Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Antibiotics (Basel) ; 13(8)2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39200077

RESUMO

Given the urgent need for novel methods to control the spread of multidrug-resistant microorganisms, this study presents a green synthesis approach to produce silver nanoparticles (AgNPs) using the bark extract from Anadenanthera colubrina (Vell.) Brenan var. colubrina. The methodology included obtaining the extract and characterizing the AgNPs, which revealed antimicrobial activity against MDR bacteria. A. colubrina species is valued in indigenous and traditional medicine for its medicinal properties. Herein, it was employed to synthesize AgNPs with effective antibacterial activity (MIC = 19.53-78.12 µM) against clinical isolates from the ESKAPEE group, known for causing high hospitalization costs and mortality rates. Despite its complexity, AgNP synthesis is an affordable method with minimal environmental impacts and risks. Plant-synthesized AgNPs possess unique characteristics that affect their biological activity and cytotoxicity. In this work, A. colubrina bark extract resulted in the synthesis of nanoparticles measuring 75.62 nm in diameter, with a polydispersity index of 0.17 and an average zeta potential of -29 mV, as well as low toxicity for human erythrocytes, with a CC50 value in the range of 961 µM. This synthesis underscores its innovative potential owing to its low toxicity, suggesting applicability across several areas and paving the way for future research.

2.
Front Microbiol ; 13: 881404, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35722297

RESUMO

Wound healing is a complex phenomenon particularly owing to the rise in antimicrobial resistance. This has attracted the attention of the scientific community to search for new alternative solutions. Among these, silver being antimicrobial has been used since ancient times. Considering this fact, the main goal of our study was to evaluate the wound-healing ability of mycofabricated silver nanoparticles (AgNPs). We have focused on the formulation of silver nanogel for the management of wounds in albino Wistar rats. Mycosynthesized AgNPs from Fusarium oxysporum were used for the development of novel wound-healing antimicrobial silver nanogel with different concentrations of AgNPs, i.e., 0.1, 0.5, and 1 mg g-1. The formulated silver nanogel demonstrated excellent wound-healing activity in the incision, excision, and burn wound-healing model. In the incision wound-healing model, silver nanogel at a concentration of 0.5 mg g-1 exhibited superior wound-healing effect, whereas in the case of excision and burn wound-healing model, silver nanogel at the concentrations of 0.1 and 1 mg g-1 showed enhanced wound-healing effect, respectively. Moreover, silver nanogel competently arrests the bacterial growth on the wound surface and offers an improved local environment for scald wound healing. Histological studies of healed tissues and organs of the rat stated that AgNPs at less concentration (1 mg g-1) do not show any toxic or adverse effect on the body and promote wound healing of animal tissue. Based on these studies, we concluded that the silver nanogel prepared from mycosynthesized AgNPs can be used as a promising antimicrobial wound dressing.

3.
Chemosphere ; 292: 133397, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34954197

RESUMO

Despite significant progress made in the past two decades, silver nanoparticles (AgNPs) have not yet made it to the clinical trials. In addition, they showed both positive and negative effects in their toxicity from unicellular organism to well-developed multi-organ system, for example, rat. Although it is generally accepted that capped (bio)molecules have synergistic bioactivities and diminish the toxicity of metallic Ag core, convincing evidence is completely lacking. Therefore, in this review, we first highlight the recent in vivo toxicity studies of chemically manufactured AgNPs, biologically synthesized AgNPs and reference AgNPs of European Commission. Then, their toxic effects are compared with each other and the overlooked factors leading to the potential conflict of obtained toxicity results are discussed. Finally, suggestions are given to better design and conduct the future toxicity studies and to fast-track the successful clinical translation of AgNPs as well.


Assuntos
Nanopartículas Metálicas , Prata , Animais , Nanopartículas Metálicas/toxicidade , Ratos , Prata/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA