Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Ecol Lett ; 26(4): 640-657, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36829296

RESUMO

Variation in species richness across the tree of life, accompanied by the incredible variety of ecological and morphological characteristics found in nature, has inspired many studies to link traits with species diversification. Angiosperms are a highly diverse group that has fundamentally shaped life on earth since the Cretaceous, and illustrate how species diversification affects ecosystem functioning. Numerous traits and processes have been linked to differences in species richness within this group, but we know little about their relative importance and how they interact. Here, we synthesised data from 152 studies that used state-dependent speciation and extinction (SSE) models on angiosperm clades. Intrinsic traits related to reproduction and morphology were often linked to diversification but a set of universal drivers did not emerge as traits did not have consistent effects across clades. Importantly, SSE model results were correlated to data set properties - trees that were larger, older or less well-sampled tended to yield trait-dependent outcomes. We compared these properties to recommendations for SSE model use and provide a set of best practices to follow when designing studies and reporting results. Finally, we argue that SSE model inferences should be considered in a larger context incorporating species' ecology, demography and genetics.


Assuntos
Evolução Biológica , Magnoliopsida , Filogenia , Ecossistema , Magnoliopsida/genética , Fenótipo , Especiação Genética , Biodiversidade
2.
Mol Ecol ; 31(1): 161-173, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34626522

RESUMO

Microbial generalists and specialists coexist in the soil environment while having distinctive impacts on microbial community dynamics. In microbial ecology, the underlying mechanisms as to why a species is a generalist or a specialist remain ambiguous. Herein, we collected soils across a national scale and identified bacterial generalists and specialists according to niche breadth at the species level (OTU level), and the single-nucleotide differences in each species were measured to investigate intraspecific variation (at zero-radius OTU level). Compared with that of the specialists, the intraspecific variation of the generalists was much higher, which ensured their wider niche breadth and lower variability. The higher asynchrony and different niche preferences of conspecific individuals and the higher dormancy potential within the generalists further contributed to their stability in varying environments. Besides, generalists were less controlled by environmental filtering, which was indicated by the stronger signature of stochastic processes in their assembly, and had higher diversification and transition rates that allowed them to adapt to environmental changes to a greater extent than specialists. Overall, this study provides a new comprehensive understanding of the rules of assembly and the evolutionary roles of bacterial generalists and specialists. It also highlights the importance of intraspecific variation and the dormancy potential in the stability of species.


Assuntos
Evolução Biológica , Microbiota , Adaptação Fisiológica , Bactérias/genética , Humanos , Solo
3.
Ann Bot ; 130(2): 199-214, 2022 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-35737947

RESUMO

BACKGROUND AND AIMS: Atripliceae evolved and diversified by dispersals and radiations across continents in both hemispheres, colonizing similar semi-arid, saline-alkaline environments throughout the world. Meanwhile, its species developed different life forms, photosynthetic pathways, mono- or dioecy, and different morphological features in flowers, fruiting bracteoles and seeds. In this study, we introduce a first approach to the macroevolutionary patterns and diversification dynamics of the Atripliceae to understand how time, traits, speciation, extinction and new habitats influenced the evolution of this lineage. METHODS: We performed molecular phylogenetic analyses and clade age estimation of Atripliceae to apply time-, trait- and geographic-dependent diversification analyses and ancestral state reconstructions to explore diversification patterns within the tribe. KEY RESULTS: Opposite diversification dynamics within the two major clades of Atripliceae, the Archiatriplex and Atriplex clades, could explain the unbalanced species richness between them; we found low mean speciation rates in the Archiatriplex clade and one shift to higher speciation rates placed in the branch of the Atriplex core. This acceleration in diversification seems to have started before the transition between C3 and C4 metabolism and before the arrival of Atriplex in the Americas, and matches the Mid-Miocene Climatic Optimum. Besides, the American species of Atriplex exhibit slightly higher net diversification rates than the Australian and Eurasian ones. While time seems not to be associated with diversification, traits such as life form, photosynthetic pathway and plant sex may have played roles as diversification drivers. CONCLUSIONS: Traits more than time played a key role in Atripliceae diversification, and we could speculate that climate changes could have triggered speciation. The extreme arid or saline environments where Atripliceae species prevail may explain its particular evolutionary trends and trait correlations compared with other angiosperms and highlight the importance of conservation efforts needed to preserve them as genetic resources to deal with climatic changes.


Assuntos
Amaranthaceae , Chenopodiaceae , Amaranthaceae/genética , Austrália , Biodiversidade , Evolução Biológica , Especiação Genética , Fenótipo , Filogenia
4.
BMC Evol Biol ; 18(1): 69, 2018 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-29739313

RESUMO

BACKGROUND: Phylogenetic comparative methods allow us to test evolutionary hypotheses without the benefit of an extensive fossil record. These methods, however, make simplifying assumptions, among them that clades are always increasing or stable in diversity, an assumption we know to be false. This study simulates hypothetical clades to test whether the Binary State Speciation and Extinction (BiSSE) method can be used to correctly detect relative differences in diversification rate between ancestral and derived character states even as net diversification rates are declining overall. We simulate clades with declining but positive diversification rates, as well those in which speciation rates decline below extinction rates so that they are losing richness for part of their history. We run these analyses both with simulated symmetric and asymmetric speciation rates to test whether BiSSE can be used to detect them correctly. RESULTS: For simulations with a neutral character, the fit for a BiSSE model with a neutral character is better than alternative models so long as net diversification rates remain positive. Once net diversification rates become negative, the BiSSE model with the greatest likelihood often has a non-neutral character, even though there is no such character in the simulation. BiSSE's usefulness in detecting real asymmetry in speciation rates improves with clade age, even well after net diversification rates have become negative. CONCLUSIONS: BiSSE is most useful in analyzing clades of intermediate age, before they have reached peak diversity and gone into decline. After this point, users of BiSSE risk incorrectly inferring differential evolutionary rates when none exist. Fortunately, most studies using BiSSE and similar models focus on rapid, recent diversifications, and are less likely to encounter the biases BiSSE models are subject to for older clades. For extant groups that were once more diverse than now, however, caution should be taken in inferring past diversification patterns without fossil data.


Assuntos
Algoritmos , Extinção Biológica , Especiação Genética , Animais , Simulação por Computador , Filogenia , Característica Quantitativa Herdável , Fatores de Tempo
5.
Brain Behav Evol ; 91(3): 148-157, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30099462

RESUMO

When comparative neuromorphological studies are extended into evolutionary contexts, traits of interest are often linked to diversification patterns. Features demonstrably associated with increases in diversification rates and the infiltration or occupation of novel niche spaces are often termed "key innovations." Within the past decade, phylogenetically informed methods have been developed to test key innovation hypotheses and evaluate the influence these traits have had in shaping modern faunas. This is primarily accomplished by estimating state-dependent speciation and extinction rates. These methods have important caveats and guidelines related to both calculation and interpretation, which are necessary to understand in cases of discrete (qualitative) character analysis, as can be common when studying the evolution of neuromorphology. In such studies, inclusion of additional characters, acknowledgement of character codistribution, and addition of sister clade comparison should be explored to ensure model accuracy. Even so, phylogenies provide a survivor-only examination of character evolution, and paleontological contexts may be necessary to replicate and confirm results. Here, I review these issues in the context of selective brain cooling - a neurovascular-mediated osmoregulatory physiology that dampens hypothalamic responses to heat stress and reduces evaporative water loss in large-bodied mammals. This binary character provides an example of the interplay between sample size, evenness, and character codistribution. Moreover, it allows for an opportunity to compare phylogenetically constrained results with paleontological data, augmenting survivor-only analyses with observable extinction patterns. This trait- dependent diversification example indicates that selective brain cooling is significantly associated with the generation of modern large-mammal faunas. Importantly, paleontological data validate phylogenetic patterns and demonstrate how suites of characters worked in concert to establish the large-mammal communities of today.


Assuntos
Regulação da Temperatura Corporal/fisiologia , Encéfalo/fisiologia , Fósseis , Osmorregulação/fisiologia , Filogenia , Animais , Encéfalo/irrigação sanguínea
6.
J Evol Biol ; 30(2): 313-325, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27792262

RESUMO

The binary-state speciation and extinction (BiSSE) model has been used in many instances to identify state-dependent diversification and reconstruct ancestral states. However, recent studies have shown that the standard procedure of comparing the fit of the BiSSE model to constant-rate birth-death models often inappropriately favours the BiSSE model when diversification rates vary in a state-independent fashion. The newly developed HiSSE model enables researchers to identify state-dependent diversification rates while accounting for state-independent diversification at the same time. The HiSSE model also allows researchers to test state-dependent models against appropriate state-independent null models that have the same number of parameters as the state-dependent models being tested. We reanalyse two data sets that originally used BiSSE to reconstruct ancestral states within squamate reptiles and reached surprising conclusions regarding the evolution of toepads within Gekkota and viviparity across Squamata. We used this new method to demonstrate that there are many shifts in diversification rates across squamates. We then fit various HiSSE submodels and null models to the state and phylogenetic data and reconstructed states under these models. We found that there is no single, consistent signal for state-dependent diversification associated with toepads in gekkotans or viviparity across all squamates. Our reconstructions show limited support for the recently proposed hypotheses that toepads evolved multiple times independently in Gekkota and that transitions from viviparity to oviparity are common in Squamata. Our results highlight the importance of considering an adequate pool of models and null models when estimating diversification rate parameters and reconstructing ancestral states.


Assuntos
Lagartos , Oviparidade , Filogenia , Animais , Serpentes
7.
J Evol Biol ; 30(7): 1429-1436, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28434199

RESUMO

We published a phylogenetic comparative analysis that found geckos had gained and lost adhesive toepads multiple times over their long evolutionary history (Gamble et al., PLoS One, 7, 2012, e39429). This was consistent with decades of morphological studies showing geckos had evolved adhesive toepads on multiple occasions and that the morphology of geckos with ancestrally padless digits can be distinguished from secondarily padless forms. Recently, Harrington & Reeder (J. Evol. Biol., 30, 2017, 313) reanalysed data from Gamble et al. (PLoS One, 7, 2012, e39429) and found little support for the multiple origins hypothesis. Here, we argue that Harrington and Reeder failed to take morphological evidence into account when devising ancestral state reconstruction models and that these biologically unrealistic models led to erroneous conclusions about the evolution of adhesive toepads in geckos.


Assuntos
Lagartos/anatomia & histologia , Animais , Evolução Biológica , Extremidades , Filogenia , Serpentes
8.
Syst Biol ; 64(3): 532-44, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25616375

RESUMO

Virtually all models for reconstructing ancestral states for discrete characters make the crucial assumption that the trait of interest evolves at a uniform rate across the entire tree. However, this assumption is unlikely to hold in many situations, particularly as ancestral state reconstructions are being performed on increasingly large phylogenies. Here, we show how failure to account for such variable evolutionary rates can cause highly anomalous (and likely incorrect) results, while three methods that accommodate rate variability yield the opposite, more plausible, and more robust reconstructions. The random local clock method, implemented in BEAST, estimates the position and magnitude of rate changes on the tree; split BiSSE estimates separate rate parameters for pre-specified clades; and the hidden rates model partitions each character state into a number of rate categories. Simulations show the inadequacy of traditional models when characters evolve with both asymmetry (different rates of change between states within a character) and heterotachy (different rates of character evolution across different clades). The importance of accounting for rate heterogeneity in ancestral state reconstruction is highlighted empirically with a new analysis of the evolution of viviparity in squamate reptiles, which reveal a predominance of forward (oviparous-viviparous) transitions and very few reversals.


Assuntos
Classificação/métodos , Simulação por Computador , Filogenia , Répteis/classificação , Répteis/fisiologia , Animais , Répteis/genética , Tempo , Viviparidade não Mamífera/fisiologia
9.
J Hum Evol ; 83: 65-73, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25887279

RESUMO

This study tests the hypothesis that the third molars of Callimico goeldii represent a reversal in evolutionary tooth loss within the Callitrichinae. Loss of third molars is part of a suite of unusual characters that has been used to unite marmosets and tamarins in a clade to the exclusion of Callimico. However, molecular phylogenetic studies provide consistent support for the hypothesis that marmosets are more closely related to Callimico than to tamarins, raising the possibility that some or all of the features shared by marmosets and tamarins are homoplastic. Here, I use the binary-state speciation and extinction (BiSSE) model and a sample of 249 extant primate species to demonstrate that, given the shape of the primate phylogenetic tree and the distribution of character states in extant taxa, models in which M3 loss is constrained to be irreversible are much less likely than models in which reversals are allowed to occur. This result provides support for the idea that the last common ancestor of Callimico and marmosets was characterized by the two-molared phenotype. The M3s of Callimico therefore appear to be secondarily derived rather than plesiomorphic. This conclusion may also apply to the other apparently plesiomorphic traits found in Callimico. Hypotheses regarding the re-evolution of M3 in the callitrichine clade and the origin and maintenance of the two-molared phenotype are discussed.


Assuntos
Evolução Biológica , Callimico/anatomia & histologia , Callitrichinae/anatomia & histologia , Dente Canino/anatomia & histologia , Dentição , Dente Serotino/anatomia & histologia , Animais , Fósseis , Modelos Dentários , Paleodontologia , Fenótipo , Filogenia
10.
Ecol Lett ; 17(1): 13-21, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23953272

RESUMO

Viviparity has putatively evolved 115 times in squamates (lizards and snakes), out of only ~ 140 origins in vertebrates, and is apparently related to colder climates and other factors such as body size. Viviparity apparently evolves from oviparity via egg-retention, and such taxa may thus still have the machinery to produce thick-shelled eggs. Parity mode is also associated with variable diversification rates in some groups. We reconstruct ancestral parity modes accounting for state-dependent diversification in a large-scale phylogenetic analysis, and find strong support for an early origin of viviparity at the base of Squamata, and a complex pattern of subsequent transitions. Viviparous lineages have higher rates of speciation and extinction, and greater species turnover through time. Viviparity is associated with lower environmental and body temperatures in lizards and amphisbaenians, but not female mass. These results suggest that parity mode is a labile trait that shifts frequently in response to ecological conditions.


Assuntos
Evolução Biológica , Lagartos/fisiologia , Oviparidade , Serpentes/fisiologia , Viviparidade não Mamífera , Animais
11.
New Phytol ; 202(4): 1382-1397, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24611540

RESUMO

Succulent plants are widely distributed, reaching their highest diversity in arid and semi-arid regions. Their origin and diversification is thought to be associated with a global expansion of aridity. We test this hypothesis by investigating the tempo and pattern of Cactaceae diversification. Our results contribute to the understanding of the evolution of New World Succulent Biomes. We use the most taxonomically complete dataset currently available for Cactaceae. We estimate divergence times and utilize Bayesian and maximum likelihood methods that account for nonrandom taxonomic sampling, possible extinction scenarios and phylogenetic uncertainty to analyze diversification rates, and evolution of growth form and pollination syndrome. Cactaceae originated shortly after the Eocene-Oligocene global drop in CO2 , and radiation of its richest genera coincided with the expansion of aridity in North America during the late Miocene. A significant correlation between growth form and pollination syndrome was found, as well as a clear state dependence between diversification rate, and pollination and growth-form evolution. This study suggests a complex picture underlying the diversification of Cactaceae. It not only responded to the availability of new niches resulting from aridification, but also to the correlated evolution of novel growth forms and reproductive strategies.


Assuntos
Cactaceae/genética , Biodiversidade , Evolução Biológica , Cactaceae/fisiologia , Filogenia
12.
J Evol Biol ; 27(10): 2035-45, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25066512

RESUMO

Biologists have long sought to understand the processes underlying disparities in clade size across the tree of life and the extent to which such clade size differences can be attributed to the evolution of particular traits. The association of certain character states with species-rich clades suggests that trait evolution can lead to increased diversification, but such a pattern could also arise due other processes, such as directional trait evolution. Recent advances in phylogenetic comparative methods have provided new statistical approaches for distinguishing between these intertwined and potentially confounded macroevolutionary processes. Here, we review the historical development of methods for detecting state-dependent diversification and explore what new methods have revealed about classic examples of traits that affect diversification, including evolutionary dead ends, key innovations and geographic traits. Applications of these methods thus far collectively suggest that trait diversity commonly arises through the complex interplay between transition, speciation and extinction rates and that long hypothesized evolutionary dead ends and key innovations are instead often cases of directional trends in trait evolution.


Assuntos
Evolução Biológica , Especiação Genética , Fenótipo , Filogenia , Teorema de Bayes , Funções Verossimilhança , Modelos Genéticos
14.
Evol Lett ; 3(5): 521-533, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31636944

RESUMO

A striking characteristic of the Western North American flora is the repeated evolution of hummingbird pollination from insect-pollinated ancestors. This pattern has received extensive attention as an opportunity to study repeated trait evolution as well as potential constraints on evolutionary reversibility, with little attention focused on the impact of these transitions on species diversification rates. Yet traits conferring adaptation to divergent pollinators potentially impact speciation and extinction rates, because pollinators facilitate plant reproduction and specify mating patterns between flowering plants. Here, we examine macroevolutionary processes affecting floral pollination syndrome diversity in the largest North American genus of flowering plants, Penstemon. Within Penstemon, transitions from ancestral bee-adapted flowers to hummingbird-adapted flowers have frequently occurred, although hummingbird-adapted species are rare overall within the genus. We inferred macroevolutionary transition and state-dependent diversification rates and found that transitions from ancestral bee-adapted flowers to hummingbird-adapted flowers are associated with reduced net diversification rate, a finding based on an estimated 17 origins of hummingbird pollination in our sample. Although this finding is congruent with hypotheses that hummingbird adaptation in North American Flora is associated with reduced species diversification rates, it contrasts with studies of neotropical plant families where hummingbird pollination has been associated with increased species diversification. We further used the estimated macroevolutionary rates to predict the expected pattern of floral diversity within Penstemon over time, assuming stable diversification and transition rates. Under these assumptions, we find that hummingbird-adapted species are expected to remain rare due to their reduced diversification rates. In fact, current floral diversity in the sampled Penstemon lineage, where less than one-fifth of species are hummingbird adapted, is consistent with predicted levels of diversity under stable macroevolutionary rates.

15.
Evolution ; 72(11): 2308-2324, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30226270

RESUMO

The state-dependent speciation and extinction (SSE) models have recently been criticized due to their high rates of "false positive" results. Many researchers have advocated avoiding SSE models in favor of other "nonparametric" or "semiparametric" approaches. The hidden Markov modeling (HMM) approach provides a partial solution to the issues of model adequacy detected with SSE models. The inclusion of "hidden states" can account for rate heterogeneity observed in empirical phylogenies and allows for reliable detection of state-dependent diversification or diversification shifts independent of the trait of interest. However, the adoption of HMM has been hampered by the interpretational challenges of what exactly a "hidden state" represents, which we clarify herein. We show that HMMs in combination with a model-averaging approach naturally account for hidden traits when examining the meaningful impact of a suspected "driver" of diversification. We also extend the HMM to the geographic state-dependent speciation and extinction (GeoSSE) model. We test the efficacy of our "GeoHiSSE" extension with both simulations and an empirical dataset. On the whole, we show that hidden states are a general framework that can distinguish heterogeneous effects of diversification attributed to a focal character.


Assuntos
Extinção Biológica , Especiação Genética , Modelos Teóricos , Geografia , Cadeias de Markov , Filogenia , Dispersão Vegetal , Traqueófitas/classificação , Traqueófitas/fisiologia
16.
PeerJ ; 6: e5495, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30155369

RESUMO

The development of methods to estimate rates of speciation and extinction from time-calibrated phylogenies has revolutionized evolutionary biology by allowing researchers to correlate diversification rate shifts with causal factors. A growing number of researchers are interested in testing whether the evolution of a trait or a trait variant has influenced speciation rate, and three modelling methods-BiSSE, MEDUSA and BAMM-have been widely used in such studies. We simulated phylogenies with a single speciation rate shift each, and evaluated the power of the three methods to detect these shifts. We varied the degree of increase in speciation rate (speciation rate asymmetry), the number of tips, the tip-ratio bias (ratio of number of tips with each character state) and the relative age in relation to overall tree age when the rate shift occurred. All methods had good power to detect rate shifts when the rate asymmetry was strong and the sizes of the two lineages with the distinct speciation rates were large. Even when lineage size was small, power was good when rate asymmetry was high. In our simulated scenarios, small lineage sizes appear to affect BAMM most strongly. Tip-ratio influenced the accuracy of speciation rate estimation but did not have a strong effect on power to detect rate shifts. Based on our results, we provide suggestions to users of these methods.

17.
Evolution ; 71(6): 1432-1442, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28316067

RESUMO

It is widely assumed that phenotypic traits can influence rates of speciation and extinction, and several statistical approaches have been used to test for correlations between character states and lineage diversification. Recent work suggests that model-based tests of state-dependent speciation and extinction are sensitive to model inadequacy and phylogenetic pseudoreplication. We describe a simple nonparametric statistical test ("FiSSE") to assess the effects of a binary character on lineage diversification rates. The method involves computing a test statistic that compares the distributions of branch lengths for lineages with and without a character state of interest. The value of the test statistic is compared to a null distribution generated by simulating character histories on the observed phylogeny. Our tests show that FiSSE can reliably infer trait-dependent speciation on phylogenies of several hundred tips. The method has low power to detect trait-dependent extinction but can infer state-dependent differences in speciation even when net diversification rates are constant. We assemble a range of macroevolutionary scenarios that are problematic for likelihood-based methods, and we find that FiSSE does not show similarly elevated false positive rates. We suggest that nonparametric statistical approaches, such as FiSSE, provide an important complement to formal process-based models for trait-dependent diversification.


Assuntos
Especiação Genética , Funções Verossimilhança , Filogenia , Extinção Biológica , Fenótipo
18.
Evol Bioinform Online ; 12: 165-74, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27486297

RESUMO

The Binary State Speciation and Extinction (BiSSE) method is one of the most popular tools for investigating the rates of diversification and character evolution. Yet, based on previous simulation studies, it is commonly held that the BiSSE method requires phylogenetic trees of fairly large sample sizes (>300 taxa) in order to distinguish between the different models of speciation, extinction, or transition rate asymmetry. Here, the power of the BiSSE method is reevaluated by simulating trees of both small and large sample sizes (30, 60, 90, and 300 taxa) under various asymmetry models and root state assumptions. Results show that the power of the BiSSE method can be much higher, also in trees of small sample size, for detecting differences in speciation rate asymmetry than anticipated earlier. This, however, is not a consequence of any conceptual or mathematical flaw in the method per se but rather of assumptions about the character state at the root of the simulated trees and thus the underlying macroevolutionary model, which led to biased results and conclusions in earlier power assessments. As such, these earlier simulation studies used to determine the power of BiSSE were not incorrect but biased, leading to an overestimation of type-II statistical error for detecting differences in speciation rate but not for extinction and transition rates.

19.
Front Plant Sci ; 7: 1145, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27555851

RESUMO

The species-rich genus Peperomia (Black Pepper relatives) is the only genus among early diverging angiosperms where epiphytism evolved. The majority of fruits of Peperomia release sticky secretions or exhibit hook-shaped appendages indicative of epizoochorous dispersal, which is in contrast to other flowering plants, where epiphytes are generally characterized by fruit morphological adaptations for anemochory or endozoochory. We investigate fruit characters using Cryo-SEM. Comparative phylogenetic analyses are applied for the first time to include life form and fruit character information to study diversification in Peperomia. Likelihood ratio tests uncover correlated character evolution. We demonstrate that diversification within Peperomia is not homogenous across its phylogeny, and that net diversification rates increase by twofold within the most species-rich subgenus. In contrast to former land plant studies that provide general evidence for increased diversification in epiphytic lineages, we demonstrate that the evolution of epiphytism within Peperomia predates the diversification shift. An epiphytic-dependent diversification is only observed for the background phylogeny. An elevated frequency of life form transitions between epiphytes and terrestrials and thus evolutionary flexibility of life forms is uncovered to coincide with the diversification shift. The evolution of fruits showing dispersal related structures is key to diversification in the foreground region of the phylogeny and postdates the evolution of epiphytism. We conclude that the success of Peperomia, measured in species numbers, is likely the result of enhanced vertical and horizontal dispersal ability and life form flexibility but not the evolution of epiphytism itself.

20.
Evolution ; 68(1): 163-75, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24372602

RESUMO

The evolution of key innovations, novel traits that promote diversification, is often seen as major driver for the unequal distribution of species richness within the tree of life. In this study, we aim to determine the factors underlying the extraordinary radiation of the subfamily Bromelioideae, one of the most diverse clades among the neotropical plant family Bromeliaceae. Based on an extended molecular phylogenetic data set, we examine the effect of two putative key innovations, that is, the Crassulacean acid metabolism (CAM) and the water-impounding tank, on speciation and extinction rates. To this aim, we develop a novel Bayesian implementation of the phylogenetic comparative method, binary state speciation and extinction, which enables hypotheses testing by Bayes factors and accommodates the uncertainty on model selection by Bayesian model averaging. Both CAM and tank habit were found to correlate with increased net diversification, thus fulfilling the criteria for key innovations. Our analyses further revealed that CAM photosynthesis is correlated with a twofold increase in speciation rate, whereas the evolution of the tank had primarily an effect on extinction rates that were found five times lower in tank-forming lineages compared to tank-less clades. These differences are discussed in the light of biogeography, ecology, and past climate change.


Assuntos
Bromeliaceae/genética , Evolução Molecular , Especiação Genética , Modelos Genéticos , Bromeliaceae/classificação , Bromeliaceae/metabolismo , Fotossíntese/genética , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA