RESUMO
Many indicators have been developed to assess the state of benthic communities and identify seabed habitats most at risk from bottom trawling disturbance. However, the large variety of indicators and their development and application under specific geographic areas and management contexts has made it difficult to evaluate their wider utility. We compared the complementarity/uniqueness, sensitivity, and selectivity of 18 benthic indicators to pressure of bottom trawling. Seventeen common datasets with broad regional representation covering a range of pressure gradients from bottom trawling disturbance (n = 14), eutrophication (n = 1), marine pollution (n = 1), and oxygen depletion (n = 1) were used for the comparison. The outcomes of most indicators were correlated to a certain extent with response to bottom trawling disturbance, and two complementary groups of indicators were identified: diversity-based and biological trait-based indicators. Trait-based indicators that quantify the changes in relative abundance of sensitive taxa were most effective in identifying benthic community change in response to bottom trawling disturbance. None of the indicators responded to the trawling pressure gradient in all datasets, and some showed a response that were opposed to the theoretical expectation for some gradients. Indicators that showed clear responses to bottom trawling disturbance also showed clear responses in at least one other pressure gradient, suggesting those indicators are not pressure specific. These results emphasize the importance of selecting several indicators, at least one from each group (diversity and trait-based), to capture the broader signals of change in benthic communities due to bottom trawling activities. Our systematic approach offers the basis from which scientific advisors and/or managers can select suitable combinations of indicators to arrive at a sensitive and comprehensive benthic status assessment.
RESUMO
Competing species may show positive correlations in abundance through time and space if they rely on a shared resource. Such positive correlations might obscure resource partitioning that facilitates competitor coexistence. Here, we examine the potential for resource partitioning between two ecologically similar midge species (Diptera: Chironomidae) in Lake Mývatn, Iceland. Tanytarsus gracilentus and Chironomus islandicus show large, roughly synchronized population fluctuations, implying potential reliance on a shared fluctuating resource and thereby posing the question of how these species coexist at high larval abundances. We first considered spatial partitioning of larvae. Abundances of both species were positively correlated in space; thus, spatial partitioning across different sites in the lake did not appear to be strong. We then inferred differences in dietary resources with stable carbon isotopes. T. gracilentus larvae had significantly higher δ13C values than C. islandicus, suggesting interspecific differences in resource use. Differences in resource selectivity, tube-building behavior, and feeding styles may facilitate resource partitioning between these species. Relative to surface sediments, T. gracilentus had higher δ13C values, suggesting that they selectively graze on 13C-enriched resources such as productive algae from the surface of their tubes. In contrast, C. islandicus had lower δ13C values than surface sediments, suggesting reliance on 13C-depleted resources that may include detrital organic matter and associated microbes that larvae selectively consume from the sediment surface or within their burrow walls. Overall, our study illustrates that coexisting and ecologically similar species may show positive correlations in space and time while using different resources at fine spatial scales.
Assuntos
Chironomidae , Larva , Animais , Islândia , Lagos , Ecossistema , Isótopos de Carbono/análise , Comportamento AlimentarRESUMO
In recent years micro- and nanoplastics and metal-oxide nanomaterials have been found in several environmental compartments. The Antarctic soft clam Laternula elliptica is an endemic Antarctic species having a wide distribution in the Southern Ocean. Being a filter-feeder, it could act as suitable bioindicator of pollution from nanoparticles also considering its sensitivity to various sources of stress. The present study aims to assess the impact of polystyrene nanoparticles (PS-NP) and the nanometal titanium-dioxide (n-TiO2) on genome-wide transcript expression of L. elliptica either alone and in combination and at two toxicological relevant concentrations (5 and 50⯵g/L) during 96â¯h exposure. Transcript-target qRT-PCR was performed with the aim to identify suitable biomarkers of exposure and effects. As expected, at the highest concentration tested, the clustering was clearer between control and exposed clams. A total of 221 genes resulted differentially expressed in exposed clams and control ones, and 21 of them had functional annotation such as ribosomal proteins, antioxidant, ion transport (osmoregulation), acid-base balance, immunity, lipid metabolism, cell adhesion, cytoskeleton, apoptosis, chromatin condensation and cell signaling. At functional level, relevant transcripts were shared among some treatments and could be considered as general stress due to nanoparticle exposure. After applying transcript-target approach duplicating the number of clam samples, four ecologically relevant transcripts were revealed as biomarkers for PS-NP, n-TiO2 and their combination at 50⯵g/L, that could be used for monitoring clams' health status in different Antarctic localities.
Assuntos
Bivalves , Nanopartículas , Titânio , Transcriptoma , Poluentes Químicos da Água , Animais , Bivalves/efeitos dos fármacos , Bivalves/genética , Titânio/toxicidade , Regiões Antárticas , Nanopartículas/toxicidade , Transcriptoma/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Biomarcadores/metabolismo , Poliestirenos/toxicidade , Monitoramento Ambiental/métodosRESUMO
The global demand for renewable energy has resulted in a rapid expansion of offshore wind farms (OWFs) and increased attention to the ecological impacts of OWFs on the marine ecosystem. Previous reviews mainly focused on the OWFs' impacts on individual species like birds, bats, or mammals. This review collected numerous field-measured data and simulated results to summarize the ecological impacts on phytoplankton, zooplankton, zoobenthos, fishes, and mammals from each trophic level and also analyze their interactions in the marine food chain. Phytoplankton and zooplankton are positively or adversely affected by the 'wave effect', 'shading effect', oxygen depletion and predation pressure, leading to a ± 10% fluctuation of primary production. Although zoobenthos are threatened transiently by habitat destruction with a reduction of around 60% in biomass in the construction stage, their abundance exhibited an over 90% increase, dominated by sessile species, due to the 'reef effect' in the operation stage. Marine fishes and mammals are to endure the interferences of noise and electromagnetic, but they are also aggregated around OWFs by the 'reef effect' and 'reserve effect'. Furthermore, the complexity of marine ecosystem would increase with a promotion of the total system biomass by 40% through trophic cascade effects strengthen and resource partitioning alternation triggered by the proliferation of filter-feeders. The suitable site selection, long-term monitoring, and life-cycle-assessment of ecological impacts of OWFs that are lacking in current literature have been described in this review, as well as the carbon emission and deposition.
Assuntos
Ecossistema , Cadeia Alimentar , Animais , Fontes Geradoras de Energia , Vento , Fitoplâncton , Peixes , MamíferosRESUMO
Our understanding of the community assembly processes acting on non-indigenous species (NIS), as well as the relationship with native species is limited, especially in marine ecosystems. To overcome this knowledge gap we here develop a trait-based approach based on the functional distinctiveness metric to assess niche overlap between NIS and native species, using high-resolution data on benthic invertebrate communities in the Baltic Sea. Our results show that NIS retain a certain degree of similarity with native species, but display one or a few singular unique traits (e.g., bioturbation ability). Furthermore, we demonstrate that community assembly processes, including both environmental filtering and limiting similarity affect NIS establishment, but that their effects may be highly context dependent, as illustrated by pronounced spatial patterns in distinctiveness. Finally, our trait-based approach provides a generic framework applicable to other areas and organisms, to better understand and address biological invasions.
Assuntos
Ecossistema , Invertebrados , Animais , Invertebrados/genética , FenótipoRESUMO
Floods affect the population structure of organisms that inhabit streams. In recent decades, the scale of floods has become larger due to climate change. Under these circumstances, on 12 October 2019, the largest typhoon in the history of observation in Japan struck the Japanese Archipelago. This typhoon caused heavy rainfall in various places, and the Chikuma-Shinano River System (Japan's largest) suffered great damage. Eight years before the large-scale disturbance in the river system, the population structure of the mayfly Isonychia japonica was studied in detail using quantitative sampling (population numbers and biomass) and by sequencing the mtDNA cytochrome c oxidase subunit I. To understand the impact of the flood on the population and genetic structures, we repeated the same research approximately 1 year after the flood. Direct comparison of sites before and after the flood revealed no significant changes between pre- and post-flood population genetic structure. This indicates high in situ resistance and/or resilience recovery of the populations to the disturbance. We hypothesize that this high resistance/resilience to flood disturbance is a result of strong selection for such traits in the rivers of the Japanese Archipelago, which are short, steep, flow rapidly and violently, and are strongly affected by floods.
Assuntos
Tempestades Ciclônicas , Ephemeroptera , Animais , Inundações , Rios , Estruturas Genéticas , Genética PopulacionalRESUMO
It is often suggested that gelatinous zooplankton may benefit from anthropogenic pressures of all kinds and in particular from climate change. Large pelagic tunicates, for example, are likely to be favored over other types of macrozooplankton due to their filter-feeding mode, which gives them access to small preys thought to be less affected by climate change than larger preys. In this study, we provide model-based estimate of potential community changes in macrozooplankton composition and estimate for the first time their effects on benthic food supply and on the ocean carbon cycle under two 21st-century climate-change scenarios. Forced with output from an Earth System Model climate projections, our ocean biogeochemical model simulates a large reduction in macrozooplankton biomass in response to anthropogenic climate change, but shows that gelatinous macrozooplankton are less affected than nongelatinous macrozooplankton, with global biomass declines estimated at -2.8% and -3.5%, respectively, for every 1°C of warming. The inclusion of gelatinous macrozooplankon in our ocean biogeochemical model has a limited effect on anthropogenic carbon uptake in the 21st century, but impacts the projected decline in particulate organic matter fluxes in the deep ocean. In subtropical oligotrophic gyres, where gelatinous zooplankton dominate macrozooplankton, the decline in the amount of organic matter reaching the seafloor is reduced by a factor of 2 when gelatinous macrozooplankton are considered (-17.5% vs. -29.7% when gelatinous macrozooplankton are not considered, all for 2100 under RCP8.5). The shift to gelatinous macrozooplankton in the future ocean therefore buffers the decline in deep carbon fluxes and should be taken into account when assessing potential changes in deep carbon storage and the risks that deep ecosystems may face when confronted with a decline in their food source.
RESUMO
Escalating societal demands placed on the seabed mean there has never been such a pressing need to align our understanding of the relationship between the physical impact of anthropogenic activities (e.g., installation of wind turbines, demersal fishing) and the structure and function of the seabed assemblages. However, spatial differences in benthic assemblages based on empirical data are currently not adequately incorporated into decision-making processes regarding future licensable activities or wider marine spatial planning frameworks. This study demonstrates that, through harnessing a Big Data approach, large-scale, continuous coverage maps revealing differences in biological traits expressions of benthic assemblages can be produced. We present independent maps based on a suite of response traits (depicting differences in responses to natural or anthropogenically induced change) and effects traits (reflecting different functional potential), although maps derived using single traits or combinations of a range of traits are possible. Models predicting variations in response traits expression provide greater confidence than those predicting effects traits. We discuss how such maps may be used to assist in the decision-making process for the licensing of anthropogenic activities and as part of marine spatial planning approaches. The confidence in such maps to reflect spatial variations in marine benthic trait expression may, in the future, inherently be improved through (1) the inclusion of more empirical macrofaunal assemblage field data; (2) an improved knowledge of marine benthic taxa trait expression; and (3) a greater understanding of the traits responsible for determining a taxon's response to an anthropogenic pressure and a taxon's functional potential.
Assuntos
Ecossistema , Desenvolvimento SustentávelRESUMO
Antarctica has been affected directly and indirectly by human pressure for more than two centuries and recently plastic pollution has been recognized as a further potential threat for its unique biodiversity. Global long-range transport as well as local input from anthropogenic activities are potential sources of plastic pollution in both terrestrial and marine Antarctic territories. The present study evaluated the presence of microplastics in specimens of the Antarctic whelk Neobuccinum eatoni, a key species in benthic communities of the Ross Sea, one of the largest marine protected areas worldwide. To this aim, a thermo-oxidative extraction method was applied for microplastic isolation and quantification, and polymer identification was performed by manual µ-FTIR spectroscopy. Textile (semi-)synthetic or composite microfibers (length range: 0.8-5.7 mm) were found in 27.3% of whelk specimens, suggesting a low risk of bioaccumulation along Antarctic benthic food webs in the Ross Sea. Their polymer composition (of polyethylene terephthalate and cellulose-polyamide composites) matched those of outdoor technical clothing in use by the personnel of the Italian "Mario Zucchelli" station near Terra Nova Bay in the Ross Sea. Such findings indicate that sewage from base stations may act as potential local sources of textile microplastic fibers in this remote environment. More in-depth monitoring studies aiming at defining the extent of microplastic contamination related to such sources in Antarctica are encouraged.
Assuntos
Microplásticos , Plásticos , Humanos , Baías , Monitoramento Ambiental/métodos , Regiões Antárticas , TêxteisRESUMO
Different crustacean species can differ in their response to light. In Tanaidacea, a small group of aquatic, benthic crustaceans, previous studies suggested that several species may be positively phototactic based on their attraction to nocturnal light traps, but no experimental investigations of phototaxis had been conducted on this group. Here we show experimentally that two species in the genus Zeuxo are phototactic but exhibit opposite reactions to light; Zeuxo ezoensis, which inhabits the blades and stipes of seaweeds, was positively phototactic, whereas Zeuxo molybi, which inhabits muddy sediments overlying bedrock, was negatively phototactic. This differential response may reflect differences in photoenvironment between these species' microhabitats.
Assuntos
Fototaxia , Água , Animais , CrustáceosRESUMO
Marine diatoms are an important food resource for bivalves, but few experimental studies have evaluated diatom assimilation by bivalves. We conducted a laboratory experiment to investigate the ability of the suspension-feeding bivalve Nuttallia olivacea to utilize three common diatom species (planktonic diatoms Thalassiosira pseudonana and Skeletonema dohrnii and the benthic diatom Entomoneis paludosa) as food labeled with heavy nitrogen stable isotope (15N) by incubation in medium containing Na15NO3. The percentage of food-derived nitrogen in the organs of the bivalves increased over time, confirming that the bivalves were taking up dietary nitrogen from diatoms. The proportion of food-derived nitrogen from diatoms to bivalves appeared to be higher in planktonic species than in benthic species. However, it is possible that the benthic diatom intake by the bivalves in this study was underestimated because the substrate was not disturbed as would occur under field conditions. The percentage of food-derived nitrogen in bivalve organs tended to be highest in the digestive diverticula, followed by the foot, mantle, and siphon, regardless of diatom type. These findings suggest that N. olivacea may preferentially distribute nitrogen to organs other than the siphon, which is prone to continuous loss by fish predation.
Assuntos
Bivalves , Diatomáceas , Animais , NitrogênioRESUMO
Marine sponges usually host a wide array of secondary metabolites that play crucial roles in their biological interactions. The factors that influence the intraspecific variability in the metabolic profile of organisms, their production or ecological function remain generally unknown. Understanding this may help predict changes in biological relationships due to environmental variations as a consequence of climate change. The sponge Dendrilla antarctica is common in shallow rocky bottoms of the Antarctic Peninsula and is known to produce diterpenes that are supposed to have defensive roles. Here we used GC-MS to determine the major diterpenes in two populations of D. antarctica from two islands, Livingston and Deception Island (South Shetland Islands). To assess the potential effect of heat stress, we exposed the sponge in aquaria to a control temperature (similar to local), heat stress (five degrees higher) and extreme heat stress (ten degrees higher). To test for defence induction by predation pressure, we exposed the sponges to the sea star Odontaster validus and the amphipod Cheirimedon femoratus. Seven major diterpenes were isolated and identified from the samples. While six of them were already reported in the literature, we identified one new aplysulphurane derivative that was more abundant in the samples from Deception Island, so we named it deceptionin (7). The samples were separated in the PCA space according to the island of collection, with 9,11-dihydrogracilin A (1) being more abundant in the samples from Livingston, and deceptionin (7) in the samples from Deception. We found a slight effect of heat stress on the diterpene profiles of D. antarctica, with tetrahydroaplysulphurin-1 (6) and the gracilane norditerpene 2 being more abundant in the group exposed to heat stress. Predation pressure did not seem to influence the metabolite production. Further research on the bioactivity of D. antarctica secondary metabolites, and their responses to environmental changes will help better understand the functioning and fate of the Antarctic benthos.
Assuntos
Anfípodes , Poríferos , Animais , Terpenos , Regiões Antárticas , Comportamento Predatório , Bandagens , Estrelas-do-MarRESUMO
At the end of their operational life time offshore wind farms need to be decommissioned. How and to what extent the removal of the underwater structures impairs the ecosystem that developed during the operational phase of the wind farm is not known. So, decision makers face a knowledge gap, making the consideration of such ecological impacts challenging when planning decommissioning. This study evaluates how complete or partial decommissioning of foundation structure and scour protection layer impacts local epibenthic macrofauna biodiversity. We assessed three decommissioning alternatives (one for complete and two for partial removal) regarding their impact on epibenthic macrofauna species richness. The results imply that leaving the scour protection layer in situ will preserve a considerable number of species while cutting of the foundation structure above seabed will be beneficial for the fauna of such foundation structures where no scour protection is installed. These results should be taken with a grain of salt, as the current data base is rather limited. Data need to be improved substantially to allow for reliable statements and sound advice regarding the ecological impact of offshore wind farm decommissioning.
Assuntos
Ecossistema , Fontes Geradoras de Energia , Vento , Ecologia , BiodiversidadeRESUMO
The central west coast of India comprises the 720 km long coastline of Maharashtra state and houses widespread industrial zones along the eastern Arabian Sea. Sediments from seven industrial-dominated estuaries along the central west coast were studied for metal enrichment and benthic assemblages to determine sediment quality status and ecological effects in these areas. The suit of geochemical indices highlighted the contamination of sediment in the estuaries concerning heavy metals. Positive correlations of Hg with Co, Zn, Ni, Cr, and Pb indicated the source similarity and effect of anthropogenic activity. non-Metric Multidimensional Scaling (n-MDS) based on meiofaunal abundance showed a cleared separation of clusters through the gradient of heavy metal concentrations. The Canonical Correspondence Analysis (CCA) results with the Monte Carlo test signified those heavy metals influenced the meiobenthic community. Heavy metals (Cr, Ni, Zn, Cd, Pb, and Hg) were the main drivers shaping the meiofaunal community with a significant (p < 0.05) reduction in taxa richness, diversity, and evenness. Dominant meiofaunal assemblages evidence the tolerance of foraminiferans and nematodes. However, these taxa were affected by decreased abundance at impacted sites compared to other fauna. In conclusion, results demonstrated that impairment occurred in the meiofaunal community in most estuaries (except AB and KK).
Assuntos
Mercúrio , Metais Pesados , Poluentes Químicos da Água , Estuários , Chumbo/análise , Sedimentos Geológicos/análise , Monitoramento Ambiental/métodos , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise , Índia , Metais Pesados/toxicidade , Metais Pesados/análise , Mercúrio/análiseRESUMO
Anthropogenic climate change is causing observable changes in Antarctica and the Southern Ocean including increased air and ocean temperatures, glacial melt leading to sea-level rise and a reduction in salinity, and changes to freshwater water availability on land. These changes impact local Antarctic ecosystems and the Earth's climate system. The Antarctic has experienced significant past environmental change, including cycles of glaciation over the Quaternary Period (the past ~2.6 million years). Understanding Antarctica's paleoecosystems, and the corresponding paleoenvironments and climates that have shaped them, provides insight into present day ecosystem change, and importantly, helps constrain model projections of future change. Biological archives such as extant moss beds and peat profiles, biological proxies in lake and marine sediments, vertebrate animal colonies, and extant terrestrial and benthic marine invertebrates, complement other Antarctic paleoclimate archives by recording the nature and rate of past ecological change, the paleoenvironmental drivers of that change, and constrain current ecosystem and climate models. These archives provide invaluable information about terrestrial ice-free areas, a key location for Antarctic biodiversity, and the continental margin which is important for understanding ice sheet dynamics. Recent significant advances in analytical techniques (e.g., genomics, biogeochemical analyses) have led to new applications and greater power in elucidating the environmental records contained within biological archives. Paleoecological and paleoclimate discoveries derived from biological archives, and integration with existing data from other paleoclimate data sources, will significantly expand our understanding of past, present, and future ecological change, alongside climate change, in a unique, globally significant region.
Assuntos
Mudança Climática , Ecossistema , Animais , Regiões Antárticas , Solo , ÁguaRESUMO
Global warming is causing significant losses of marine ice around the polar regions. In Antarctica, the retreat of tidewater glaciers is opening up novel, low-energy habitats (fjords) that have the potential to provide a negative feedback loop to climate change. These fjords are being colonized by organisms on and within the sediment and act as a sink for particulate matter. So far, blue carbon potential in Antarctic habitats has mainly been estimated using epifaunal megazoobenthos (although some studies have also considered macrozoobenthos). We investigated two further pathways of carbon storage and potential sequestration by measuring the concentration of carbon of infaunal macrozoobenthos and total organic carbon (TOC) deposited in the sediment. We took samples along a temporal gradient since time of last glacier ice cover (1-1000 years) at three fjords along the West Antarctic Peninsula. We tested the hypothesis that seabed carbon standing stock would be mainly driven by time since last glacier covered. However, results showed this to be much more complex. Infauna were highly variable over this temporal gradient and showed similar total mass of carbon standing stock per m2 as literature estimates of Antarctic epifauna. TOC mass in the sediment, however, was an order of magnitude greater than stocks of infaunal and epifaunal carbon and increased with time since last ice cover. Thus, blue carbon stocks and recent gains around Antarctica are likely much higher than previously estimated as is their negative feedback on climate change.
Assuntos
Mudança Climática , Camada de Gelo , Regiões Antárticas , Carbono , Ecossistema , Estuários , RetroalimentaçãoRESUMO
Many marine invertebrates have a benthic adult life with planktonic long feeding larval stages (planktotrophy). In other species, planktonic larvae do not eat, and after a rather short period, they settle and initiate their benthic stages (lecithotrophy). Still other species skip planktonic larval stages altogether, and adults produce benthic offspring (direct development). In this paper, we develop an evolutionary game among different life-cycle types and examine the conditions for each life-cycle type to win in a seasonal environment. The growth rate and mortality of benthic individuals are the same among all three life-cycle types, the local habitat (patches) for benthic individuals have a finite longevity, and adults may engage in a limited dispersal just before breeding. Planktotrophy evolves if the planktonic stages are more efficient in terms of biomass gain than benthic life. Otherwise, lecithotrophy or direct development should evolve. Among them, direct development is more advantageous than lecithotrophy if the cost of having planktonic larvae is large, the habitat for benthic individuals is stable, and adults engage in some dispersal.
Assuntos
Evolução Biológica , Estágios do Ciclo de Vida , Animais , Organismos Aquáticos , Humanos , Invertebrados , LarvaRESUMO
Marine stations have continued to contribute significantly to understanding the physiology, taxonomy, development, ecology, and evolution of animals. There are more than 50 marine stations of national universities in Japan, and historically their establishments were closely related to the initial stage of zoology in the country. More than 10 years ago, Japanese Association for Marine Biology (JAMBIO) was established to facilitate the collaboration among marine stations in the activities of research, education and administration. One of the successful activities of JAMBIO that contribute to zoology is the JAMBIO Coastal Organism Joint Surveys, in which scientists and students at multiple marine stations, as well as those from research institutes or museums, stay at a marine station for a few days, and collect and make a record of marine organisms. As of 2021, 22 surveys have been performed and new species have been reported from taxa such as Cnidaria, Nematoda, Platyhelminthes, Annelida, Mollusca, Arthropoda, and Echinodermata.
Assuntos
Organismos Aquáticos , Biota , Animais , Anelídeos , Equinodermos , Japão , NematoidesRESUMO
In the marine realm, biomonitoring using environmental DNA (eDNA) of benthic communities requires destructive direct sampling or the setting-up of settlement structures. Comparatively much less effort is required to sample the water column, which can be accessed remotely. In this study we assess the feasibility of obtaining information from the eukaryotic benthic communities by sampling the adjacent water layer. We studied two different rocky-substrate benthic communities with a technique based on quadrat sampling. We also took replicate water samples at four distances (0, 0.5, 1.5, and 20 m) from the benthic habitat. Using broad range primers to amplify a ca. 313 bp fragment of the cytochrome oxidase subunit I gene, we obtained a total of 3,543 molecular operational taxonomic units (MOTUs). The structure obtained in the two environments was markedly different, with Metazoa, Archaeplastida and Stramenopiles being the most diverse groups in benthic samples, and Hacrobia, Metazoa and Alveolata in the water. Only 265 MOTUs (7.5%) were shared between benthos and water samples and, of these, 180 (5.1%) were identified as benthic taxa that left their DNA in the water. Most of them were found immediately adjacent to the benthos, and their number decreased as we moved apart from the benthic habitat. It was concluded that water eDNA, even in the close vicinity of the benthos, was a poor proxy for the analysis of benthic structure, and that direct sampling methods are required for monitoring these complex communities via metabarcoding.
Assuntos
Monitoramento Biológico , Código de Barras de DNA Taxonômico , Biodiversidade , Monitoramento Ambiental , ÁguaRESUMO
All coastal systems experience disturbances and many across the planet are under unprecedented threat from an intensification of a variety of stressors. The West Antarctic Peninsula is a hotspot of physical climate change and has experienced a dramatic loss of sea-ice and glaciers in recent years. Among other things, sea-ice immobilizes icebergs, reducing collisions between icebergs and the seabed, thus decreasing ice-scouring. Ice disturbance drives patchiness in successional stages across seabed assemblages in Antarctica's shallows, making this an ideal system to understand the ecosystem resilience to increasing disturbance with climate change. We monitored a shallow benthic ecosystem before, during and after a 3-year pulse of catastrophic ice-scouring events and show that such systems can return, or bounce back, to previous states within 10 years. Our long-term data series show that recovery can happen more rapidly than expected, when disturbances abate, even in highly sensitive cold, polar environments.