion of apoptosis. However, this reversal was attenuated by the suppression of miR-29b-3p (p < .05). Furthermore, BMSCs-exo-miR-29b-3p also inhibited the degradation of collagen type I and the production of MMPs in photoaging, and they were also eliminated by the reduced miR-29b-3p. Finally, MMP-2 was the target gene of miR-29b-3p. CONCLUSION: Our study presented a novel role for BMSCs-exo-miR-29b-3p in improving skin photoaging function, and these findings may provide new insights into the targeted treatment of skin photoaging.


Assuntos
Exossomos , Células-Tronco Mesenquimais , MicroRNAs , Envelhecimento da Pele , Humanos , Colágeno Tipo I/genética , Envelhecimento da Pele/genética , Exossomos/genética , Exossomos/metabolismo , MicroRNAs/genética , Células-Tronco Mesenquimais/metabolismo , Fibroblastos/metabolismo
11.
Acta Biochim Biophys Sin (Shanghai) ; 55(8): 1275-1287, 2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37365870

RESUMO

Glucocorticoid-induced osteoporosis (GIOP), one of the most common and serious adverse effects associated with glucocorticoid administration, manifests as decreased bone formation and increased bone resorption, eventually culminating in bone loss. Galangin (GAL) is a flavonoid extracted from the medicinal herbal galangal that possesses a variety of pharmacological activities and can inhibit osteoclastogenesis. However, the effects of GAL on GIOP remain unclear. Our study aims to explore the effects of GAL on GIOP in mice and the underlying mechanism. Our results show that GAL markedly mitigates the severity of dexamethasone (Dex)-induced osteoporosis in mice and potentiates osteogenic differentiation in mouse bone marrow-derived mesenchymal stem cells (BMSCs). Furthermore, GAL also significantly counteracts Dex-mediated suppression of osteogenic differentiation and autophagy in human BMSCs. GAL augments PKA/CREB-mediated autophagic flux in BMSCs and the bones of osteoporotic mice. GAL-mediated osteogenic differentiation in Dex-treated BMSCs is significantly decreased by the PKA inhibitor H89 and autophagy inhibitor 3-methyladenine. Collectively, our data indicate that GAL can ameliorate GIOP, partly by augmenting the mineralization of BMSCs by potentiating PKA/CREB-mediated autophagic flux, highlighting its potential therapeutic use in treating glucocorticoid-related osteoporosis.


Assuntos
Glucocorticoides , Osteoporose , Humanos , Camundongos , Animais , Glucocorticoides/efeitos adversos , Osteogênese , Osteoporose/induzido quimicamente , Osteoporose/tratamento farmacológico , Osteoporose/metabolismo , Flavonoides/farmacologia , Transdução de Sinais , Diferenciação Celular , Autofagia
12.
Int J Mol Sci ; 24(2)2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36675010

RESUMO

Loose bodies (LBs) from patients with osteochondritis dissecans (OCD) are usually removed and discarded during surgical treatment of the defect. In this study, we address the question of whether these LBs contain sufficient viable and functional chondrocytes that could serve as a source for autologous chondrocyte implantation (ACI) and how the required prolonged in vitro expansion affects their phenotype. Chondrocytes were isolated from LBs of 18 patients and compared with control chondrocyte from non-weight-bearing joint regions (n = 7) and bone marrow mesenchymal stromal cells (BMSCs, n = 6) obtained during primary arthroplasty. No significant differences in the initial cell yield per isolation and the expression of the chondrocyte progenitor cell markers CD44 + /CD146+ were found between chondrocyte populations from LBs (LB-CH) and control patients (Ctrl-CH). During long-term expansion, LB-CH exhibited comparable viability and proliferation rates to control cells and no ultimate cell cycle arrest was observed within 12 passages respectively 15.3 ± 1.1 mean cumulative populations doublings (CPD). The chondrogenic differentiation potential was comparable between LB-CH and Ctrl-CH, but both groups showed a significantly higher ability to form a hyaline cartilage matrix in vitro than BMSC. Our data suggest that LBs are a promising cell source for obtaining qualitatively and quantitatively suitable chondrocytes for therapeutic applications, thereby circumventing donor site morbidity as a consequence of the biopsies required for the current ACI procedure.


Assuntos
Cartilagem Articular , Condrócitos , Procedimentos Ortopédicos , Cartilagem , Cartilagem Articular/patologia , Diferenciação Celular , Condrócitos/metabolismo , Condrócitos/transplante , Células-Tronco Mesenquimais/metabolismo , Procedimentos Ortopédicos/métodos , Transplante Autólogo/métodos
13.
Int J Mol Sci ; 24(5)2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36901851

RESUMO

Aging of mesenchymal stem cells(MSCs) has been widely reported to be strongly associated with aging-related diseases, including osteoporosis (OP). In particular, the beneficial functions of mesenchymal stem cells decline with age, limiting their therapeutic efficacy in age-related bone loss diseases. Therefore, how to improve mesenchymal stem cell aging to treat age-related bone loss is the current research focus. However, the underlying mechanism remains unclear. In this study, protein phosphatase 3, regulatory subunit B, alpha isoform, calcineurin B, type I (PPP3R1) was found to accelerate the senescence of mesenchymal stem cells, resulting in reduced osteogenic differentiation and enhanced adipogenic differentiation in vitro. Mechanistically, PPP3R1 induces changes in membrane potential to promote cellular senescence by polarizing to depolarizing, increasing Ca2+ influx and activating downstream NFAT/ATF3/p53 signaling. In conclusion, the results identify a novel pathway of mesenchymal stem cell aging that may lead to novel therapeutic approaches for age-related bone loss.


Assuntos
Calcineurina , Osteoporose , Humanos , Diferenciação Celular , Membrana Celular , Células Cultivadas , Senescência Celular , Osteogênese
14.
Int J Mol Sci ; 24(2)2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36674806

RESUMO

Bone marrow-derived mesenchymal stromal cells (BMSCs) respond to a variety of tumor cell-derived signals, such as inflammatory cytokines and growth factors. As a result, the inflammatory tumor microenvironment may lead to the recruitment of BMSCs. Whether BMSCs in the tumor environment are more likely to promote tumor growth or tumor suppression is still controversial. In our experiments, direct 3D co-culture of BMSCs with tumor cells from the head and neck region (HNSCC) results in strong expression and secretion of MMP-9. The observed MMP-9 secretion mainly originates from BMSCs, leading to increased invasiveness. In addition to our in vitro data, we show in vivo data based on the chorioallantoic membrane (CAM) model. Our results demonstrate that MMP-9 induces hemorrhage and increased perfusion in BMSC/HNSCC co-culture. While we had previously outlined that MMP-9 expression and secretion originate from BMSCs, our data showed a strong downregulation of MMP-9 promoter activity in HNSCC cells upon direct contact with BMSCs using the luciferase activity assay. Interestingly, the 2D and 3D models of direct co-culture suggest different drivers for the downregulation of MMP-9 promoter activity. Whereas the 3D model depicts a BMSC-dependent downregulation, the 2D model shows cell density-dependent downregulation. In summary, our data suggest that the direct interaction of HNSCC cells and BMSCs promotes tumor progression by significantly facilitating angiogenesis via MMP-9 expression. On the other hand, data from 3D and 2D co-culture models indicate opposing regulation of the MMP-9 promoter in tumor cells once stromal cells are involved.


Assuntos
Técnicas de Cocultura , Neoplasias de Cabeça e Pescoço , Metaloproteinase 9 da Matriz , Células-Tronco Mesenquimais , Humanos , Células da Medula Óssea , Neoplasias de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/metabolismo , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/metabolismo , Células-Tronco Mesenquimais/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo , Células Estromais , Microambiente Tumoral
15.
Cell Biol Int ; 46(12): 2132-2141, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36073008

RESUMO

Bone marrow-derived mesenchymal stromal cells (BMSCs) physically associate with the hematopoietic stem cells (HSCs), forming a unique HSC niche. Owing to this proximity, the signaling mechanisms prevailing in the BMSCs affect the fate of the HSCs. In addition to cell-cell and cell-extracellular matrix interactions, various cytokines and growth factors present in the BM milieu evoke signaling mechanisms in the BMSCs. Previously, I have shown that priming of human BMSCs with transforming growth factor ß1 (TGFß1), a cytokine consistently found at active sites of hematopoiesis, boosts their hematopoiesis-supportive ability. Basic fibroblast growth factor (bFGF), another cytokine present in the marrow microenvironment, positively regulates hematopoiesis. Hence, I examined whether priming human BMSCs with bFGF improves their hematopoiesis-supportive ability. I found that bFGF-primed BMSCs stimulate hematopoiesis, as seen by a significant increase in colony formation from the bone marrow cells briefly interacted with them and the extensive proliferation of CD34+ HSCs cocultured with them. However, contrary to my expectation, I found that chimeric feeders comprising a mixture of TGF-primed and bFGF-primed BMSCs exerted a suppressive effect. These data demonstrate that though the TGF- and bFGF-primed BMSCs exert a salutary effect on hematopoiesis when used independently, they exert a suppressive effect when presented as a chimera. These findings suggest that the combinatorial effect of various priming agents and cytokines on the functionality of BMSCs toward the target tissues needs to be critically evaluated before they are clinically applied.


Assuntos
Medula Óssea , Células-Tronco Mesenquimais , Humanos , Fator 2 de Crescimento de Fibroblastos/farmacologia , Fator 2 de Crescimento de Fibroblastos/metabolismo , Fator de Crescimento Transformador beta1/farmacologia , Fator de Crescimento Transformador beta1/metabolismo , Células-Tronco Mesenquimais/metabolismo , Células da Medula Óssea
16.
Nanomedicine ; 41: 102521, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35032630

RESUMO

An injectable hydroxypropyl-ß-cyclodextrin (HPßCD) cross-linking of gelatin (Gel) based hydrogel was embedded with BMSC in vivo bone regeneration of femoral head necrosis. This HPßCD-Gel hydrogel possesses quick gelation within 6 min; a high-water uptake resulted in faster biodegradation, high swelling, and a 3D porous network that strengthened its mechanical, surface, and morphological properties. The results indicated that BMSC showed high cell viability (>90%) during measurement; HPßCD-Gel hydrogels induced BMSC differentiation into osteocytes within 14 days more efficiently than the osteogenic medium. The HPßCD-Gel/BMSC hydrogels that were injected into the necrosis site of the femoral head in the vessels were measured for 2 weeks. In addition, the vessel density and mean vessel diameters increased in the next 2-8 weeks followed by increased new bone formation, according to the in vivo analysis. Overall, our findings show that this method is a promising strategy for improving femoral head necrosis bone regeneration.


Assuntos
Necrose da Cabeça do Fêmur , Células-Tronco Mesenquimais , 2-Hidroxipropil-beta-Ciclodextrina/farmacologia , Regeneração Óssea , Diferenciação Celular , Cabeça do Fêmur , Necrose da Cabeça do Fêmur/tratamento farmacológico , Necrose da Cabeça do Fêmur/metabolismo , Gelatina/farmacologia , Humanos , Hidrogéis/farmacologia , Osteogênese
17.
Lasers Med Sci ; 37(2): 849-856, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33884524

RESUMO

Osteoporosis (OP) is a multifactorial bone disease that occurs worldwide. The treatment of OP is still unsatisfactory. Bone mesenchymal stem cell (BMSC) differentiation is a key process in OP pathogenesis. Low-level laser irradiation (LLLI) has been reported to regulate BMSC proliferation, but the role of circRNAs in the LLLI-based promotion of BMSC proliferation remains unclear. CircRNAs are essential molecular regulators that participate in numerous biological processes and have therapeutic potential. miR-124-3p is an essential microRNA (miRNA), and its expression changes are related to BMSC proliferation ability. In the present study, gain-loss function of experiments demonstrated that circRNA_0001052 could regulate the proliferation of BMSCs by acting as a miR-124-3p sponge through the Wnt4/ß-catenin pathway. The results of this study strongly suggest that circRNA_0001052 plays an essential role in BMSC proliferation in response to LLLI treatment, which is a potential therapeutic manipulation with clinical applications.


Assuntos
Fenômenos Biológicos , Células-Tronco Mesenquimais , MicroRNAs , Proliferação de Células/genética , Células-Tronco Mesenquimais/efeitos da radiação , MicroRNAs/genética , MicroRNAs/metabolismo , Osteogênese/genética , RNA Circular/genética
18.
Environ Toxicol ; 37(3): 593-602, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34850997

RESUMO

BACKGROUND: Osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) is closely associated with bone diseases. Circular RNAs are reported to be involved in BMSC differentiation. CircSmg5 (circ_0001145) has been identified to be downregulated in an osteoporosis mouse model. In this study, we aimed to explore the function and regulatory mechanism of circSmg5 in BMSC osteogenic differentiation. METHODS: The Alizarin Red staining and alkaline phosphatase staining assays were performed to explore the osteogenic differentiation of BMSCs. The interaction between circ_0001145, miR-194-5p, and frizzled class receptor 6 (Fzd6) was analyzed by luciferase reporter assay. The nuclear translocation of ß-catenin was assessed using immunofluorescence staining. RESULTS: CircSmg5 is in stable circular structure. CircSmg5 expression was elevated in the process of BMSC osteogenic differentiation. CircSmg5 overexpression promoted the osteogenic differentiation of BMSCs. CircSmg5 bound with miR-194-5p, whose expression was decreased in the osteogenic differentiation of BMSCs. MiR-194-5p directly targeted the 3'UTR of Fzd6. The mRNA and protein levels of Fzd6 were positively modulated by circSmg5 and negatively regulated by miR-194-5p in BMSCs. CONCLUSION: CircSmg5 was demonstrated to promote the BMSC osteogenic differentiation by targeting the miR-194-5p/Fzd6 axis to activate the Wnt/ß-catenin signaling.


Assuntos
Receptores Frizzled , Células-Tronco Mesenquimais , MicroRNAs , beta Catenina , Animais , Células da Medula Óssea/metabolismo , Diferenciação Celular , Células-Tronco Mesenquimais/metabolismo , Camundongos , MicroRNAs/genética , Osteogênese/genética , RNA Circular , Via de Sinalização Wnt , beta Catenina/genética , beta Catenina/metabolismo
19.
Int J Mol Sci ; 23(19)2022 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-36233230

RESUMO

Bone marrow mesenchymal stem cells (BMSCs) are multi-potent cell populations and are capable of maintaining bone and body homeostasis. The stemness and potential therapeutic effect of BMSCs have been explored extensively in recent years. However, diverse cell surface antigens and complex gene expression of BMSCs have indicated that BMSCs represent heterogeneous populations, and the natural characteristics of BMSCs make it difficult to identify the specific subpopulations in pathological processes which are often obscured by bulk analysis of the total BMSCs. Meanwhile, the therapeutic effect of total BMSCs is often less effective partly due to their heterogeneity. Therefore, understanding the functional heterogeneity of the BMSC subpopulations under different physiological and pathological conditions could have major ramifications for global health. Here, we summarize the recent progress of functional heterogeneity of BMSC subpopulations in physiology and pathology. Targeting tissue-resident single BMSC subpopulation offers a potentially innovative therapeutic strategy and improves BMSC effectiveness in clinical application.


Assuntos
Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Antígenos de Superfície/metabolismo , Células da Medula Óssea , Osso e Ossos , Células-Tronco Mesenquimais/metabolismo
20.
J Cell Physiol ; 236(1): 284-293, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32592173

RESUMO

Bone marrow mesenchymal stem cells (BMSCs) can be induced to process osteogenic differentiation with appropriate mechanical and/or chemical stimuli. The present study described the successful culture of murine BMSCs under mechanical strain. BMSCs were subjected to 0%, 3%, 8%, 13%, and 18% cyclic tensile strain at 0.5 Hz for 8 hr/day for 3 days. The expression of osteogenic markers and mechanosensitive ion channels was evaluated with real-time reverse transcription-polymerase chain reaction (RT-PCR) and western blot. The expression of alkaline phosphatase (ALP) and matrix mineralization were evaluated with histochemical staining. To investigate the effects of mechanosensitive ion channel expression on cyclic tensile strain-induced osteogenic differentiation, the expression of osteogenic markers was evaluated with real-time RT-PCR in the cells without mechanosensitive ion channel expression. This study revealed a significant augment in osteogenic marker in BMSC strained at 8% compared to other treatments; therefore, an 8% strain was used for further investigations. The ALP expression and matrix mineralization were enhanced in osteogenic induced BMSCs subjected to 8% strain after 7 and 14 days, respectively. Under the same conditions, the osteogenic marker and mechanosensitive ion channel expression were significantly promoted. However, the loss function of mechanosensitive ion channels resulted in the inhibition of osteogenic marker expression. This study demonstrated that strain alone can successfully induce osteogenic differentiation in BMSCs and the expression of mechanosensitive ion channels was involved in the process. The current findings suggest that mechanical stretch could function as efficient stimuli to induce the osteogenic differentiation of BMSCs via the activation of mechanosensitive ion channels.


Assuntos
Células da Medula Óssea/metabolismo , Células da Medula Óssea/fisiologia , Diferenciação Celular/fisiologia , Canais Iônicos/metabolismo , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/fisiologia , Osteogênese/fisiologia , Fosfatase Alcalina/metabolismo , Animais , Biomarcadores/metabolismo , Células Cultivadas , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA