Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Chemistry ; 29(55): e202301232, 2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37435907

RESUMO

Black phosphorene quantum dots (BPQDs) are most commonly derived from high-cost black phosphorus, while previous syntheses from the low-cost red phosphorus (Pred ) allotrope are highly oxidised. Herein, we present an intrinsically scalable method to produce high quality BPQDs, by first ball-milling Pred to create nanocrystalline Pblack and subsequent reductive etching using lithium electride solvated in liquid ammonia. The resultant ~25 nm BPQDs are crystalline with low oxygen content, and spontaneously soluble as individualized monolayers in tertiary amide solvents, as directly imaged by liquid-phase transmission electron microscopy. This new method presents a scalable route to producing quantities of high quality BPQDs for academic and industrial applications.

2.
J Nanobiotechnology ; 21(1): 243, 2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37507707

RESUMO

BACKGROUND: Osteosarcoma (OS) is the most prevalent primary malignant bone tumor. However, single-agent chemotherapy exhibits limited efficacy against OS and often encounters tumor resistance. Therefore, we designed and constructed an integrated treatment strategy of photothermal therapy (PTT) combined with chemotherapy and used a surface-encapsulated platelet-osteosarcoma hybrid membrane (OPM) that enhances circulation time and enables OS-specific targeting. RESULTS: The OPM functions as a shell structure, encapsulating multiple drug-loaded nanocores (BPQDs-DOX) and controlling the release rate of doxorubicin (DOX). Moreover, near-infrared light irradiation accelerates the release of DOX, thereby extending circulation time and enabling photostimulation-responsive release. The OPM encapsulation system improves the stability of BPQDs, enhances their photothermal conversion efficiency, and augments PTT efficacy. In vitro and ex vivo experiments demonstrate that BPQDs-DOX@OPM effectively delivers drugs to tumor sites with prolonged circulation time and specific targeting, resulting in superior anti-tumor activity compared to single-agent chemotherapy. Furthermore, these experiments confirm the favorable biosafety profile of BPQDs-DOX@OPM. CONCLUSIONS: Compared to single-agent chemotherapy, the combined therapy using BPQDs-DOX@OPM offers prolonged circulation time, targeted drug delivery, enhanced anti-tumor activity, and high biosafety, thereby introducing a novel approach for the clinical treatment of OS.


Assuntos
Neoplasias Ósseas , Nanopartículas , Osteossarcoma , Pontos Quânticos , Humanos , Pontos Quânticos/química , Fósforo/química , Doxorrubicina/farmacologia , Doxorrubicina/química , Fototerapia/métodos , Osteossarcoma/tratamento farmacológico , Neoplasias Ósseas/tratamento farmacológico , Linhagem Celular Tumoral , Nanopartículas/química
3.
J Environ Sci (China) ; 124: 617-629, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36182168

RESUMO

In this work, a novel dual Z-scheme Bi2WO6/g-C3N4/black phosphorus quantum dots (Bi2WO6/g-C3N4/BPQDs) composites were fabricated and utilized towards photocatalytic degradation of bisphenol A (BPA) under visible-light irradiation. Optimizing the content of g-C3N4 and BPQDs in Bi2WO6/g-C3N4/BPQDs composites to a suitable mass ratio can enhance the visible-light harvesting capacity and increase the charge separation efficiency and the transfer rate of excited-state electrons and holes, resulting in much higher photocatalytic activity for BPA degradation (95.6%, at 20 mg/L in 120 min) than that of Bi2WO6 (63.7%), g-C3N4 (25.0%), BPQDs (8.5%), and Bi2WO6/g-C3N4 (79.6%), respectively. Radical trapping experiments indicated that photogenerated holes (h+) and superoxide radicals (•O2-) played crucial roles in photocatalytic BPA degradation. Further, the possible degradation pathway and photocatalytic mechanism was proposed by analyzing the BPA intermediates. This work also demonstrated that the Bi2WO6/g-C3N4/BPQDs as effective photocatalysts was stable and have promising potential to remove environmental contaminants from real water samples.


Assuntos
Pontos Quânticos , Compostos Benzidrílicos , Catálise , Fenóis , Fósforo , Superóxidos , Água
4.
Small ; 14(48): e1803132, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30307702

RESUMO

Although 2D black phosphorus (BP) shows excellent optical and electronic properties, there are few reports on the photoluminescence (PL) properties of BP nanostructures because of the low yield of mechanical exfoliation, instability in water, and relatively weak emission. Herein, liquid exfoliation is combined with surface passivation to produce fluorescent BP quantum dots (BPQDs) with a high yield. The BPQDs exhibit strong PL in both ethanol and water and the absolute fluorescent quantum yield in water reaches 70%. Moreover, the BPQD solution exhibits stable PL for 150 d under ambient conditions and better photostability than conventional organic dyes and heavy-metal semiconducting nanostructures with intense fluorescence. The experiments and theoretical calculation reveal that the intense and stable PL originates from the intrinsic band-to-band excitation states and two surface states related to the POH and POCH2 CH3 bonding structures introduced by passivation. The polar water molecules remove many nonradiative centers and simultaneously increase the P-related fluorescent groups on the surface of BPQDs. Therefore, PL from the BPQDs in water is enhanced largely. The excellent fluorescent properties of BPQDs in an aqueous solution bode well for bioimaging and the negligible biotoxicity and distinct cell images suggest large potential in the biomedical and display fields.

5.
Aging (Albany NY) ; 16(13): 10784-10798, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38990203

RESUMO

Atherosclerosis (AS) is the main pathological basis of cardiovascular diseases such as coronary heart disease. Black phosphorus quantum dots (BPQDs) are a novel nanomaterial with good optical properties and biocompatibility, which was applied in the treatment of AS in mice, with good results shown in our previous study. In this study, BPQDs were injected into high-fat diet-fed apolipoprotein E knockout mice as a preventive drug for 12 weeks. Simvastatin, a classic preventive drug for AS, was used as a control to verify the preventive effect of BPQDs. The results showed that after preventive treatment with BPQDs, the plaque area in mice was significantly reduced, the vascular elasticity was increased, and serum lipid levels were significantly lower than those in the model group. To explore the mechanism, macrophages were induced to become foam cells using oxidized low-density lipoprotein. We found that BPQDs treatment could increase cell autophagy, thereby regulating intracellular lipid metabolism. Taken together, these data revealed that BPQDs may serve as a functional drug in preventing the development of AS.


Assuntos
Aterosclerose , Dieta Hiperlipídica , Fósforo , Pontos Quânticos , Animais , Dieta Hiperlipídica/efeitos adversos , Aterosclerose/prevenção & controle , Camundongos , Fósforo/sangue , Camundongos Knockout , Apolipoproteínas E/genética , Masculino , Autofagia/efeitos dos fármacos , Camundongos Knockout para ApoE , Metabolismo dos Lipídeos/efeitos dos fármacos , Modelos Animais de Doenças , Placa Aterosclerótica/prevenção & controle , Lipoproteínas LDL/metabolismo , Lipoproteínas LDL/sangue , Sinvastatina/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Células Espumosas/efeitos dos fármacos , Células Espumosas/metabolismo
6.
J Colloid Interface Sci ; 642: 204-215, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37004255

RESUMO

Black phosphorus quantum dots (BPQDs)-based materials possess excellent photocatalytic efficiency; however, they often present a loss of photo-induced carriers and random active sites in electron transfer of heterojunctions, thus restricting the enhancement of hydrogen (H2) evolution and their potential application. In this study, a micro-nano ZnIn2S4/BPQDs (MN-ZISBP) composite is constructed to enable specific orientation and self-distribution of photoelectrons transferred from ZnIn2S4 (ZIS) to BPQDs. The relationship between photoelectron transfer and H2 evolution efficiency is investigated via experiments and density functional theory (DFT) calculations. MN-ZISBP with a nanorod-like structure presents an H2 evolution rate of 1207 µmol/g/h and is higher than that of the sheet-shaped (S-ZISBP, 1023 µmol/g/h) and flower-like composites (F-ZISBP, 744 µmol/g/h) under visible light irradiation. The MN-ZISBP composite with a lower conduction band level and larger specific surface area increases the number of active sites on BPQDs via "self-distribution" for H2 evolution. Finally, the electron transfer direction and bonding orbitals of MN-ZISBP are calculated using the work function and density of states results to verify the above conclusions. The novel construction technique and photocatalytic mechanism of MN-ZISBP reported in this study provide significant insights into the BPQDs-based photocatalysts for H2 evolution.

7.
Bioact Mater ; 24: 346-360, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36632505

RESUMO

Intervertebral disc degeneration (IVDD) is commonly caused by imbalanced oxygen metabolism-triggered inflammation. Overcoming the shortcomings of antioxidants in IVDD treatment, including instability and the lack of targeting, remains challenging. Microfluidic and surface modification technologies were combined to graft chitosan nanoparticles encapsulated with strong reductive black phosphorus quantum dots (BPQDs) onto GelMA microspheres via amide bonds to construct oxygen metabolism-balanced engineered hydrogel microspheres (GM@CS-BP), which attenuate extracellular acidosis in nucleus pulposus (NP), block the inflammatory cascade, reduce matrix metalloproteinase expression (MMP), and remodel the extracellular matrix (ECM) in intervertebral discs (IVDs). The GM@CS-BP microspheres reduce H2O2 intensity by 229%. Chemical grafting and electrostatic attraction increase the encapsulation rate of BPQDs by 167% and maintain stable release for 21 days, demonstrating the antioxidant properties and sustained modulation of the BPQDs. After the GM@CS-BP treatment, western blotting revealed decreased acid-sensitive ion channel-3 and inflammatory factors. Histological staining in an 8-week IVDD model confirmed the regeneration of NP. GM@CS-BP microspheres therefore maintain a balance between ECM synthesis and degradation by regulating the positive feedback between imbalanced oxygen metabolism in IVDs and inflammation. This study provides an in-depth interpretation of the mechanisms underlying the antioxidation of BPQDs and a new approach for IVDD treatment.

8.
Talanta ; 211: 120660, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32070626

RESUMO

An electrochemiluminescence and photothermal immunosensor based on a dual-modality integrated probe was proposed for sensitive and reliable detection of lipolysis stimulated lipoprotein receptor (LSR), a new biomarker of ovarian cancer. Black phosphorous quantum dots (BPQDs) possess fascinating electrochemical property and unique photothermal effect, which could not only enhance ECL signal of N-(4-aminobutyl)-N-ethylisoluminol (ABEI) through accelerating dissolved O2 evolution but also realize temperature signal output by converting laser energy into heat. Furthermore, NiFe2O4 nanotubes (NiFe2O4 NTs) have large specific surface area and favorable adsorption ability, which could increase the immobilized amount of ABEI and BPQDs, further strengthening ECL and temperature signal. As a result, a dual-mode immunosensor was constructed and realized ECL and temperature dual signal to detect LSR, making the results more reliable. This work provided a new thought for the development of sensitive and accurate sensors and was expected to employ for determination of other biomarkers.


Assuntos
Biomarcadores Tumorais/análise , Técnicas Biossensoriais , Compostos Férricos/química , Nanotubos/química , Níquel/química , Neoplasias Ovarianas , Fósforo/química , Pontos Quânticos/química , Receptores de Lipoproteínas/análise , Anticorpos/química , Biomarcadores Tumorais/imunologia , Técnicas Eletroquímicas , Feminino , Humanos , Imunoensaio , Luz , Medições Luminescentes , Luminol/análogos & derivados , Luminol/química , Receptores de Lipoproteínas/imunologia , Temperatura
9.
ACS Appl Mater Interfaces ; 10(18): 16033-16040, 2018 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-29649868

RESUMO

Recently, black phosphorus (BP) with direct band gap exhibited excellent potential for optoelectronic applications because of its high charge carrier mobility and low dark current as well as the variable band gap of 0.3-1.5 eV depending on the number of layers. However, few-layer BP-based phototransistors (photo-FETs) have been limited in sensitivity and wavelength selectivity. To overcome the drawback of these photo-FETs, we studied hybrid photo-FETs combined with the novel properties of the two materials between the channel and sensitizer layers. By combining a strong absorbance of a quantum dot (QD) layer and a two-dimensional layer material with high carrier mobility, the hybrid photo-FETs are expected to produce high-performance photodetectors that can effectively control the responsivity, detectivity, and response time. In this study, we demonstrate that the photogenerated carriers formed from QD sensitizer layers migrate to the BP transport layer with high charge mobility and not only improve the photodetector performance but also enhance the photodoping effect of the BP transport layer with an ambipolar characteristic by electrons transferred from n-type CdSe QDs or holes injected from p-type PbS QDs. The responsivity and detectivity of hybrid BP/0D photo-FETs exhibit 1.16 × 109 A W-1 and 7.53 × 1016 Jones for the BP/CdSe QD photo-FET and 5.36 × 108 A W-1 and 1.89 × 1016 Jones for the BP/PbS QD photo-FET, respectively. The photocurrent rise (τrise) and decay (τdecay) times were τrise = 0.406 s and τdecay = 0.815 s for BP/CdSe QD photo-FET and τrise = 0.576 s and τdecay = 0.773 s for BP/PbS QD photo-FET, respectively.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA