Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cereb Cortex ; 33(5): 2215-2228, 2023 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-35695785

RESUMO

The envelope is essential for speech perception. Recent studies have shown that cortical activity can track the acoustic envelope. However, whether the tracking strength reflects the extent of speech intelligibility processing remains controversial. Here, using stereo-electroencephalogram technology, we directly recorded the activity in human auditory cortex while subjects listened to either natural or noise-vocoded speech. These 2 stimuli have approximately identical envelopes, but the noise-vocoded speech does not have speech intelligibility. According to the tracking lags, we revealed 2 stages of envelope tracking: an early high-γ (60-140 Hz) power stage that preferred the noise-vocoded speech and a late θ (4-8 Hz) phase stage that preferred the natural speech. Furthermore, the decoding performance of high-γ power was better in primary auditory cortex than in nonprimary auditory cortex, consistent with its short tracking delay, while θ phase showed better decoding performance in right auditory cortex. In addition, high-γ responses with sustained temporal profiles in nonprimary auditory cortex were dominant in both envelope tracking and decoding. In sum, we suggested a functional dissociation between high-γ power and θ phase: the former reflects fast and automatic processing of brief acoustic features, while the latter correlates to slow build-up processing facilitated by speech intelligibility.


Assuntos
Córtex Auditivo , Percepção da Fala , Humanos , Fala/fisiologia , Córtex Auditivo/fisiologia , Inteligibilidade da Fala , Estimulação Acústica , Eletroencefalografia , Percepção da Fala/fisiologia
2.
J Clin Monit Comput ; 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38561555

RESUMO

PURPOSE: To determine the precise induction dose, an objective assessment of individual propofol sensitivity is necessary. This study aimed to investigate whether preinduction electroencephalogram (EEG) data are useful in determining the optimal propofol dose for the induction of general anesthesia in healthy adult patients. METHODS: Seventy healthy adult patients underwent total intravenous anesthesia (TIVA), and the effect-site target concentration of propofol was observed to measure each individual's propofol requirements for loss of responsiveness. We analyzed preinduction EEG data to assess its relationship with propofol requirements and conducted multiple regression analyses considering various patient-related factors. RESULTS: Patients with higher relative delta power (ρ = 0.47, p < 0.01) and higher absolute delta power (ρ = 0.34, p = 0.01) required a greater amount of propofol for anesthesia induction. In contrast, patients with higher relative beta power (ρ = -0.33, p < 0.01) required less propofol to achieve unresponsiveness. Multiple regression analysis revealed an independent association between relative delta power and propofol requirements. CONCLUSION: Preinduction EEG, particularly relative delta power, is associated with propofol requirements during the induction of general anesthesia. The utilization of preinduction EEG data may improve the precision of induction dose selection for individuals.

3.
Neuromodulation ; 27(5): 923-929, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38551546

RESUMO

BACKGROUND: Stimulation of dorsal root ganglion (DRG) is an ideal neuromodulative intervention, providing pain relief in localized chronic pain conditions because γ-band oscillations reflect the intensity of ongoing chronic pain in patients affected. OBJECTIVE: We aimed to observe the role of cortical γ-band power associated with the relief of chronic neuropathic pain through DRG stimulation (DRGS). MATERIALS AND METHODS: We examined nine patients (two women, mean age 56.8 years; range, 36-77 years) diagnosed with chronic neuropathic pain who underwent DRGS therapy. We used the numeric rating scale (NRS) on the painful limb and simultaneously recorded the electroencephalography to assess the broadband γ power. Assessments were conducted on the first day and on the seventh day after implantation of the DRGS system and then compared and correlated with the results of the NRS. RESULTS: The NRS scores showed a significant decrease from the first day to the seventh day (p = 0.007). The resting-state γ power revealed a significant decrease (p = 0.021) between 30 and 45 Hz, recorded through the central electrode contralateral to the painful limb from the first day (mean [M] = 0.46, SD = 0.25) to the seventh day (M = 0.31, SD = 0.12) after DRGS. There was no significant change in the resting-state γ-band power recorded through the central electrode ipsilateral to the painful limb. However, we found a positive correlation in the γ-band power (rs = 0.628, p = 0.005) with the NRS rating. CONCLUSIONS: A lateralized decrease in broadband γ power may be considered further evidence supporting a reduction in the hyperexcitability of the nociceptive system in response to DRGS therapy. In the future, γ-band power could serve as a biomarker for assessing the efficacy of DRGS during the seven-day test phase preceding the implantation of the DRGS system.


Assuntos
Dor Crônica , Gânglios Espinais , Neuralgia , Humanos , Pessoa de Meia-Idade , Feminino , Neuralgia/terapia , Neuralgia/fisiopatologia , Masculino , Adulto , Idoso , Gânglios Espinais/fisiologia , Gânglios Espinais/fisiopatologia , Dor Crônica/terapia , Dor Crônica/fisiopatologia , Medição da Dor/métodos , Ritmo Gama/fisiologia , Eletroencefalografia/métodos , Córtex Cerebral/fisiopatologia , Córtex Cerebral/fisiologia , Resultado do Tratamento
4.
J Neurosci ; 42(22): 4470-4487, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35477903

RESUMO

The cortico-basal ganglia circuit is needed to suppress prepotent actions and to facilitate controlled behavior. Under conditions of response conflict, the frontal cortex and subthalamic nucleus (STN) exhibit increased spiking and theta band power, which are linked to adaptive regulation of behavioral output. The electrophysiological mechanisms underlying these neural signatures of impulse control remain poorly understood. To address this lacuna, we constructed a novel large-scale, biophysically principled model of the subthalamopallidal (STN-globus pallidus externus) network and examined the mechanisms that modulate theta power and spiking in response to cortical input. Simulations confirmed that theta power does not emerge from intrinsic network dynamics but is robustly elicited in response to cortical input as burst events representing action selection dynamics. Rhythmic burst events of multiple cortical populations, representing a state of conflict where cortical motor plans vacillate in the theta range, led to prolonged STN theta and increased spiking, consistent with empirical literature. Notably, theta band signaling required NMDA, but not AMPA, currents, which were in turn related to a triphasic STN response characterized by spiking, silence, and bursting periods. Finally, theta band resonance was also strongly modulated by architectural connectivity, with maximal theta arising when multiple cortical populations project to individual STN "conflict detector" units because of an NMDA-dependent supralinear response. Our results provide insights into the biophysical principles and architectural constraints that give rise to STN dynamics during response conflict, and how their disruption can lead to impulsivity and compulsivity.SIGNIFICANCE STATEMENT The subthalamic nucleus exhibits theta band power modulation related to cognitive control over motor actions during conditions of response conflict. However, the mechanisms of such dynamics are not understood. Here we developed a novel biophysically detailed and data-constrained large-scale model of the subthalamopallidal network, and examined the impacts of cellular and network architectural properties that give rise to theta dynamics. Our investigations implicate an important role for NMDA receptors and cortico-subthalamic nucleus topographical connectivities in theta power modulation.


Assuntos
Córtex Motor , Núcleo Subtalâmico , Gânglios da Base , Globo Pálido , Córtex Motor/fisiologia , N-Metilaspartato , Núcleo Subtalâmico/fisiologia
5.
Neuroimage ; 264: 119749, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36379420

RESUMO

PET and fMRI studies suggest that auditory narrative comprehension is supported by a bilateral multilobar cortical network. The superior temporal resolution of magnetoencephalography (MEG) makes it an attractive tool to investigate the dynamics of how different neuroanatomic substrates engage during narrative comprehension. Using beta-band power changes as a marker of cortical engagement, we studied MEG responses during an auditory story comprehension task in 31 healthy adults. The protocol consisted of two runs, each interleaving 7 blocks of the story comprehension task with 15 blocks of an auditorily presented math task as a control for phonological processing, working memory, and attention processes. Sources at the cortical surface were estimated with a frequency-resolved beamformer. Beta-band power was estimated in the frequency range of 16-24 Hz over 1-sec epochs starting from 400 msec after stimulus onset until the end of a story or math problem presentation. These power estimates were compared to 1-second epochs of data before the stimulus block onset. The task-related cortical engagement was inferred from beta-band power decrements. Group-level source activations were statistically compared using non-parametric permutation testing. A story-math contrast of beta-band power changes showed greater bilateral cortical engagement within the fusiform gyrus, inferior and middle temporal gyri, parahippocampal gyrus, and left inferior frontal gyrus (IFG) during story comprehension. A math-story contrast of beta power decrements showed greater bilateral but left-lateralized engagement of the middle frontal gyrus and superior parietal lobule. The evolution of cortical engagement during five temporal windows across the presentation of stories showed significant involvement during the first interval of the narrative of bilateral opercular and insular regions as well as the ventral and lateral temporal cortex, extending more posteriorly on the left and medially on the right. Over time, there continued to be sustained right anterior ventral temporal engagement, with increasing involvement of the right anterior parahippocampal gyrus, STG, MTG, posterior superior temporal sulcus, inferior parietal lobule, frontal operculum, and insula, while left hemisphere engagement decreased. Our findings are consistent with prior imaging studies of narrative comprehension, but in addition, they demonstrate increasing right-lateralized engagement over the course of narratives, suggesting an important role for these right-hemispheric regions in semantic integration as well as social and pragmatic inference processing.


Assuntos
Mapeamento Encefálico , Compreensão , Adulto , Humanos , Mapeamento Encefálico/métodos , Compreensão/fisiologia , Magnetoencefalografia , Imageamento por Ressonância Magnética , Lobo Temporal
6.
Hum Brain Mapp ; 43(8): 2460-2477, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35119173

RESUMO

Epilepsy is recognised as a dynamic disease, where both seizure susceptibility and seizure characteristics themselves change over time. Specifically, we recently quantified the variable electrographic spatio-temporal seizure evolutions that exist within individual patients. This variability appears to follow subject-specific circadian, or longer, timescale modulations. It is therefore important to know whether continuously recorded interictaliEEG features can capture signatures of these modulations over different timescales. In this study, we analyse continuous intracranial electroencephalographic (iEEG) recordings from video-telemetry units and find fluctuations in iEEG band power over timescales ranging from minutes up to 12 days. As expected and in agreement with previous studies, we find that all subjects show a circadian fluctuation in their iEEG band power. We additionally detect other fluctuations of similar magnitude on subject-specific timescales. Importantly, we find that a combination of these fluctuations on different timescales can explain changes in seizure evolutions in most subjects above chance level. These results suggest that subject-specific fluctuations in iEEG band power over timescales of minutes to days may serve as markers of seizure modulating processes. We hope that future study can link these detected fluctuations to their biological driver(s). There is a critical need to better understand seizure modulating processes, as this will enable the development of novel treatment strategies that could minimise the seizure spread, duration or severity and therefore the clinical impact of seizures.


Assuntos
Eletroencefalografia , Epilepsia , Eletrocorticografia/métodos , Eletroencefalografia/métodos , Humanos , Probabilidade , Convulsões/diagnóstico
7.
Neurobiol Dis ; 154: 105348, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33781923

RESUMO

The availability of enticing sweet, fatty tastes is prevalent in the modern diet and contribute to overeating and obesity. In animal models, the subthalamic area plays a role in mediating appetitive and consummatory feeding behaviors, however, its role in human feeding is unknown. We used intraoperative, subthalamic field potential recordings while participants (n = 5) engaged in a task designed to provoke responses of taste anticipation and receipt. Decreased subthalamic beta-band (15-30 Hz) power responses were observed for both sweet-fat and neutral tastes. Anticipatory responses to taste-neutral cues started with an immediate decrease in beta-band power from baseline followed by an early beta-band rebound above baseline. On the contrary, anticipatory responses to sweet-fat were characterized by a greater and sustained decrease in beta-band power. These activity patterns were topographically specific to the subthalamic nucleus and substantia nigra. Further, a neural network trained on this beta-band power signal accurately predicted (AUC ≥ 74%) single trials corresponding to either taste. Finally, the magnitude of the beta-band rebound for a neutral taste was associated with increased body mass index after starting deep brain stimulation therapy. We provide preliminary evidence of discriminatory taste encoding within the subthalamic area associated with control mechanisms that mediate appetitive and consummatory behaviors.


Assuntos
Antecipação Psicológica/fisiologia , Ritmo beta/fisiologia , Doença de Parkinson/psicologia , Núcleo Subtalâmico/fisiologia , Percepção Gustatória/fisiologia , Aumento de Peso/fisiologia , Idoso , Sinais (Psicologia) , Estimulação Encefálica Profunda/métodos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Doença de Parkinson/terapia , Estimulação Luminosa/métodos , Paladar/fisiologia
8.
BMC Musculoskelet Disord ; 22(1): 946, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34781957

RESUMO

BACKGROUND: Intra-articular injection in the dry knee joint is technically challenging particularly for the beginners. The aim of this study was to investigate the possible use of the vibration sensor to detect if the needle tip was at the knee intra-articular position by characterizing the frequency component of the vibration signal during empty syringe air injection. METHODS: Two milliliters of air were injected supero-laterally at extra- and intra-articular positions of a cadaveric knee joint, using needles of size 18, 21 and 24 gauge (G). Ultrasonography was used to confirm the positions of needle tip. A piezoelectric accelerometer was mounted medially on the knee joint to collect the vibration signals which were analyzed to characterize the frequency components of the signals during injections. RESULTS: The vibration frequency band power in the range of 500-1500 Hz was visually observed to potentially localize the needle tip placement during air injection whether they were at the knee extra-articular or intra-articular positions, as demonstrated by the higher band power (over - 40 dB or dB) for all the needle sizes. The differences of frequency band power between extra- and intra-articular positions were 18.1 dB, 26.4 dB and 39.2 dB for the needle size 18G, 21G and 24G respectively. The largest difference in spectral power was found in the smallest needle diameter (24G). CONCLUSIONS: A vibration sensor approach was preliminarily proved to distinguish the intra-articular from extra-articular needle placement in the knee joint. This study demonstrated a possible implementation of an alternative electronic device based on this technique to detect the intra-articular knee injection.


Assuntos
Articulação do Joelho , Vibração , Humanos , Injeções Intra-Articulares , Articulação do Joelho/diagnóstico por imagem , Modalidades de Fisioterapia , Estudo de Prova de Conceito
9.
Sensors (Basel) ; 20(9)2020 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-32354161

RESUMO

Analysis of electroencephalogram (EEG) signals is essential because it is an efficient method to diagnose neurological brain disorders. In this work, a single system is developed to diagnose one or two neurological diseases at the same time (two-class mode and three-class mode). For this purpose, different EEG feature-extraction and classification techniques are investigated to aid in the accurate diagnosis of neurological brain disorders: epilepsy and autism spectrum disorder (ASD). Two different modes, single-channel and multi-channel, of EEG signals are analyzed for epilepsy and ASD. The independent components analysis (ICA) technique is used to remove the artifacts from EEG dataset. Then, the EEG dataset is segmented and filtered to remove noise and interference using an elliptic band-pass filter. Next, the EEG signal features are extracted from the filtered signal using a discrete wavelet transform (DWT) to decompose the filtered signal to its sub-bands delta, theta, alpha, beta and gamma. Subsequently, five statistical methods are used to extract features from the EEG sub-bands: the logarithmic band power (LBP), standard deviation, variance, kurtosis, and Shannon entropy (SE). Further, the features are fed into four different classifiers, linear discriminant analysis (LDA), support vector machine (SVM), k-nearest neighbor (KNN), and artificial neural networks (ANNs), to classify the features corresponding to their classes. The combination of DWT with SE and LBP produces the highest accuracy among all the classifiers. The overall classification accuracy approaches 99.9% using SVM and 97% using ANN for the three-class single-channel and multi-channel modes, respectively.


Assuntos
Eletroencefalografia/métodos , Análise de Ondaletas , Análise Discriminante , Entropia , Humanos , Redes Neurais de Computação , Máquina de Vetores de Suporte
10.
J Neurophysiol ; 122(5): 2156-2172, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31553682

RESUMO

Whereas numerous motor control theories describe the control of arm trajectory during reach, the control of stabilization in a constant arm position (i.e., visuomotor control of arm posture) is less clear. Three potential mechanisms have been proposed for visuomotor control of arm posture: 1) increased impedance of the arm through co-contraction of antagonistic muscles, 2) corrective muscle activity via spinal/supraspinal reflex circuits, and/or 3) intermittent voluntary corrections to errors in position. We examined the cortical mechanisms of visuomotor control of arm posture and tested the hypothesis that cortical error networks contribute to arm stabilization. We collected electroencephalography (EEG) data from 10 young healthy participants across four experimental planar movement tasks. We examined brain activity associated with intermittent voluntary corrections of position error and antagonist co-contraction during stabilization. EEG beta-band (13-26 Hz) power fluctuations were used as indicators of brain activity, and coherence between EEG electrodes was used as a measure of functional connectivity between brain regions. Cortical activity in the sensory, motor, and visual areas during arm stabilization was similar to activity during volitional arm movements and was larger than activity during co-contraction of the arm. However, cortical connectivity between the sensorimotor and visual regions was higher during arm stabilization compared with volitional arm movements and co-contraction of the arm. The difference in cortical activity and connectivity between tasks might be attributed to an underlying visuomotor error network used to update motor commands for visuomotor control of arm posture.NEW & NOTEWORTHY We examined cortical activity and connectivity during control of stabilization in a constant arm position (i.e., visuomotor control of arm posture). Our findings provide evidence for cortical involvement during control of stabilization in a constant arm position. A visuomotor error network appears to be active and may update motor commands for visuomotor control of arm posture.


Assuntos
Braço/fisiologia , Desempenho Psicomotor , Córtex Sensório-Motor/fisiologia , Adulto , Ritmo beta , Feminino , Humanos , Masculino , Contração Muscular , Músculo Esquelético/fisiologia
11.
Bioelectromagnetics ; 40(5): 291-318, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31215052

RESUMO

The results of studies on possible effects of radiofrequency electromagnetic fields (RF-EMFs) on human waking electroencephalography (EEG) have been quite heterogeneous. In the majority of studies, changes in the alpha-frequency range in subjects who were exposed to different signals of mobile phone-related EMF sources were observed, whereas other studies did not report any effects. In this review, possible reasons for these inconsistencies are presented and recommendations for future waking EEG studies are made. The physiological basis of underlying brain activity, and the technical requirements and framework conditions for conducting and analyzing the human resting-state EEG are discussed. Peer-reviewed articles on possible effects of EMF on waking EEG were evaluated with regard to non-exposure-related confounding factors. Recommendations derived from international guidelines on the analysis and reporting of findings are proposed to achieve comparability in future studies. In total, 22 peer-reviewed studies on possible RF-EMF effects on human resting-state EEG were analyzed. EEG power in the alpha frequency range was reported to be increased in 10, decreased in four, and not affected in eight studies. All reviewed studies differ in several ways in terms of the methodologies applied, which might contribute to different results and conclusions about the impact of EMF on human resting-state EEG. A discussion of various study protocols and different outcome parameters prevents a scientifically sound statement on the impact of RF-EMF on human brain activity in resting-state EEG. Further studies which apply comparable, standardized study protocols are recommended. Bioelectromagnetics. 2019;40:291-318. © 2019 The Authors. Bioelectromagnetics Published by Wiley Periodicals, Inc.


Assuntos
Eletroencefalografia , Campos Eletromagnéticos/efeitos adversos , Exposição à Radiação/efeitos adversos , Encéfalo/fisiologia , Telefone Celular , Feminino , Humanos , Masculino , Ondas de Rádio/efeitos adversos
12.
Neuroimage ; 128: 293-301, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26780574

RESUMO

While previous research has established that language-specific knowledge influences early auditory processing, it is still controversial as to what aspects of speech sound representations determine early speech perception. Here, we propose that early processing primarily depends on information propagated top-down from abstractly represented speech sound categories. In particular, we assume that mid-vowels (as in 'bet') exert less top-down effects than the high-vowels (as in 'bit') because of their less specific (default) tongue height position as compared to either high- or low-vowels (as in 'bat'). We tested this assumption in a magnetoencephalography (MEG) study where we contrasted mid- and high-vowels, as well as the low- and high-vowels in a passive oddball paradigm. Overall, significant differences between deviants and standards indexed reliable mismatch negativity (MMN) responses between 200 and 300ms post-stimulus onset. MMN amplitudes differed in the mid/high-vowel contrasts and were significantly reduced when a mid-vowel standard was followed by a high-vowel deviant, extending previous findings. Furthermore, mid-vowel standards showed reduced oscillatory power in the pre-stimulus beta-frequency band (18-26Hz), compared to high-vowel standards. We take this as converging evidence for linguistic category structure to exert top-down influences on auditory processing. The findings are interpreted within the linguistic model of underspecification and the neuropsychological predictive coding framework.


Assuntos
Encéfalo/fisiologia , Linguística , Percepção da Fala/fisiologia , Estimulação Acústica , Potenciais Evocados Auditivos/fisiologia , Feminino , Humanos , Magnetoencefalografia , Masculino , Processamento de Sinais Assistido por Computador , Adulto Jovem
13.
Neuroimage ; 114: 88-104, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-25862265

RESUMO

Meditation training has been shown to enhance attention and improve emotion regulation. However, the brain processes associated with such training are poorly understood and a computational modeling framework is lacking. Modeling approaches that can realistically simulate neurophysiological data while conforming to basic anatomical and physiological constraints can provide a unique opportunity to generate concrete and testable hypotheses about the mechanisms supporting complex cognitive tasks such as meditation. Here we applied the mean-field computational modeling approach using the scalp-recorded electroencephalogram (EEG) collected at three assessment points from meditating participants during two separate 3-month-long shamatha meditation retreats. We modeled cortical, corticothalamic, and intrathalamic interactions to generate a simulation of EEG signals recorded across the scalp. We also present two novel extensions to the mean-field approach that allow for: (a) non-parametric analysis of changes in model parameter values across all channels and assessments; and (b) examination of variation in modeled thalamic reticular nucleus (TRN) connectivity over the retreat period. After successfully fitting whole-brain EEG data across three assessment points within each retreat, two model parameters were found to replicably change across both meditation retreats. First, after training, we observed an increased temporal delay between modeled cortical and thalamic cells. This increase provides a putative neural mechanism for a previously observed reduction in individual alpha frequency in these same participants. Second, we found decreased inhibitory connection strength between the TRN and secondary relay nuclei (SRN) of the modeled thalamus after training. This reduction in inhibitory strength was found to be associated with increased dynamical stability of the model. Altogether, this paper presents the first computational approach, taking core aspects of physiology and anatomy into account, to formally model brain processes associated with intensive meditation training. The observed changes in model parameters inform theoretical accounts of attention training through meditation, and may motivate future study on the use of meditation in a variety of clinical populations.


Assuntos
Córtex Cerebral/fisiologia , Eletroencefalografia/métodos , Meditação , Modelos Neurológicos , Tálamo/fisiologia , Adulto , Ritmo alfa , Ritmo beta , Simulação por Computador , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Vias Neurais/fisiologia
14.
J Neurophysiol ; 113(7): 2342-50, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25568160

RESUMO

The McGurk illusion is a prominent example of audiovisual speech perception and the influence that visual stimuli can have on auditory perception. In this illusion, a visual speech stimulus influences the perception of an incongruent auditory stimulus, resulting in a fused novel percept. In this high-density electroencephalography (EEG) study, we were interested in the neural signatures of the subjective percept of the McGurk illusion as a phenomenon of speech-specific multisensory integration. Therefore, we examined the role of cortical oscillations and event-related responses in the perception of congruent and incongruent audiovisual speech. We compared the cortical activity elicited by objectively congruent syllables with incongruent audiovisual stimuli. Importantly, the latter elicited a subjectively congruent percept: the McGurk illusion. We found that early event-related responses (N1) to audiovisual stimuli were reduced during the perception of the McGurk illusion compared with congruent stimuli. Most interestingly, our study showed a stronger poststimulus suppression of beta-band power (13-30 Hz) at short (0-500 ms) and long (500-800 ms) latencies during the perception of the McGurk illusion compared with congruent stimuli. Our study demonstrates that auditory perception is influenced by visual context and that the subsequent formation of a McGurk illusion requires stronger audiovisual integration even at early processing stages. Our results provide evidence that beta-band suppression at early stages reflects stronger stimulus processing in the McGurk illusion. Moreover, stronger late beta-band suppression in McGurk illusion indicates the resolution of incongruent physical audiovisual input and the formation of a coherent, illusory multisensory percept.


Assuntos
Percepção Auditiva/fisiologia , Ritmo beta/fisiologia , Córtex Cerebral/fisiologia , Ilusões/fisiologia , Percepção da Fala/fisiologia , Percepção Visual/fisiologia , Adolescente , Adulto , Potenciais Evocados Auditivos/fisiologia , Potenciais Evocados Visuais/fisiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Rede Nervosa/fisiologia , Adulto Jovem
15.
Appetite ; 85: 126-37, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25464021

RESUMO

Heightened food cue-reactivity in overweight and obese individuals has been related to aberrant functioning of neural circuitry implicated in motivational behaviours and reward-seeking. Here we explore the neurophysiology of visual food cue-reactivity in overweight and obese women, as compared with normal weight women, by assessing differences in cortical arousal and attentional processing elicited by food and neutral image inserts in a Stroop task with record of EEG spectral band power and ERP responses. Results show excess right frontal (F8) and left central (C3) relative beta band activity in overweight women during food task performance (indicative of pronounced early visual cue-reactivity) and blunted prefrontal (Fp1 and Fp2) theta band activity in obese women during office task performance (suggestive of executive dysfunction). Moreover, as compared to normal weight women, food images elicited greater right parietal (P4) ERP P200 amplitude in overweight women (denoting pronounced early attentional processing) and shorter right parietal (P4) ERP P300 latency in obese women (signifying enhanced and efficient maintained attentional processing). Differential measures of cortical arousal and attentional processing showed significant correlations with self-reported eating behaviour and body shape dissatisfaction, as well as with objectively assessed percent fat mass. The findings of the present study suggest that heightened food cue-reactivity can be neurophysiologically measured, that different neural circuits are implicated in the pathogenesis of overweight and obesity, and that EEG techniques may serve useful in the identification of endophenotypic markers associated with an increased risk of externally mediated food consumption.


Assuntos
Sinais (Psicologia) , Potenciais Evocados/fisiologia , Comportamento Alimentar/fisiologia , Obesidade/fisiopatologia , Sobrepeso/fisiopatologia , Adiposidade , Adulto , Nível de Alerta/fisiologia , Atenção/fisiologia , Imagem Corporal , Índice de Massa Corporal , Eletroencefalografia , Feminino , Lobo Frontal/fisiologia , Voluntários Saudáveis , Humanos , Motivação/fisiologia , Projetos Piloto , Inquéritos e Questionários
16.
Brain Inj ; 29(3): 352-65, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25415539

RESUMO

PURPOSE: To quantify visual attention objectively using the visual-evoked potential (VEP) in those having mild traumatic brain injury (mTBI) with and without a self-reported attentional deficit. RESEARCH DESIGN AND METHODS: Subjects were comprised of 16 adults with mTBI: 11 with an attentional deficit and five without. Three test conditions were used to assess the visual attentional state to quantify objectively the VEP alpha band attenuation ratio (AR) related to attention: (1) pattern VEP; (2) eyes-closed; and (3) eyes-closed number counting. The AR was calculated for both the individual and combined alpha frequencies (8-13 Hz). The objective results were compared to two subjective tests of visual and general attention (i.e. the VSAT and ASRS, respectively). RESULTS: The AR for both the individual and combined alpha frequencies was found to be abnormal in those with mTBI having an attentional deficit. In contrast, the AR was normal in those with mTBI but without an attentional deficit. The AR correlated with the ASRS, but not with the VSAT, test scores. CONCLUSIONS: The objective and subjective tests were able to differentiate between those having mTBI with and without an attentional deficit. The proposed VEP protocol can be used in the clinic to detect and assess objectively and reliably a visual attentional deficit in the mTBI population.


Assuntos
Atenção , Lesões Encefálicas/fisiopatologia , Potenciais Evocados Visuais , Exame Neurológico/métodos , Transtornos da Visão/fisiopatologia , Lesões Encefálicas/complicações , Feminino , Humanos , Masculino , Transtornos da Visão/diagnóstico , Transtornos da Visão/etiologia , Acuidade Visual , Campos Visuais
17.
Brain Inj ; 28(7): 922-9, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24564831

RESUMO

PRIMARY OBJECTIVE: The purpose of the experiment was to investigate the effect of oculomotor vision rehabilitation (OVR) on the visual-evoked potential (VEP) and visual attention in the mTBI population. RESEARCH DESIGN AND METHODS: Subjects (n = 7) were adults with a history of mild traumatic brain injury (mTBI). Each received 9 hours of OVR over a 6-week period. The effects of OVR on VEP amplitude and latency, the attention-related alpha band (8-13 Hz) power (µV(2)) and the clinical Visual Search and Attention Test (VSAT) were assessed before and after the OVR. RESULTS: After the OVR, the VEP amplitude increased and its variability decreased. There was no change in VEP latency, which was normal. Alpha band power increased, as did the VSAT score, following the OVR. CONCLUSIONS: The significant changes in most test parameters suggest that OVR affects the visual system at early visuo-cortical levels, as well as other pathways which are involved in visual attention.


Assuntos
Lesões Encefálicas/fisiopatologia , Potenciais Evocados Visuais , Transtornos da Motilidade Ocular/fisiopatologia , Transtornos da Visão/fisiopatologia , Vias Visuais/fisiopatologia , Adulto , Lesões Encefálicas/complicações , Lesões Encefálicas/reabilitação , Movimentos Oculares , Feminino , Escala de Resultado de Glasgow , Humanos , Masculino , Transtornos da Motilidade Ocular/etiologia , Transtornos da Motilidade Ocular/reabilitação , Resultado do Tratamento , Transtornos da Visão/etiologia , Transtornos da Visão/reabilitação , Acuidade Visual , Vias Visuais/lesões
18.
Front Psychol ; 15: 1344989, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38515964

RESUMO

Background: College students, undergoing crucial cognitive development, face challenges during the COVID-19 pandemic that impact their executive functions. While existing research indicates positive effects of Tai Chi (TC) on college students' cognitive abilities, there is a scarcity of studies investigating its impact on executive functions and frontal brain activity. Objective: This study aimed to compare the effects of 24-form simplified TC training on college students' executive functions and frontal brain electrical activity. The hypothesis posited that the TC group would exhibit superior performance compared to the control group during COVID-19 pandemic. Method: Seventy college students were randomly assigned to either TC group or control group, engaging in 36 sessions (3 sessions per week, 45 min each) over 12 weeks. Executive inhibitory control was assessed using the Stroop Color and Word Test, and resting brain electrical activity in the frontal area was recorded through Electroencephalography. Result: ACC was influenced by group, group-time interaction, and Stroop task-time interaction. RT was affected by time, task condition, task condition-time interaction, and task condition-group interaction. Notably, the TC group showed improved ACC (from 96.54 ± 3.27% to 98.90 ± 1.32%) and decreased RT (from 0.73 ± 0.12 to 0.66 ± 0.07 s), particularly in the inconsistent task. Regarding EEG band power, significant Group and Time interaction effects were found in F3-θ, F3-α, F3-ß, F4-θ, and F4-α. Moreover, within the TC group, significant increases in F3-θ band power (from 4.66 ± 3.55 to 7.71 ± 8.44) and F4-θ band power (from 4.41 ± 2.82 to 8.61 ± 9.51) (10-3·µV·Hz) were noted pre-and post-tests. In the control group, significant decreases were observed in F3-α band power (from 5.18 ± 4.61 to 2.79 ± 2.11) and F4-α band power (from 5.57 ± 6.58 to 2.48 ± 1.95) (10-3·µV·Hz). Conclusion: The pandemic-induced panic may impact frontal lobe brain activity in college students. TC training not only improves executive inhibitory control but may also enhance localized brain activity, suggesting its potential as a holistic intervention for cognitive and neurological well-being during stressful periods.

19.
Pharmaceuticals (Basel) ; 17(2)2024 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-38399452

RESUMO

Sex- and age-related differences in symptom prevalence and severity have been widely reported in patients with schizophrenia, yet the underlying mechanisms contributing to these differences are not well understood. N-methyl-D-aspartate (NMDA) receptor hypofunction contributes to schizophrenia pathology, and preclinical models often use NMDA receptor antagonists, including MK-801, to model all symptom clusters. Quantitative electroencephalography (qEEG) represents a translational approach to measure neuronal activity, identify targetable biomarkers in neuropsychiatric disorders and evaluate possible treatments. Abnormalities in gamma power have been reported in patients with schizophrenia and correspond to psychosis and cognitive impairment. Further, as gamma power reflects cortical glutamate and GABA signaling, it is highly sensitive to changes in NMDA receptor function, and NMDA receptor antagonists aberrantly increase gamma power in rodents and humans. To evaluate the role of sex and age on NMDA receptor function, MK-801 (0.03-0.3 mg/kg, SC) was administered to 3- and 9-month-old male and female Sprague-Dawley rats that were implanted with wireless EEG transmitters to measure cortical brain function. MK-801-induced elevations in gamma power were observed in 3-month-old male and female and 9-month-old male rats. In contrast, 9-month-old female rats demonstrated blunted maximal elevations across a wide dose range. Importantly, MK-801-induced hyperlocomotor effects, a common behavioral screen used to examine antipsychotic-like activity, were similar across all groups. Overall, sex-by-age-related differences in gamma power support using qEEG as a translational tool to evaluate pathological progression and predict treatment response across a heterogeneous population.

20.
J Neural Eng ; 21(4)2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38959877

RESUMO

Objective. Traditionally known for its involvement in emotional processing, the amygdala's involvement in motor control remains relatively unexplored, with sparse investigations into the neural mechanisms governing amygdaloid motor movement and inhibition. This study aimed to characterize the amygdaloid beta-band (13-30 Hz) power between 'Go' and 'No-go' trials of an arm-reaching task.Approach. Ten participants with drug-resistant epilepsy implanted with stereoelectroencephalographic (SEEG) electrodes in the amygdala were enrolled in this study. SEEG data was recorded throughout discrete phases of a direct reach Go/No-go task, during which participants reached a touchscreen monitor or withheld movement based on a colored cue. Multitaper power analysis along with Wilcoxon signed-rank and Yates-correctedZtests were used to assess significant modulations of beta power between the Response and fixation (baseline) phases in the 'Go' and 'No-go' conditions.Main results. In the 'Go' condition, nine out of the ten participants showed a significant decrease in relative beta-band power during the Response phase (p⩽ 0.0499). In the 'No-go' condition, eight out of the ten participants presented a statistically significant increase in relative beta-band power during the response phase (p⩽ 0.0494). Four out of the eight participants with electrodes in the contralateral hemisphere and seven out of the eight participants with electrodes in the ipsilateral hemisphere presented significant modulation in beta-band power in both the 'Go' and 'No-go' conditions. At the group level, no significant differences were found between the contralateral and ipsilateral sides or between genders.Significance.This study reports beta-band power modulation in the human amygdala during voluntary movement in the setting of motor execution and inhibition. This finding supplements prior research in various brain regions associating beta-band power with motor control. The distinct beta-power modulation observed between these response conditions suggests involvement of amygdaloid oscillations in differentiating between motor inhibition and execution.


Assuntos
Tonsila do Cerebelo , Braço , Ritmo beta , Desempenho Psicomotor , Humanos , Tonsila do Cerebelo/fisiologia , Masculino , Feminino , Adulto , Ritmo beta/fisiologia , Desempenho Psicomotor/fisiologia , Braço/fisiologia , Adulto Jovem , Movimento/fisiologia , Pessoa de Meia-Idade , Epilepsia Resistente a Medicamentos/fisiopatologia , Eletroencefalografia/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA