Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.412
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
FASEB J ; 38(19): e70094, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39373933

RESUMO

Berberine and palmatine are isoquinoline quaternary alkaloids derived from Chinese medicinal herbs. These alkaloids have shown promising synergy in inhibiting acetylcholinesterase (AChE), indicating their potential in treating Alzheimer's disease (AD). Besides, the anti-inflammatory effects of berberine and palmatine have been widely reported, although the underlying mechanism remains unclear. Here, we found that berberine and palmatine could induce calcium ion (Ca2+) influx via activating α7 nicotinic acetylcholine receptor (α7 nAChR) in cultured microglial cells, possibly serving as its allosteric potential ligands. Furthermore, we examined the synergistic anti-inflammatory effects of berberine and palmatine in the LPS-induced microglia, that significantly suppressed the production of TNF-α and iNOS. Notably, this suppression was reversed by co-treatment with a selective antagonist of α7 nAChR. Moreover, the alkaloid-induced microglial phagocytosis was shown to be mediated by the induction of Ca2+ influx through α7 nAChR and subsequent CaMKII-Rac1-dependent pathway. Additionally, the combination of berberine and palmatine, at low concentration, protected against the LPS-induced endoplasmic reticulum stress and mitochondrial dysfunction in microglia. These findings indicate the potential of berberine and palmatine, either individually or in combination, in contributing to anti-AD drug development, which provide valuable insights into the mechanisms by which natural products, such as plant alkaloids, exert their anti-AD effects.


Assuntos
Alcaloides de Berberina , Berberina , Inflamação , Microglia , Fagocitose , Receptor Nicotínico de Acetilcolina alfa7 , Berberina/farmacologia , Microglia/efeitos dos fármacos , Microglia/metabolismo , Alcaloides de Berberina/farmacologia , Animais , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Fagocitose/efeitos dos fármacos , Camundongos , Inflamação/metabolismo , Inflamação/tratamento farmacológico , Regulação Alostérica/efeitos dos fármacos , Lipopolissacarídeos/farmacologia , Sinergismo Farmacológico , Ligantes , Cálcio/metabolismo , Anti-Inflamatórios/farmacologia
2.
Exp Cell Res ; 439(1): 114094, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38750718

RESUMO

Pirarubicin (THP) is a new generation of cell cycle non-specific anthracycline-based anticancer drug. In the clinic, THP and THP combination therapies have been shown to be effective in hepatocellular carcinoma (HCC) patients with transcatheter arterial chemoembolization (TACE) without serious side effects. However, drug resistance limits its therapeutic efficacy. Berberine (BBR), an isoquinoline alkaloid, has been shown to possess antitumour properties against various malignancies. However, the synergistic effect of BBR and THP in the treatment of HCC is unknown. In the present study, we demonstrated for the first time that BBR sensitized HCC cells to THP, including enhancing THP-induced growth inhibition and apoptosis of HCC cells. Moreover, we found that BBR sensitized THP by reducing the expression of autophagy-related 4B (ATG4B). Mechanistically, the inhibition of HIF1α-mediated ATG4B transcription by BBR ultimately led to attenuation of THP-induced cytoprotective autophagy, accompanied by enhanced growth inhibition and apoptosis in THP-treated HCC cells. Tumor-bearing experiments in nude mice showed that the combination treatment with BBR and THP significantly suppressed the growth of HCC xenografts. These results reveal that BBR is able to strengthen the killing effect of THP on HCC cells by repressing the ATG4B-autophagy pathway, which may provide novel insights into the improvement of chemotherapeutic efficacy of THP, and may be conducive to the further clinical application of THP in HCC treatment.


Assuntos
Apoptose , Proteínas Relacionadas à Autofagia , Autofagia , Berberina , Carcinoma Hepatocelular , Doxorrubicina , Neoplasias Hepáticas , Camundongos Nus , Berberina/farmacologia , Berberina/análogos & derivados , Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/metabolismo , Autofagia/efeitos dos fármacos , Animais , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/metabolismo , Proteínas Relacionadas à Autofagia/metabolismo , Proteínas Relacionadas à Autofagia/genética , Camundongos , Apoptose/efeitos dos fármacos , Doxorrubicina/farmacologia , Doxorrubicina/análogos & derivados , Ensaios Antitumorais Modelo de Xenoenxerto , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sinergismo Farmacológico , Camundongos Endogâmicos BALB C , Antineoplásicos/farmacologia , Transdução de Sinais/efeitos dos fármacos , Cisteína Endopeptidases
3.
Biochemistry ; 63(17): 2089-2110, 2024 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-39133819

RESUMO

Berberine bridge enzyme-like oxidases are often involved in natural product biosynthesis and are seen as essential enzymes for the generation of intricate pharmacophores. These oxidases have the ability to transfer a hydride atom to the FAD cofactor, which enables complex substrate modifications and rearrangements including (intramolecular) cyclizations, carbon-carbon bond formations, and nucleophilic additions. Despite the diverse range of activities, the mechanistic details of these reactions often remain incompletely understood. In this Review, we delve into the complexity that BBE-like oxidases from bacteria, fungal, and plant origins exhibit by providing an overview of the shared catalytic features and emphasizing the different reactivities. We propose four generalized modes of action by which BBE-like oxidases enable the synthesis of natural products, ranging from the classic alcohol oxidation reactions to less common amine and amide oxidation reactions. Exploring the mechanisms utilized by nature to produce its vast array of natural products is a subject of considerable interest and can lead to the discovery of unique biochemical activities.


Assuntos
Produtos Biológicos , Oxirredutases , Produtos Biológicos/metabolismo , Produtos Biológicos/química , Oxirredutases/metabolismo , Oxirredutases/química , Flavoproteínas/metabolismo , Flavoproteínas/química , Oxirredução , Berberina/metabolismo , Berberina/química , Bactérias/enzimologia , Bactérias/metabolismo , Fungos/enzimologia , Plantas/enzimologia , Plantas/metabolismo
4.
J Cell Mol Med ; 28(1): e18016, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37909687

RESUMO

Contrast-induced nephropathy (CIN) is a condition that causes kidney damage in patients receiving angiography with iodine-based contrast agents. This study investigated the potential protective effects of berberine (BBR) against CIN and its underlying mechanisms. The researchers conducted both in vivo and in vitro experiments to explore BBR's renal protective effects. In the in vivo experiments, SD rats were used to create a CIN model, and different groups were established. The results showed that CIN model group exhibited impaired renal function, severe damage to renal tubular cells and increased apoptosis and ferroptosis. However, BBR treatment group demonstrated improved renal function, decreased apoptosis and ferroptosis. Similar results were observed in the in vitro experiments using HK-2 cells. BBR reduced ioversol-induced apoptosis and ferroptosis, and exerted its protective effects through Akt/Foxo3a/Nrf2 signalling pathway. BBR administration increased the expression of Foxo3a and Nrf2 while decreasing the levels of p-Akt and p-Foxo3a. In conclusion, this study revealed that BBR effectively inhibited ioversol-induced apoptosis and ferroptosis in vivo and in vitro. The protective effects of BBR were mediated through the modulation of Akt/Foxo3a/Nrf2 signalling pathway, leading to the alleviation of CIN. These findings suggest that BBR may have therapeutic potential for protecting against CIN in patients undergoing angiography with iodine-based contrast agents.


Assuntos
Berberina , Iodo , Nefropatias , Ácidos Tri-Iodobenzoicos , Humanos , Ratos , Animais , Proteínas Proto-Oncogênicas c-akt , Berberina/farmacologia , Fator 2 Relacionado a NF-E2/metabolismo , Meios de Contraste/efeitos adversos , Ratos Sprague-Dawley , Nefropatias/tratamento farmacológico , Iodo/efeitos adversos , Apoptose
5.
J Cell Mol Med ; 28(12): e18407, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38894630

RESUMO

Chronic intermittent hypoxia (CIH) is associated with an increased risk of cardiovascular diseases. Previously, we have shown that berberine (BBR) is a potential cardioprotective agent. However, its effect and mechanism on CIH-induced cardiomyopathy remain uncovered. This study was designed to determine the effects of BBR against CIH-induced cardiac damage and to explore the molecular mechanisms. Mice were exposed to 5 weeks of CIH with or without the treatment of BBR and adeno-associated virus 9 (AAV9) carrying SIRT6 or SIRT6-specific short hairpin RNA. The effect of BBR was evaluated by echocardiography, histological analysis and western blot analysis. CIH caused the inactivation of myocardial SIRT6 and AMPK-FOXO3a signalling. BBR dose-dependently ameliorated cardiac injury in CIH-induced mice, as evidenced by increased cardiac function and decreased fibrosis. Notably, SIRT6 overexpression mimicked these beneficial effects, whereas infection with recombinant AAV9 carrying SIRT6-specific short hairpin RNA abrogated them. Mechanistically, BBR reduced oxidative stress damage and preserved mitochondrial function via activating SIRT6-AMPK-FOXO3a signalling, enhancing mitochondrial biogenesis as well as PINK1-Parkin-mediated mitophagy. Taken together, these data demonstrate that SIRT6 activation protects against the pathogenesis of CIH-induced cardiac dysfunction. BBR attenuates CIH-induced myocardial injury by improving mitochondrial biogenesis and PINK1-Parkin-dependent mitophagy via the SIRT6-AMPK-FOXO3a signalling pathway.


Assuntos
Berberina , Proteína Forkhead Box O3 , Hipóxia , Transdução de Sinais , Sirtuínas , Berberina/farmacologia , Berberina/uso terapêutico , Animais , Sirtuínas/metabolismo , Sirtuínas/genética , Transdução de Sinais/efeitos dos fármacos , Hipóxia/metabolismo , Camundongos , Masculino , Proteína Forkhead Box O3/metabolismo , Proteína Forkhead Box O3/genética , Estresse Oxidativo/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Proteínas Quinases Ativadas por AMP/metabolismo , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitofagia/efeitos dos fármacos , Remodelação Ventricular/efeitos dos fármacos , Modelos Animais de Doenças
6.
Biochem Biophys Res Commun ; 719: 150088, 2024 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-38740003

RESUMO

Berberine (BBR) is a traditional Chinese herb with broad antimicrobial activity. Gut microbiota plays an important role in the metabolism of bile acids and cholesterol. Our study investigated the effects of BBR on alleviating cholesterol and bile acid metabolism disorders induced by high cholesterol diet in mice. Adult male C57BL/6J mice fed with high cholesterol diet (HC) containing 1.25 % cholesterol (HC group) or fed with chow diet containing 0.02 % cholesterol (Chow group) served as controls. BBR50 and BBR100 group mice were fed with HC, and oral BBR daily at doses of 50 or 100 mg/kg respectively for 8 weeks. The results showed that BBR could reshape the homeostasis and composition of gut microbiota. The abundance of Clostridium genera was significantly inhibited by BBR, which resulted in a significant reduction of secondary bile acids within the enterohepatic circulation and a significant lower hydrophobic index of bile acids. The absorption of cholesterol in intestine, the deposition of cholesterol in liver and the excretion of cholesterol in biliary tract were significantly inhibited by BBR, which promoted the unsaturation of cholesterol in bile. These findings suggest the potential utility of BBR as a functional food to alleviate the negative effects of high cholesterol diet.


Assuntos
Berberina , Ácidos e Sais Biliares , Colesterol na Dieta , Colesterol , Microbioma Gastrointestinal , Camundongos Endogâmicos C57BL , Animais , Berberina/farmacologia , Ácidos e Sais Biliares/metabolismo , Masculino , Colesterol/metabolismo , Camundongos , Microbioma Gastrointestinal/efeitos dos fármacos , Colesterol na Dieta/efeitos adversos , Colesterol na Dieta/metabolismo , Dieta Hiperlipídica/efeitos adversos , Fígado/metabolismo , Fígado/efeitos dos fármacos
7.
Biochem Biophys Res Commun ; 734: 150772, 2024 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-39362031

RESUMO

Acetaminophen (APAP) overdose is still a leading cause of drug-induced liver injury (DILI), accompanied with severe inflammatory response. However, the therapy for APAP-induced DILI is rather limited. The combined application of natural products to treat DILI induced by APAP may be a new direction of the research. This study was conducted to evaluate the dual anti-inflammatory activity of curcumin (CUR) combined with berberine (BBR) against APAP-mediated DILI. Network pharmacology found that PI3K-Akt and PPAR signaling pathways were primarily involved in anti-DILI of the combination of CUR and BBR. APAP injection enhanced the levels of ALT, AST, IL-1ß, IL-6, and TNF-α in mice, while such phenomenon was significantly reversed by the cotreatment of CUR and BBR, which was more effective than either single treatment. The increase of p-NF-κB and p-IKKα/ß protein expression and the decrease of p-PI3K, p-AKT, and PPARγ protein expression in APAP-treated mice were markedly inhibited by the coadministration of CUR and BBR. Molecular docking further demonstrated that both CUR and BBR could stably bind to PI3K, AKT, and PPARγ protein. In conclusion, the combination of CUR and BBR more effectively protected liver from APAP-triggered DILI than individual treatment. The mechanism is to alleviate hepatic inflammation by inhibiting NF-κB activation, which is possibly mediated by PI3K/Akt and PPARγ signaling pathways.


Assuntos
Acetaminofen , Anti-Inflamatórios , Berberina , Doença Hepática Induzida por Substâncias e Drogas , Curcumina , NF-kappa B , PPAR gama , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Animais , Berberina/farmacologia , Berberina/uso terapêutico , PPAR gama/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Curcumina/farmacologia , Curcumina/uso terapêutico , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Doença Hepática Induzida por Substâncias e Drogas/patologia , NF-kappa B/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Acetaminofen/efeitos adversos , Acetaminofen/toxicidade , Camundongos , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Masculino , Simulação de Acoplamento Molecular , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia
8.
Biochem Biophys Res Commun ; 695: 149411, 2024 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-38154262

RESUMO

Berberine, isolated from Coptis chinensis and Phellodendron amurense, can attenuate colonic injury and modulate gut microbiota disorders in ulcerative colitis (UC). However, the mechanism and causal relationship between gut microbiota and the efficacy of Berberine on UC are still unclear, which were investigated by pseudo-germ-free (PGF) mice, 16S rRNA gene analysis and transcriptome analysis in this study. The results demonstrated that Berberine improved gut microbiota disorders, colon damage, tight-junction proteins, inflammatory and anti-inflammatory cytokines in DSS-induced colitis mice with intact gut microbiota but not in PGF mice. Besides, immune-related and inflammation-related pathways were closely related to the efficacy that Berberine alleviated colitis by regulating gut microbiota. Furthermore, Berberine reduced PGE2, PLA2, COX-2, Ptges, EP2 and p-Stat3 only in colitis mice with intact gut microbiota. In summary, our study confirms that Berberine inhibits PLA2-COX-2-PGE2-EP2 pathway in UC through gut microbiota, leading to the alleviation of inflammation in colon, which further elucidates the underlying mechanism and promotes the application of Berberine in UC.


Assuntos
Berberina , Colite Ulcerativa , Colite , Microbioma Gastrointestinal , Animais , Camundongos , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Berberina/farmacologia , Berberina/uso terapêutico , Ciclo-Oxigenase 2 , Dinoprostona , RNA Ribossômico 16S , Inflamação/tratamento farmacológico , Fosfolipases A2 , Sulfato de Dextrana , Modelos Animais de Doenças , Colo , Camundongos Endogâmicos C57BL
9.
Small ; : e2404850, 2024 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-39073298

RESUMO

Several natural Chinese herbal medicines have demonstrated considerable potential in facilitating wound healing, while the primary concern remains centered around optimizing formulation and structure to maximize their efficacy. To address this, a natural microneedles drug delivery system is proposed that harnesses gelatinized starch and key Chinese herbal ingredients-aloe vera and berberine. After gelatinized and aged in a well-designed mold, the starch-based microneedles are fabricated with suitable mechanical strength to load components. The resulting Chinese herbal hydrogel microneedles, enriched with integrated berberine and aloe, exhibit antibacterial, anti-inflammatory, and fibroblast growth-promoting properties, thereby facilitating wound healing in the whole process. In vivo experimental results underscore the notable achievements of the microneedles in early-stage antibacterial effects and subsequent tissue reconstruction, contributing significantly to the overall wound healing process. These results emphasize the advantageous combination of traditional Chinese medicine with microneedles, presenting a novel strategy for wound repair and opening new avenues for the application of traditional Chinese medicine.

10.
J Transl Med ; 22(1): 225, 2024 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-38429794

RESUMO

BACKGROUND: Non-alcoholic fatty liver disease (NAFLD) is becoming increasingly prevalent worldwide, emerging as a significant health issue on a global scale. Berberine exhibits potential for treating NAFLD, but clinical evidence remains inconclusive. This meta-analysis was conducted to assess the efficacy and safety of berberine for treating NAFLD. METHODS: This study was registered with PROSPERO (No. CRD42023462338). Identification of randomized controlled trials (RCTs) involved searching 6 databases covering the period from their initiation to 9 September 2023. The primary outcomes comprised liver function markers such as glutamyl transpeptidase (GGT), alanine transaminase (ALT), aspartate transaminase (AST), lipid indices including total cholesterol (TC), triglyceride (TG), low-density lipoprotein cholesterol (LDL-C) and high-density lipoprotein cholesterol (HDL-C), homeostasis model assessment for insulin resistance (HOMA-IR) and body mass index (BMI). Review Manager 5.4 and STATA 17.0 were applied for analysis. RESULTS: Among 10 RCTs involving 811 patients, berberine demonstrated significant reductions in various parameters: ALT (standardized mean difference (SMD) = - 0.72), 95% confidence interval (Cl) [- 1.01, - 0.44], P < 0.00001), AST (SMD = - 0.79, 95% CI [- 1.17, - 0.40], P < 0.0001), GGT (SMD = - 0.62, 95% CI [- 0.95, - 0.29], P = 0.0002), TG (SMD = - 0.59, 95% CI [- 0.86, - 0.31], P < 0.0001), TC(SMD = - 0.74, 95% CI [- 1.00, - 0.49], P < 0.00001), LDL-C (SMD = - 0.53, 95% CI [- 0.88, - 0.18], P = 0.003), HDL-C (SMD = - 0.51, 95% CI [- 0.12, 1.15], P = 0.11), HOMA-IR (SMD = - 1.56, 95% CI [- 2.54, - 0.58], P = 0.002), and BMI (SMD = - 0.58, 95% CI [- 0.77, - 0.38], P < 0.00001). Importantly, Berberine exhibited a favorable safety profile, with only mild gastrointestinal adverse events reported. CONCLUSION: This meta-analysis demonstrates berberine's efficacy in improving liver enzymes, lipid profile, and insulin sensitivity in NAFLD patients. These results indicate that berberine shows promise as an adjunct therapy for NAFLD. Trial registration The protocol was registered with PROSPERO (No. CRD42023462338). Registered on September 27, 2023.


Assuntos
Berberina , Resistência à Insulina , Hepatopatia Gordurosa não Alcoólica , Humanos , Berberina/efeitos adversos , HDL-Colesterol , LDL-Colesterol , Lipídeos , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Resultado do Tratamento , Triglicerídeos
11.
J Transl Med ; 22(1): 875, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39350174

RESUMO

BACKGROUND: N-acetyltransferase 10 (NAT10) plays a crucial role in the occurrence and development of various tumors. However, the current regulatory mechanism of NAT10 in tumors is limited to its presence in tumor cells. Here, we aimed to reveal the role of NAT10 in intrahepatic cholangiocarcinoma (ICC) and investigate its effect on macrophage polarization in the tumor microenvironment (TME). METHODS: The correlation between NAT10 and ICC clinicopathology was analyzed using tissue microarray (TMA), while the effect of NAT10 on ICC proliferation was verified in vitro and in vivo. Additionally, the downstream target of NAT10, C-C motif chemokine ligand 2 (CCL2), was identified by Oxford Nanopore Technologies full-length transcriptome sequencing, RNA immunoprecipitation-quantitative polymerase chain reaction, and coimmunoprecipitation experiments. It was confirmed by co-culture that ICC cells could polarize macrophages towards M2 type through the influence of NAT10 on CCL2 protein expression level. Through RNA-sequencing, molecular docking, and surface plasmon resonance (SPR) assays, it was confirmed that berberine (BBR) can specifically bind CCL2 to inhibit ICC development. RESULTS: High expression level of NAT10 was associated with poor clinicopathological manifestations of ICC. In vitro, the knockdown of NAT10 inhibited the proliferative activity of ICC cells and tumor growth in vivo, while its overexpression promoted ICC proliferation. Mechanically, by binding to CCL2 messenger RNA, NAT10 increased CCL2 protein expression level in ICC and their extracellular matrix, thereby promoting the proliferation of ICC cells and M2-type polarization of macrophages. BBR can target CCL2, inhibit ICC proliferation, and reduce M2-type polarization of macrophages. CONCLUSIONS: NAT10 promotes ICC proliferation and M2-type polarization of macrophages by up-regulating CCL2, whereas BBR inhibits ICC proliferation and M2-type polarization of macrophages by inhibiting CCL2.


Assuntos
Proliferação de Células , Quimiocina CCL2 , Colangiocarcinoma , Macrófagos , Quimiocina CCL2/metabolismo , Colangiocarcinoma/patologia , Colangiocarcinoma/genética , Colangiocarcinoma/metabolismo , Macrófagos/metabolismo , Humanos , Animais , Linhagem Celular Tumoral , Neoplasias dos Ductos Biliares/patologia , Neoplasias dos Ductos Biliares/genética , Neoplasias dos Ductos Biliares/metabolismo , Masculino , Microambiente Tumoral , Feminino , Regulação Neoplásica da Expressão Gênica , Polaridade Celular/efeitos dos fármacos , Camundongos Nus , Camundongos , Pessoa de Meia-Idade , Ligação Proteica
12.
J Transl Med ; 22(1): 963, 2024 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-39448992

RESUMO

AIMS: The present study aims to develop a nano-delivery system that encapsulates berberine (BBR) into PLGA-based nanoparticles (BPL-NPs), to treat ulcerative colitis (UC). Furthermore, the therapeutic efficacy and molecular targeting mechanisms of BPL-NPs in the management of UC are thoroughly examined. METHODS: Emulsion solvent-driven methods were used to self-assemble BBR and PLGA into nanoparticles, resulting in the development of the nano-delivery system (BPL-NPs). The therapeutic effectiveness of BPL-NPs was evaluated using a dextran sulfate sodium (DSS)-induced model of ulcerative colitis in mice and a lipopolysaccharide (LPS)-induced model of inflammation in THP-1 macrophages. The interaction between Mφs and NCM-460 cells was investigated using a co-culture system. The molecular targeting ability of BPL-NPs in the treatment of UC was validated through in vitro as well as in vivo experiments. RESULTS: The BPL-NPs demonstrated a particle size of 184 ± 22.4 nm, enhanced dispersibility in deionized water, and a notable encapsulation efficiency of 31.1 ± 0.2%. The use of BPL-NPs clearly improved the clinical symptoms and pathological changes associated with UC in mice while also ensuring minimal toxicity. In addition, BPL-NPs improved intestinal epithelial cell apoptosis and enhanced the function of the intestinal barrier by inhibiting M1 Mφs infiltration and IL-6 signaling pathway in mice with UC. Furthermore, the BPL-NPs were found to selectively target the IL-6/IL-6R axis during the M1 Mφs-induced apoptosis of NCM460 cells. CONCLUSION: The BPL-NPs were confirmed to harbor anti-inflammatory effects both in vitro and in vivo, along with enhanced water solubility and bioactivity. In addition, the precise targeting of the IL-6/IL-6R axis was confirmed as the mechanism by which the BPL-NPs exerted therapeutic effects in UC, as demonstrated in both in vitro as well as in vivo studies.


Assuntos
Berberina , Colite Ulcerativa , Interleucina-6 , Nanopartículas , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Receptores de Interleucina-6 , Animais , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/patologia , Berberina/farmacologia , Berberina/uso terapêutico , Interleucina-6/metabolismo , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Nanopartículas/química , Humanos , Receptores de Interleucina-6/metabolismo , Masculino , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Transdução de Sinais/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Camundongos , Sulfato de Dextrana , Lipopolissacarídeos/farmacologia , Inflamação/patologia , Inflamação/tratamento farmacológico , Apoptose/efeitos dos fármacos
13.
BMC Microbiol ; 24(1): 196, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38849761

RESUMO

Biofilms produced by Candida albicans present a challenge in treatment with antifungal drug. Enhancing the sensitivity to fluconazole (FLC) is a reasonable method for treating FLC-resistant species. Moreover, several lines of evidence have demonstrated that berberine (BBR) can have antimicrobial effects. The aim of this study was to clarify the underlying mechanism of these effects. We conducted a comparative study of the inhibition of FLC-resistant strain growth by FLC treatment alone, BBR treatment alone, and the synergistic effect of combined FLC and BBR treatment. Twenty-four isolated strains showed distinct biofilm formation capabilities. The antifungal effect of combined FLC and BBR treatment in terms of the growth and biofilm formation of Candida albicans species was determined via checkerboard, time-kill, and fluorescence microscopy assays. The synergistic effect of BBR and FLC downregulated the expression of the efflux pump genes CDR1 and MDR, the hyphal gene HWP1, and the adhesion gene ALS3; however, the gene expression of the transcriptional repressor TUP1 was upregulated following treatment with this drug combination. Furthermore, the addition of BBR led to a marked reduction in cell surface hydrophobicity. To identify resistance-related genes and virulence factors through genome-wide sequencing analysis, we investigated the inhibition of related resistance gene expression by the combination of BBR and FLC, as well as the associated signaling pathways and metabolic pathways. The KEGG metabolic map showed that the metabolic genes in this strain are mainly involved in amino acid and carbon metabolism. The metabolic pathway map showed that several ergosterol (ERG) genes were involved in the synthesis of cell membrane sterols, which may be related to drug resistance. In this study, BBR + FLC combination treatment upregulated the expression of the ERG1, ERG3, ERG4, ERG5, ERG24, and ERG25 genes and downregulated the expression of the ERG6 and ERG9 genes compared with fluconazole treatment alone (p < 0.05).


Assuntos
Antifúngicos , Berberina , Biofilmes , Candida albicans , Biologia Computacional , Farmacorresistência Fúngica , Fluconazol , Testes de Sensibilidade Microbiana , Berberina/farmacologia , Fluconazol/farmacologia , Candida albicans/efeitos dos fármacos , Candida albicans/genética , Antifúngicos/farmacologia , Farmacorresistência Fúngica/genética , Biologia Computacional/métodos , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Sinergismo Farmacológico , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos
14.
BMC Microbiol ; 24(1): 287, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39095728

RESUMO

This study used berberine hydrochloride to treat the Asian paddle crab, Charybdis japonica infected with the Gram-negative bacterium Aeromonas hydrophila at concentrations of 0, 100, 200 and 300 mg/L. The effect of berberine hydrochloride on the survival rate and gut microbiota of C. japonica was investigated. Berberine hydrochloride improved the stability of the intestinal flora, with an increase in the abundance of probiotic species and a decrease in the abundance of both pathogenic bacteria after treatment with high concentrations of berberine hydrochloride. Berberine hydrochloride altered peroxidase activity (POD), malondialdehyde (MDA), and lipid peroxidation (LPO) in the intestinal tract compared to the control. Berberine hydrochloride could modulate the energy released from the enzyme activities of hexokinase (HK), phosphofructokinase (PFK), and pyruvate kinase (PK) in the intestinal tract of C. japonica infected with A. hydrophila. Zona occludens 1 (ZO-1), Zinc finger E-box binding homeobox 1 (ZEB1), occludin and signal transducer, and activator of transcription5b (STAT5b) expression were also increased, which improved intestinal barrier function. The results of this study provide new insights into the role of berberine hydrochloride in intestinal immune mechanisms and oxidative stress in crustaceans.


Assuntos
Aeromonas hydrophila , Antioxidantes , Berberina , Microbioma Gastrointestinal , Infecções por Bactérias Gram-Negativas , Berberina/farmacologia , Aeromonas hydrophila/efeitos dos fármacos , Aeromonas hydrophila/genética , Microbioma Gastrointestinal/efeitos dos fármacos , Animais , Antioxidantes/metabolismo , Infecções por Bactérias Gram-Negativas/microbiologia , Infecções por Bactérias Gram-Negativas/tratamento farmacológico , Braquiúros/microbiologia , Braquiúros/efeitos dos fármacos , Malondialdeído/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Bactérias/efeitos dos fármacos , Bactérias/genética , Bactérias/classificação , Bactérias/isolamento & purificação , Bactérias/metabolismo
15.
Microb Pathog ; 193: 106774, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38969184

RESUMO

The increasing prevalence of extensively drug-and pan-drug-resistant Pseudomonas aeruginosa is a major concern for global public health. Therefore, it is crucial to develop novel antimicrobials that specifically target P. aeruginosa and its biofilms. In the present study, we determined that berberine hydrochloride inhibited the growth of planktonic bacteria as well as prevented the formation of biofilms. Moreover, we observed downregulation in the expression of pslA and pelA biofilm-related genes. Compared with existing antibiotics, berberine hydrochloride exhibits multiple modes of action against P. aeruginosa. Our findings suggest that berberine hydrochloride exerts its antimicrobial effects by damaging bacterial cell membranes, generating reactive oxygen species (ROS), and reducing intracellular adenosine triphosphate (ATP) levels. Furthermore, berberine hydrochloride showed minimal cytotoxicity and reduced susceptibility to drug resistance. In a mouse model of peritonitis, it significantly inhibited the growth of P. aeruginosa and exhibited a strong bacteriostatic action. In conclusion, berberine hydrochloride is a safe and effective antibacterial agent that inhibits the growth of P. aeruginosa.


Assuntos
Trifosfato de Adenosina , Antibacterianos , Berberina , Biofilmes , Modelos Animais de Doenças , Testes de Sensibilidade Microbiana , Plâncton , Infecções por Pseudomonas , Pseudomonas aeruginosa , Espécies Reativas de Oxigênio , Berberina/farmacologia , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/genética , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Animais , Camundongos , Antibacterianos/farmacologia , Infecções por Pseudomonas/microbiologia , Infecções por Pseudomonas/tratamento farmacológico , Espécies Reativas de Oxigênio/metabolismo , Trifosfato de Adenosina/metabolismo , Plâncton/efeitos dos fármacos , Peritonite/microbiologia , Peritonite/tratamento farmacológico , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
16.
Toxicol Appl Pharmacol ; 492: 117129, 2024 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-39428072

RESUMO

Acute liver failure (ALF) is a life-threatening disease, characterized by upregulated extracellular matrix deposition and inflammatory signalling, with no effective treatment options and targets. The present study was designed to investigate the preventive and therapeutic effects of berberine (BBR) and its underlying mechanism in thioacetamide (TAA)-induced ALF. Male SD rats were administered with TAA 300 mg/kg, i.p., thrice to induce ALF and pre- or post-treated with BBR. To decipher the effects of BBR LFT markers, histopathological analysis of key fibrotic and inflammatory proteins was performed. In addition, the levels of pro-inflammatory cytokines IL-1ß, IL-6, and TNF-α were assessed by ELISA. Our work showed TAA-induced ALF animals were associated with increased ALT, AST, bilirubin (LFT markers) and histopathological alterations with profuse infiltration of inflammatory cells in the liver tissue. Treatment with BBR has significantly inhibited LFT markers and histological alterations triggered by TAA. In addition, TAA animals demonstrated increased collagen accumulation and upregulated expression of TGF-ß1, vimentin, and α-SMA compared to control. The excessive accumulation of collagen, TGF-ß1, vimentin, and α-SMA were significantly modulated with BBR treatment. Further, the fluorescence intensity of ROS an activator of NLRP3 including the NLRP3 inflammasome, and its downstream signalling ASC, cleaved IL-1ß, and other pro-inflammatory cytokines like TNF-α and IL-6 stimulated by TAA were attenuated by BBR treatment. The current work indicated that BBR significantly ameliorated TAA-induced ALF by inhibiting the extracellular matrix accumulation associated with the NLRP3/IL-1ß signalling pathway and could be a viable therapeutic option to treat ALF and other fibroinflammatory diseases.

17.
Toxicol Appl Pharmacol ; 486: 116952, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38705399

RESUMO

The incidence of contrast-induced acute kidney injury (CI-AKI) has escalated to become the third most prevalent cause of hospital-acquired AKI, with a lack of efficacious interventions. Berberine (BBR) possesses diverse pharmacological effects and exhibits renoprotective properties; however, limited knowledge exists regarding its impact on CI-AKI. Therefore, our study aimed to investigate the protective effects and underlying mechanisms of BBR on CI-AKI in a mice model, focusing on the nucleotide-binding oligomerization domain-like pyrin domain-containing protein 3 (NLRP3) inflammasome and mitophagy. The CI-AKI mice model was established by administering NG-nitro-L-arginine methyl ester (L-NAME) (10 mg/kg), indomethacin (10 mg/kg), and iohexol (11 g/kg) following water deprivation. A pretreatment of 100 mg/kg of BBR was orally administered to the mice for two weeks. Renal injury markers, damage-associated molecular patterns (DAMPs), renal histopathology, mitochondrial morphology, autophagosomes, and potential mechanisms were investigated. BBR effectively reduced levels of renal injury biomarkers such as serum cystatin C, urea nitrogen, and creatinine, downregulated the protein level of kidney injury molecule 1 (KIM1), and mitigated renal histomorphological damage. Moreover, BBR reduced DAMPs, including high mobility group box-1 (HMGB1), heat shock protein 70 (HSP70), and uric acid (UA). It also alleviated oxidative stress and inflammatory factors such as monocyte chemotactic protein-1 (MCP-1), tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and interleukin-1 beta (IL-1ß). Furthermore, the activation of NLRP3 inflammasome was attenuated in the BBR pretreatment group, as evidenced by both mRNA and protein levels. Electron microscopy and western blotting examination revealed that BBR mitigated mitochondrial damage and enhanced mitophagy. Additionally, BBR increased the P-AMPK/AMPK ratio. These findings indicated that BBR exerted a protective effect against CI-AKI by suppressing NLRP3 inflammasome activation and modulating mitophagy, providing a potential therapeutic strategy for its prevention.


Assuntos
Injúria Renal Aguda , Berberina , Meios de Contraste , Modelos Animais de Doenças , Inflamassomos , Mitofagia , Proteína 3 que Contém Domínio de Pirina da Família NLR , Animais , Masculino , Camundongos , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/patologia , Injúria Renal Aguda/prevenção & controle , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/tratamento farmacológico , Berberina/farmacologia , Inflamassomos/metabolismo , Inflamassomos/efeitos dos fármacos , Rim/efeitos dos fármacos , Rim/patologia , Rim/metabolismo , Camundongos Endogâmicos C57BL , Mitofagia/efeitos dos fármacos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo
18.
Mol Reprod Dev ; 91(8): e23768, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39155689

RESUMO

The pathologic mechanism of polycystic ovary syndrome (PCOS) is related to increased autophagy of granulosa cells. Both berberine and metformin have been shown to improve PCOS, but whether the combination of berberine and metformin can better improve PCOS by inhibiting autophagy remains unclear. PCOS models were constructed by injecting dehydroepiandrosterone into rats, and berberine, metformin or berberine combined with metformin was administered to rats after modeling. Rats' body weight and ovarian weight were measured before and after modeling. Histopathological examination of ovarian tissue and estrous cycle analysis of rats were performed. Insulin resistance, hormone levels, oxidative stress, and lipid metabolism in PCOS rats were assessed. Expression of the AMPK/AKT/mTOR pathway and autophagy-related proteins was analyzed by Western blot assays. Granulosa cells were isolated from rat ovarian tissue and identified by immunofluorescence staining followed by transmission electron microscopy analysis. Berberine combined with metformin reduced the body weight and ovarian weight of PCOS rats, increased the number of primordial and primary follicles, decreased the number of secondary and atretic follicles, normalized the estrous cycle, and improved insulin resistance, androgen biosynthesis, oxidative stress and lipid metabolism disorders, and increased estrogen production. In addition, berberine combined with metformin reduced the number of autophagosomes in granulosa cells, which may be related to AMPK/AKT/mTOR pathway activation, decreased Beclin1 and LC3II/LC3I levels, and increased p62 expression. Berberine combined with metformin could inhibit autophagy by activating the AMPK/AKT/mTOR pathway in PCOS, indicating that berberine combined with metformin is a potential treatment strategy for PCOS.


Assuntos
Autofagia , Berberina , Metformina , Síndrome do Ovário Policístico , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Serina-Treonina Quinases TOR , Feminino , Animais , Metformina/farmacologia , Síndrome do Ovário Policístico/metabolismo , Síndrome do Ovário Policístico/tratamento farmacológico , Síndrome do Ovário Policístico/patologia , Autofagia/efeitos dos fármacos , Berberina/farmacologia , Ratos , Serina-Treonina Quinases TOR/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteínas Quinases Ativadas por AMP/metabolismo , Ratos Sprague-Dawley , Células da Granulosa/efeitos dos fármacos , Células da Granulosa/metabolismo , Células da Granulosa/patologia , Resistência à Insulina , Ovário/efeitos dos fármacos , Ovário/metabolismo , Ovário/patologia , Quimioterapia Combinada , Estresse Oxidativo/efeitos dos fármacos
19.
Diabet Med ; 41(7): e15319, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38711201

RESUMO

INTRODUCTION: Berberine (BBR) is an alkaloid found in plants. It has neuroprotective, anti-inflammatory and lipid-lowering activity. However, the efficacy of treatment with BBR and the mechanisms through which it acts need further study. AIMS: This study investigated the therapeutic effects and the mechanism of action of BBR on obesity-induced insulin resistance in peripheral tissues. METHODS: High-fat-fed C57BL/6J mice and low-fat-fed C57BL/6J mice with miR-27a overexpression were given BBR intervention (100 mg/kg, po), and the oral glucose tolerance test (OGTT) and insulin tolerance test (ITT) were performed. Palmitic acid-stimulated hypertrophic adipocyte models were treated with BBR (10 µM). Related indicators and protein expression levels were examined. RESULTS: The AUCs of the OGTT and the ITT in the BBR intervention group were reduced significantly (p < 0.01) (p < 0.05), and the serum biochemical parameters, including FBG, TC, TG and LDL-C were significantly reduced after BBR intervention. In the in vitro experiments, the triglyceride level and volume of lipid droplets decreased significantly after BBR intervention (p < 0.01) (p < 0.05). Likewise, BBR ameliorates skeletal muscle and pancreas insulin signalling pathways in vivo and in vitro. DISCUSSION: The results showed that BBR significantly ameliorated insulin resistance, reduced body weight and percent body fat and improved serum biochemical parameters in mice. Likewise, BBR reduced triglyceride level and lipid droplet volume in hypertrophic adipocytes, BBR improved obesity effectively. Meanwhile, BBR ameliorated the histomorphology of the pancreas, and skeletal muscle and pancreas insulin related signalling pathways of islets in in vitro and in vivo experiments. The results further demonstrated that BBR inhibited miR-27a levels in serum from obese mice and supernatant of hypertrophic adipocytes. miR-27a overexpression in low-fat fed mice indicated that miR-27a caused insulin resistance, and BBR intervention significantly improved the miR-27a induced insulin resistance status. CONCLUSION: This study demonstrates the important role of BBR in obesity-induced peripheral insulin resistance and suggest that the mechanism of its effect may be inhibition of miR-27a secretion.


Assuntos
Berberina , Resistência à Insulina , Camundongos Endogâmicos C57BL , MicroRNAs , Obesidade , Berberina/farmacologia , Berberina/uso terapêutico , Animais , Obesidade/metabolismo , Obesidade/tratamento farmacológico , Camundongos , MicroRNAs/metabolismo , MicroRNAs/genética , Masculino , Dieta Hiperlipídica , Adipócitos/metabolismo , Adipócitos/efeitos dos fármacos , Teste de Tolerância a Glucose
20.
Arch Microbiol ; 206(7): 292, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38849633

RESUMO

In recent years, the evolution of antibiotic resistance has led to the inefficacy of several antibiotics, and the reverse of resistance was a novel method to solve this problem. We previously demonstrated that matrine (Mat) and berberine hydrochloride (Ber) had a synergistic effect against multidrug-resistant Escherichia coli (MDREC). This study aimed to demonstrate the effect of Mat combined with Ber in reversing the resistance of MDREC. The MDREC was sequenced passaged in the presence of Mat, Ber, and a combination of Mat and Ber, which did not affect its growth. The reverse rate was up to 39.67% after MDREC exposed to Mat + Ber for 15 days. The strain that reversed resistance was named drug resistance reversed E. coli (DRREC) and its resistance to ampicillin, streptomycin, gentamicin, and tetracycline was reversed. The MIC of Gentamicin Sulfate (GS) against DRREC decreased 128-fold to 0.63 µg/mL, and it was stable within 20 generations. Furthermore, the susceptible phenotype of DRREC remained stable within 20 generations, as well. The LD50 of DRREC for chickens was 8.69 × 109 CFU/mL. qRT-PCR assays revealed that the transcript levels of antibiotic-resistant genes and virulence genes in the DRREC strain were significantly lower than that in the MDREC strain (P < 0.05). In addition, GS decreased the death, decreased the bacterial loading in organs, alleviated the injury of the spleen and liver, and decreased the cytokine levels in the chickens infected by the DRREC strain. In contrast, the therapeutic effect of GS in chickens infected with MDREC was not as evident. These findings suggest that the combination of Mat and Ber has potential for reversing resistance to MDREC.


Assuntos
Alcaloides , Antibacterianos , Berberina , Galinhas , Farmacorresistência Bacteriana Múltipla , Infecções por Escherichia coli , Escherichia coli , Gentamicinas , Matrinas , Testes de Sensibilidade Microbiana , Doenças das Aves Domésticas , Quinolizinas , Animais , Gentamicinas/farmacologia , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Berberina/farmacologia , Antibacterianos/farmacologia , Quinolizinas/farmacologia , Infecções por Escherichia coli/veterinária , Infecções por Escherichia coli/tratamento farmacológico , Infecções por Escherichia coli/microbiologia , Alcaloides/farmacologia , Doenças das Aves Domésticas/microbiologia , Doenças das Aves Domésticas/tratamento farmacológico , Virulência/efeitos dos fármacos , Sinergismo Farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA