Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Methods ; 224: 1-9, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38295891

RESUMO

The Major Histocompatibility Complex (MHC) is a critical element of the vertebrate cellular immune system, responsible for presenting peptides derived from intracellular proteins. MHC-I presentation is pivotal in the immune response and holds considerable potential in the realms of vaccine development and cancer immunotherapy. This study delves into the limitations of current methods and benchmarks for MHC-I presentation. We introduce a novel benchmark designed to assess generalization properties and the reliability of models on unseen MHC molecules and peptides, with a focus on the Human Leukocyte Antigen (HLA)-a specific subset of MHC genes present in humans. Finally, we introduce HLABERT, a pretrained language model that outperforms previous methods significantly on our benchmark and establishes a new state-of-the-art on existing benchmarks.


Assuntos
Peptídeos , Proteínas , Humanos , Reprodutibilidade dos Testes , Peptídeos/química , Proteínas/metabolismo , Complexo Principal de Histocompatibilidade/genética , Ligação Proteica
2.
Regul Toxicol Pharmacol ; 137: 105287, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36372266

RESUMO

In the field of regulatory science, reviewing literature is an essential and important step, which most of the time is conducted by manually reading hundreds of articles. Although this process is highly time-consuming and labor-intensive, most output of this process is not well transformed into machine-readable format. The limited availability of data has largely constrained the artificial intelligence (AI) system development to facilitate this literature reviewing in the regulatory process. In the past decade, AI has revolutionized the area of text mining as many deep learning approaches have been developed to search, annotate, and classify relevant documents. After the great advancement of AI algorithms, a lack of high-quality data instead of the algorithms has recently become the bottleneck of AI system development. Herein, we constructed two large benchmark datasets, Chlorine Efficacy dataset (CHE) and Chlorine Safety dataset (CHS), under a regulatory scenario that sought to assess the antiseptic efficacy and toxicity of chlorine. For each dataset, ∼10,000 scientific articles were initially collected, manually reviewed, and their relevance to the review task were labeled. To ensure high data quality, each paper was labeled by a consensus among multiple experienced reviewers. The overall relevance rate was 27.21% (2,663 of 9,788) for CHE and 7.50% (761 of 10,153) for CHS, respectively. Furthermore, the relevant articles were categorized into five subgroups based on the focus of their content. Next, we developed an attention-based classification language model using these two datasets. The proposed classification model yielded 0.857 and 0.908 of Area Under the Curve (AUC) for CHE and CHS dataset, respectively. This performance was significantly better than permutation test (p < 10E-9), demonstrating that the labeling processes were valid. To conclude, our datasets can be used as benchmark to develop AI systems, which can further facilitate the literature review process in regulatory science.


Assuntos
Inteligência Artificial , Aprendizado de Máquina , Benchmarking , Análise de Sentimentos , Cloro , Mineração de Dados
3.
Sensors (Basel) ; 23(13)2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37447927

RESUMO

Small and medium-sized enterprises (SMEs) often encounter practical challenges and limitations when extracting valuable insights from the data of retrofitted or brownfield equipment. The existing literature fails to reflect the full reality and potential of data-driven analysis in current SME environments. In this paper, we provide an anonymized dataset obtained from two medium-sized companies leveraging a non-invasive and scalable data-collection procedure. The dataset comprises mainly power consumption machine data collected over a period of 7 months and 1 year from two medium-sized companies. Using this dataset, we demonstrate how machine learning (ML) techniques can enable SMEs to extract useful information even in the short term, even from a small variety of data types. We develop several ML models to address various tasks, such as power consumption forecasting, item classification, next machine state prediction, and item production count forecasting. By providing this anonymized dataset and showcasing its application through various ML use cases, our paper aims to provide practical insights for SMEs seeking to leverage ML techniques with their limited data resources. The findings contribute to a better understanding of how ML can be effectively utilized in extracting actionable insights from limited datasets, offering valuable implications for SMEs in practical settings.


Assuntos
Indústrias , Aprendizado de Máquina , Coleta de Dados
4.
Sensors (Basel) ; 23(7)2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-37050827

RESUMO

This paper discusses the importance of detecting breaking events in real time to help emergency response workers, and how social media can be used to process large amounts of data quickly. Most event detection techniques have focused on either images or text, but combining the two can improve performance. The authors present lessons learned from the Flood-related multimedia task in MediaEval2020, provide a dataset for reproducibility, and propose a new multimodal fusion method that uses Graph Neural Networks to combine image, text, and time information. Their method outperforms state-of-the-art approaches and can handle low-sample labelled data.

5.
Molecules ; 28(16)2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37630234

RESUMO

Ligand-based virtual screening (LBVS) is a promising approach for rapid and low-cost screening of potentially bioactive molecules in the early stage of drug discovery. Compared with traditional similarity-based machine learning methods, deep learning frameworks for LBVS can more effectively extract high-order molecule structure representations from molecular fingerprints or structures. However, the 3D conformation of a molecule largely influences its bioactivity and physical properties, and has rarely been considered in previous deep learning-based LBVS methods. Moreover, the relative bioactivity benchmark dataset is still lacking. To address these issues, we introduce a novel end-to-end deep learning architecture trained from molecular conformers for LBVS. We first extracted molecule conformers from multiple public molecular bioactivity data and consolidated them into a large-scale bioactivity benchmark dataset, which totally includes millions of endpoints and molecules corresponding to 954 targets. Then, we devised a deep learning-based LBVS called EquiVS to learn molecule representations from conformers for bioactivity prediction. Specifically, graph convolutional network (GCN) and equivariant graph neural network (EGNN) are sequentially stacked to learn high-order molecule-level and conformer-level representations, followed with attention-based deep multiple-instance learning (MIL) to aggregate these representations and then predict the potential bioactivity for the query molecule on a given target. We conducted various experiments to validate the data quality of our benchmark dataset, and confirmed EquiVS achieved better performance compared with 10 traditional machine learning or deep learning-based LBVS methods. Further ablation studies demonstrate the significant contribution of molecular conformation for bioactivity prediction, as well as the reasonability and non-redundancy of deep learning architecture in EquiVS. Finally, a model interpretation case study on CDK2 shows the potential of EquiVS in optimal conformer discovery. The overall study shows that our proposed benchmark dataset and EquiVS method have promising prospects in virtual screening applications.


Assuntos
Benchmarking , Confiabilidade dos Dados , Ligantes , Conformação Molecular , Redes Neurais de Computação
6.
Sensors (Basel) ; 22(6)2022 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-35336491

RESUMO

Wearing a safety helmet is important in construction and manufacturing industrial activities to avoid unpleasant situations. This safety compliance can be ensured by developing an automatic helmet detection system using various computer vision and deep learning approaches. Developing a deep-learning-based helmet detection model usually requires an enormous amount of training data. However, there are very few public safety helmet datasets available in the literature, in which most of them are not entirely labeled, and the labeled one contains fewer classes. This paper presents the Safety HELmet dataset with 5K images (SHEL5K) dataset, an enhanced version of the SHD dataset. The proposed dataset consists of six completely labeled classes (helmet, head, head with helmet, person with helmet, person without helmet, and face). The proposed dataset was tested on multiple state-of-the-art object detection models, i.e., YOLOv3 (YOLOv3, YOLOv3-tiny, and YOLOv3-SPP), YOLOv4 (YOLOv4 and YOLOv4pacsp-x-mish), YOLOv5-P5 (YOLOv5s, YOLOv5m, and YOLOv5x), the Faster Region-based Convolutional Neural Network (Faster-RCNN) with the Inception V2 architecture, and YOLOR. The experimental results from the various models on the proposed dataset were compared and showed improvement in the mean Average Precision (mAP). The SHEL5K dataset had an advantage over other safety helmet datasets as it contains fewer images with better labels and more classes, making helmet detection more accurate.


Assuntos
Benchmarking , Dispositivos de Proteção da Cabeça , Humanos , Redes Neurais de Computação
7.
Entropy (Basel) ; 24(9)2022 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-36141132

RESUMO

Evaluating mesh quality prior to performing the computational fluid dynamics (CFD) simulation is an essential step to ensure the acceptable accuracy of cylinder modelling. However, traditional mesh quality indicators are often insufficient since they only check geometric information on individual distorted elements. To yield more accurate results, the current evaluation process usually requires careful manual re-evaluation for quality properties such as mesh distribution and local refinement, which heavily increase the meshing overhead. In this paper, we introduce an efficient quality indicator for varisized cylinder meshes, consisting of a mesh pre-processing method and a neural network-based indicator, Mesh-Net. We also publish a cylinder mesh benchmark dataset. The proposed indicator is trained to study the role of CFD meshes on the accuracy of numerical simulations. It considers both the effect of element geometry (e.g., orthogonality) and quality properties (e.g., smoothness and distribution). Thereafter, the well-trained indicator is used as a black-box to predict the overall quality of the input mesh automatically. Experimental results demonstrate that the proposed indicator is accurate and can be applied in the mesh quality evaluation process without manual interactions.

8.
Sensors (Basel) ; 21(4)2021 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-33670325

RESUMO

Deep learning has achieved great success on robotic vision tasks. However, when compared with other vision-based tasks, it is difficult to collect a representative and sufficiently large training set for six-dimensional (6D) object pose estimation, due to the inherent difficulty of data collection. In this paper, we propose the RobotP dataset consisting of commonly used objects for benchmarking in 6D object pose estimation. To create the dataset, we apply a 3D reconstruction pipeline to produce high-quality depth images, ground truth poses, and 3D models for well-selected objects. Subsequently, based on the generated data, we produce object segmentation masks and two-dimensional (2D) bounding boxes automatically. To further enrich the data, we synthesize a large number of photo-realistic color-and-depth image pairs with ground truth 6D poses. Our dataset is freely distributed to research groups by the Shape Retrieval Challenge benchmark on 6D pose estimation. Based on our benchmark, different learning-based approaches are trained and tested by the unified dataset. The evaluation results indicate that there is considerable room for improvement in 6D object pose estimation, particularly for objects with dark colors, and photo-realistic images are helpful in increasing the performance of pose estimation algorithms.

9.
Curr Genomics ; 21(1): 11-25, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32655294

RESUMO

MicroRNAs, a group of short non-coding RNA molecules, could regulate gene expression. Many diseases are associated with abnormal expression of miRNAs. Therefore, accurate identification of miRNA precursors is necessary. In the past 10 years, experimental methods, comparative genomics methods, and artificial intelligence methods have been used to identify pre-miRNAs. However, experimental methods and comparative genomics methods have their disadvantages, such as time-consuming. In contrast, machine learning-based method is a better choice. Therefore, the review summarizes the current advances in pre-miRNA recognition based on computational methods, including the construction of benchmark datasets, feature extraction methods, prediction algorithms, and the results of the models. And we also provide valid information about the predictors currently available. Finally, we give the future perspectives on the identification of pre-miRNAs. The review provides scholars with a whole background of pre-miRNA identification by using machine learning methods, which can help researchers have a clear understanding of progress of the research in this field.

10.
Sensors (Basel) ; 18(11)2018 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-30384432

RESUMO

Electrical Capacitance Tomography (ECT) image reconstruction has developed for decades and made great achievements, but there is still a need to find a new theoretical framework to make it better and faster. In recent years, machine learning theory has been introduced in the ECT area to solve the image reconstruction problem. However, there is still no public benchmark dataset in the ECT field for the training and testing of machine learning-based image reconstruction algorithms. On the other hand, a public benchmark dataset can provide a standard framework to evaluate and compare the results of different image reconstruction methods. In this paper, a benchmark dataset for ECT image reconstruction is presented. Like the great contribution of ImageNet that transformed machine learning research, this benchmark dataset is hoped to be helpful for society to investigate new image reconstruction algorithms since the relationship between permittivity distribution and capacitance can be better mapped. In addition, different machine learning-based image reconstruction algorithms can be trained and tested by the unified dataset, and the results can be evaluated and compared under the same standard, thus, making the ECT image reconstruction study more open and causing a breakthrough.

11.
Sensors (Basel) ; 17(9)2017 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-28832511

RESUMO

Mobile gait analysis systems based on inertial sensing on the shoe are applied in a wide range of applications. Especially for medical applications, they can give new insights into motor impairment in, e.g., neurodegenerative disease and help objectify patient assessment. One key component in these systems is the reconstruction of the foot trajectories from inertial data. In literature, various methods for this task have been proposed. However, performance is evaluated on a variety of datasets due to the lack of large, generally accepted benchmark datasets. This hinders a fair comparison of methods. In this work, we implement three orientation estimation and three double integration schemes for use in a foot trajectory estimation pipeline. All methods are drawn from literature and evaluated against a marker-based motion capture reference. We provide a fair comparison on the same dataset consisting of 735 strides from 16 healthy subjects. As a result, the implemented methods are ranked and we identify the most suitable processing pipeline for foot trajectory estimation in the context of mobile gait analysis.


Assuntos
Marcha , Benchmarking , , Humanos
12.
Waste Manag ; 178: 35-45, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38377767

RESUMO

This study presents the Construction and Demolition Waste Object Detection Dataset (CODD), a benchmark dataset specifically curated for the training of object detection models and the full-scale implementation of automated sorting of Construction and Demolition Waste (CDW). The CODD encompasses a comprehensive range of CDW scenarios, capturing a diverse array of debris and waste materials frequently encountered in real-world construction and demolition sites. A noteworthy feature of the presented study is the ongoing collaborative nature of the dataset, which invites contributions from the scientific community, ensuring its perpetual improvement and adaptability to emerging research and practical requirements. Building upon the benchmark dataset, an advanced object detection model based on the latest bounding box and instance segmentation YOLOV8 architecture is developed to establish a baseline performance for future comparisons. The CODD benchmark dataset, along with the baseline model, provides a reliable reference for comprehensive comparisons and objective assessments of future models, contributing to progressive advancements and collaborative research in the field.


Assuntos
Indústria da Construção , Gerenciamento de Resíduos , Materiais de Construção , Reciclagem , Benchmarking , Resíduos Industriais/análise
13.
J Proteomics ; 281: 104905, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37059219

RESUMO

Lysine crotonylation (Kcr) is an evolutionarily conserved protein post-translational modifications, which plays an important role in cellular physiology and pathology, such as chromatin remodeling, gene transcription regulation, telomere maintenance, inflammation, and cancer. Tandem mass spectrometry (LC-MS/MS) has been used to identify the global Kcr profiling of human, at the same time, many computing methods have been developed to predict Kcr sites without high experiment cost. Deep learning network solves the problem of manual feature design and selection in traditional machine learning (NLP), especially the algorithms in natural language processing which treated peptides as sentences, thus can extract more in-depth information and obtain higher accuracy. In this work, we establish a Kcr prediction model named ATCLSTM-Kcr which use self-attention mechanism combined with NLP method to highlight the important features and further capture the internal correlation of the features, to realize the feature enhancement and noise reduction modules of the model. Independent tests have proved that ATCLSTM-Kcr has better accuracy and robustness than similar prediction tools. Then, we design pipeline to generate MS-based benchmark dataset to avoid the false negatives caused by MS-detectability and improve the sensitivity of Kcr prediction. Finally, we develop a Human Lysine Crotonylation Database (HLCD) which using ATCLSTM-Kcr and the two representative deep learning models to score all lysine sites of human proteome, and annotate all Kcr sites identified by MS of current published literatures. HLCD provides an integrated platform for human Kcr sites prediction and screening through multiple prediction scores and conditions, and can be accessed on the website:www.urimarker.com/HLCD/. SIGNIFICANCE: Lysine crotonylation (Kcr) plays an important role in cellular physiology and pathology, such as chromatin remodeling, gene transcription regulation and cancer. To better elucidate the molecular mechanisms of crotonylation and reduce the high experimental cost, we establish a deep learning Kcr prediction model and solve the problem of false negatives caused by the detectability of mass spectrometry (MS). Finally, we develop a Human Lysine Crotonylation Database to score all lysine sites of human proteome, and annotate all Kcr sites identified by MS of current published literatures. Our work provides a convenient platform for human Kcr sites prediction and screening through multiple prediction scores and conditions.


Assuntos
Lisina , Proteoma , Humanos , Lisina/metabolismo , Cromatografia Líquida , Proteoma/metabolismo , Espectrometria de Massas em Tandem , Peptídeos/metabolismo , Processamento de Proteína Pós-Traducional
14.
Front Plant Sci ; 14: 1084778, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36818836

RESUMO

The emergence timing of a plant, i.e., the time at which the plant is first visible from the surface of the soil, is an important phenotypic event and is an indicator of the successful establishment and growth of a plant. The paper introduces a novel deep-learning based model called EmergeNet with a customized loss function that adapts to plant growth for coleoptile (a rigid plant tissue that encloses the first leaves of a seedling) emergence timing detection. It can also track its growth from a time-lapse sequence of images with cluttered backgrounds and extreme variations in illumination. EmergeNet is a novel ensemble segmentation model that integrates three different but promising networks, namely, SEResNet, InceptionV3, and VGG19, in the encoder part of its base model, which is the UNet model. EmergeNet can correctly detect the coleoptile at its first emergence when it is tiny and therefore barely visible on the soil surface. The performance of EmergeNet is evaluated using a benchmark dataset called the University of Nebraska-Lincoln Maize Emergence Dataset (UNL-MED). It contains top-view time-lapse images of maize coleoptiles starting before the occurrence of their emergence and continuing until they are about one inch tall. EmergeNet detects the emergence timing with 100% accuracy compared with human-annotated ground-truth. Furthermore, it significantly outperforms UNet by generating very high-quality segmented masks of the coleoptiles in both natural light and dark environmental conditions.

15.
Complex Intell Systems ; 9(2): 1265-1280, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36035628

RESUMO

DNA sequence similarity analysis is necessary for enormous purposes including genome analysis, extracting biological information, finding the evolutionary relationship of species. There are two types of sequence analysis which are alignment-based (AB) and alignment-free (AF). AB is effective for small homologous sequences but becomes NP-hard problem for long sequences. However, AF algorithms can solve the major limitations of AB. But most of the existing AF methods show high time complexity and memory consumption, less precision, and less performance on benchmark datasets. To minimize these limitations, we develop an AF algorithm using a 2D k - m e r count matrix inspired by the CGR approach. Then we shrink the matrix by analyzing the neighbors and then measure similarities using the best combinations of pairwise distance (PD) and phylogenetic tree methods. We also dynamically choose the value of k for k - m e r . We develop an efficient system for finding the positions of k - m e r in the count matrix. We apply our system in six different datasets. We achieve the top rank for two benchmark datasets from AFproject, 100% accuracy for two datasets (16 S Ribosomal, 18 Eutherian), and achieve a milestone for time complexity and memory consumption in comparison to the existing study datasets (HEV, HIV-1). Therefore, the comparative results of the benchmark datasets and existing studies demonstrate that our method is highly effective, efficient, and accurate. Thus, our method can be used with the top level of authenticity for DNA sequence similarity measurement.

16.
Mol Inform ; 41(4): e2100063, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34787366

RESUMO

As an efficient way of computational target prediction, reverse docking can find not only potential targets but also binding modes for a query ligand. Though the number of available docking tools keeps expanding, there is still not a comprehensive evaluation study which can uncover the advantages and limitations of these strategies in the research field of computational target-fishing. In this study, we propose a brand-new evaluation dataset tailor-made for reverse docking, which is composed of a true positive set (the core set) and two negative sets (the similar decoy set and the dissimilar decoy set). The proposed evaluation dataset can assess the prediction performance of docking tools as various values affected by varying degrees of inter-target ranking bias. The performance of four classical docking programs (AutoDock, AutoDock Vina, Glide and GOLD) was evaluated utilizing our dataset, and a biased prediction performance was observed regarding binding site properties. The results demonstrated that Glide (SP) and Glide(XP) had the best capacity to find true targets whether there was inter-target ranking bias or not.


Assuntos
Benchmarking , Sítios de Ligação , Ligantes , Simulação de Acoplamento Molecular
17.
Med Image Anal ; 80: 102485, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35679692

RESUMO

Examination of pathological images is the golden standard for diagnosing and screening many kinds of cancers. Multiple datasets, benchmarks, and challenges have been released in recent years, resulting in significant improvements in computer-aided diagnosis (CAD) of related diseases. However, few existing works focus on the digestive system. We released two well-annotated benchmark datasets and organized challenges for the digestive-system pathological cell detection and tissue segmentation, in conjunction with the International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI). This paper first introduces the two released datasets, i.e., signet ring cell detection and colonoscopy tissue segmentation, with the descriptions of data collection, annotation, and potential uses. We also report the set-up, evaluation metrics, and top-performing methods and results of two challenge tasks for cell detection and tissue segmentation. In particular, the challenge received 234 effective submissions from 32 participating teams, where top-performing teams developed advancing approaches and tools for the CAD of digestive pathology. To the best of our knowledge, these are the first released publicly available datasets with corresponding challenges for the digestive-system pathological detection and segmentation. The related datasets and results provide new opportunities for the research and application of digestive pathology.


Assuntos
Benchmarking , Diagnóstico por Computador , Colonoscopia , Humanos , Processamento de Imagem Assistida por Computador/métodos
18.
J Neural Eng ; 18(5)2021 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-34596046

RESUMO

Objective.Deep learning (DL) networks are increasingly attracting attention across various fields, including electroencephalography (EEG) signal processing. These models provide comparable performance to that of traditional techniques. At present, however, there is a lack of well-structured and standardized datasets with specific benchmark limit the development of DL solutions for EEG denoising.Approach.Here, we present EEGdenoiseNet, a benchmark EEG dataset that is suited for training and testing DL-based denoising models, as well as for performance comparisons across models. EEGdenoiseNet contains 4514 clean EEG segments, 3400 ocular artifact segments and 5598 muscular artifact segments, allowing users to synthesize contaminated EEG segments with the ground-truth clean EEG.Main results.We used EEGdenoiseNet to evaluate denoising performance of four classical networks (a fully-connected network, a simple and a complex convolution network, and a recurrent neural network). Our results suggested that DL methods have great potential for EEG denoising even under high noise contamination.Significance.Through EEGdenoiseNet, we hope to accelerate the development of the emerging field of DL-based EEG denoising. The dataset and code are available athttps://github.com/ncclabsustech/EEGdenoiseNet.


Assuntos
Aprendizado Profundo , Benchmarking , Eletroencefalografia , Redes Neurais de Computação , Processamento de Sinais Assistido por Computador
19.
Data Brief ; 39: 107476, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34712753

RESUMO

We provide a database aimed at real-time quantitative analysis of 3D reconstruction and alignment methods, containing 3140 point clouds from 10 subjects/objects. These scenes are acquired with a high-resolution 3D scanner. It contains depth maps that produce point clouds with more than 500k points on average. This dataset is useful to develop new models and alignment strategies to automatically reconstruct 3D scenes from data acquired with optical scanners or benchmarking purposes.

20.
Front Plant Sci ; 11: 521431, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33362806

RESUMO

High throughput image-based plant phenotyping facilitates the extraction of morphological and biophysical traits of a large number of plants non-invasively in a relatively short time. It facilitates the computation of advanced phenotypes by considering the plant as a single object (holistic phenotypes) or its components, i.e., leaves and the stem (component phenotypes). The architectural complexity of plants increases over time due to variations in self-occlusions and phyllotaxy, i.e., arrangements of leaves around the stem. One of the central challenges to computing phenotypes from 2-dimensional (2D) single view images of plants, especially at the advanced vegetative stage in presence of self-occluding leaves, is that the information captured in 2D images is incomplete, and hence, the computed phenotypes are inaccurate. We introduce a novel algorithm to compute 3-dimensional (3D) plant phenotypes from multiview images using voxel-grid reconstruction of the plant (3DPhenoMV). The paper also presents a novel method to reliably detect and separate the individual leaves and the stem from the 3D voxel-grid of the plant using voxel overlapping consistency check and point cloud clustering techniques. To evaluate the performance of the proposed algorithm, we introduce the University of Nebraska-Lincoln 3D Plant Phenotyping Dataset (UNL-3DPPD). A generic taxonomy of 3D image-based plant phenotypes are also presented to promote 3D plant phenotyping research. A subset of these phenotypes are computed using computer vision algorithms with discussion of their significance in the context of plant science. The central contributions of the paper are (a) an algorithm for 3D voxel-grid reconstruction of maize plants at the advanced vegetative stages using images from multiple 2D views; (b) a generic taxonomy of 3D image-based plant phenotypes and a public benchmark dataset, i.e., UNL-3DPPD, to promote the development of 3D image-based plant phenotyping research; and (c) novel voxel overlapping consistency check and point cloud clustering techniques to detect and isolate individual leaves and stem of the maize plants to compute the component phenotypes. Detailed experimental analyses demonstrate the efficacy of the proposed method, and also show the potential of 3D phenotypes to explain the morphological characteristics of plants regulated by genetic and environmental interactions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA