Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Water Health ; 22(4): 652-672, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38678420

RESUMO

A new type of bio-composite material is being produced from water-recovered resources such as cellulose fibres from wastewater, calcite from the drinking water softening process, and grass and reed from waterboard sites. These raw materials may be contaminated with pathogens and chemicals such as Escherichia coli, heavy metals, and resin compounds. A novel risk assessment framework is proposed here, addressing human health risks during the production of new bio-composite materials. The developed framework consists of a combination of existing risk assessment methods and is based on three main steps: hazard identification, qualitative risk mapping, and quantitative risk assessment. The HAZOP and Event Tree Analysis methodologies were used for hazard identification and risk mapping stages. Then, human health risks were quantitatively assessed using quantitative chemical risk assessment, evaluating cancer and non-cancer risk, and quantitative microbial risk assessment. The deterministic and the stochastic approaches were performed for this purpose. The contamination of raw materials may pose human health concerns, resulting in cancer risk above the threshold. Microbial risk is also above the safety threshold. Additional analysis would be significant as future research to better assess the microbial risk in biocomposite production. The framework has been effectively used for chemical and microbial risk assessment.


Assuntos
Recursos Hídricos , Medição de Risco , Humanos , Águas Residuárias/análise , Águas Residuárias/química , Águas Residuárias/microbiologia , Poluentes Químicos da Água/análise
2.
AAPS PharmSciTech ; 25(7): 204, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39237789

RESUMO

Benign hyperplasia (BHP) is a common disorder that affects men over the age of 60 years. Transurethral resection of the prostate (TURP) is the gold standard for operative treatment, but a range of drugs are also available to improve quality of life and to reduce BHP-associated urinary tract infections and complications. Darifenacin, an anti-muscarinic agent, has been found effective for relieving symptoms of overactive bladder associated with BHP, but the drug has poor solubility and bioavailability, which are major challenges in product development. An inorganic/organic bio-composite with gastric pH-resistant property was synthesized for the targeted oral delivery of Darifenacin to the lower gastrointestinal tract (GIT). This development was accomplished through co-precipitation of calcium carbonate in quince seed-based mucilage. The FTIR, XRD, DSC, and TGA results showed good drug-polymer compatibility, and the SEM images showed calcite formation in the quince hydrogel system. After 72 h, the drug release of 34% and 75% were observed in acidic (0.1N HCl) and 6.8 pH phosphate buffer, respectively. A restricted/less drug was permeated through gastric membrane (21.8%) as compared to permeation through intestinal membrane (65%.) The developed composite showed significant reduction in testosterone-induced prostatic hyperplasia (2.39 ± 0.12***) as compared to untreated diseased animal group. No sign of organ toxicity was observed against all the developed composites. In this study, we developed an inorganic-organic composite system that is highly biocompatible and effective for targeting the lower GIT, thereby avoiding the first-pass metabolism of darifenacin.


Assuntos
Benzofuranos , Pirrolidinas , Solubilidade , Administração Oral , Animais , Benzofuranos/administração & dosagem , Benzofuranos/farmacocinética , Benzofuranos/química , Benzofuranos/farmacologia , Masculino , Pirrolidinas/química , Pirrolidinas/administração & dosagem , Liberação Controlada de Fármacos , Sistemas de Liberação de Medicamentos/métodos , Ratos , Hiperplasia Prostática/tratamento farmacológico , Antagonistas Muscarínicos/administração & dosagem , Antagonistas Muscarínicos/farmacocinética , Disponibilidade Biológica , Carbonato de Cálcio/química , Concentração de Íons de Hidrogênio , Hidrogéis/química , Polímeros/química
3.
Molecules ; 27(9)2022 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-35566103

RESUMO

Intelligent packaging with indicators that provide information about the quality of food products can inform the consumer regarding food safety and reduce food waste. A solid material for a pH-responsive indicator was developed from hydroxypropyl methylcellulose (HPMC) composited with microcrystalline cellulose (MCC). MCC at 5%, 10%, 20%, and 30% w/w was introduced into the HPMC matrix and the physical, barrier, thermal, and optical properties of the HPMC/MCC bio-composite (HMB) films were analyzed. At 5, 10, and 20% MCC, improved mechanical, transparency, and barrier properties were observed, where HMB with 20% of MCC (H20MB) showed the best performance. Therefore, H20MB was selected as the biodegradable solid material for fabricating Roselle anthocyanins (RA) pH sensing indicators. The performance of the RA-H20MB indicator was evaluated by monitoring its response to ammonia vapor and tracking freshness status of chicken tenderloin. The RA-H20MB showed a clear color change with respect to ammonia exposure and quality change of chicken tenderloin; the color changed from red to magenta, purple and green, respectively. These results indicated that RA-H20MB can be used as a biodegradable pH sensing indicator to determine food quality and freshness.


Assuntos
Hibiscus , Eliminação de Resíduos , Amônia , Animais , Antocianinas/química , Celulose , Galinhas , Alimentos , Embalagem de Alimentos/métodos , Hibiscus/química , Concentração de Íons de Hidrogênio , Derivados da Hipromelose/química
4.
Biopolymers ; 112(8): e23434, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34000071

RESUMO

With the increasing need for bio-based materials developed by environmentally friendly procedures, this work shows a green method to develop shape-controlled structures from cellulose dissolving pulp coated by chitosan. This material was then tested to adsorb a common and widespread pollutant, 2,4-dichlorophenol under different pH conditions (5.5 and 9). Herein it was noticed that the adsorption only occurred in acidic pH (5.5) where electrostatic interaction drove the adsorption, demonstrating the potential to tune the response under desired conditions only. The adsorption was successful in the hydrogel structure with an adsorption capacity of 905 ± 71 mg/g from a solution with 16.6 ppm; furthermore, adsorption was also possible with dried hydrogel structures, presenting a maximum of adsorption of 646 ± 50 mg/g in a similar 16.6 ppm solution. Finally, adsorbent regeneration was successfully tested for both, dry (rewetted) and never-dried states, showing improved adsorption after regeneration in the case of the never dried hydrogel structures.


Assuntos
Quitosana , Poluentes Químicos da Água , Adsorção , Celulose , Clorofenóis , Concentração de Íons de Hidrogênio , Cinética
5.
Molecules ; 25(1)2020 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-31935863

RESUMO

Herein, we report the development of chitosan (CH)-based bio-composite modified with acrylonitrile (AN) in the presence of carbon disulfide. The current work aimed to increase the Lewis basic centers on the polymeric backbone using single-step three-components (chitosan, carbon disulfide, and acrylonitrile) reaction. For a said purpose, the thiocarbamate moiety was attached to the pendant functional amine (NH2) of chitosan. Both the pristine CH and modified CH-AN bio-composites were first characterized using numerous analytical and imaging techniques, including 13C-NMR (solid-form), Fourier-transform infrared spectroscopy (FTIR), elemental investigation, thermogravimetric analysis, and scanning electron microscopy (SEM). Finally, the modified bio-composite (CH-AN) was deployed for the decontamination of cations from the aqueous media. The sorption ability of the CH-AN bio-composite was evaluated by applying it to lead and copper-containing aqueous solution. The chitosan-based CH-AN bio-composite exhibited greater sorption capacity for lead (2.54 mmol g-1) and copper (2.02 mmol g-1) than precursor chitosan from aqueous solution based on Langmuir sorption isotherm. The experimental findings fitted better to Langmuir model than Temkin and Freundlich isotherms using linear regression method. Different linearization of Langmuir model showed different error functions and isothermal parameters. The nonlinear regression analysis showed lower values of error functions as compared with linear regression analysis. The chitosan with thiocarbamate group is an outstanding material for the decontamination of toxic elements from the aqueous environment.


Assuntos
Cátions/química , Quitosana/química , Descontaminação/métodos , Tiocarbamatos/química , Acrilonitrila/química , Adsorção , Dissulfeto de Carbono/química , Espectroscopia de Ressonância Magnética , Espectroscopia de Infravermelho com Transformada de Fourier , Termogravimetria , Água/química
6.
Molecules ; 24(13)2019 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-31262097

RESUMO

Zinc borates are important chemical products having industrial applications as functional additives in polymers, bio-composites, paints and ceramics. Of the thirteen well documented hydrated binary zinc borates, Zn[B3O4(OH)3] (2ZnO∙3B2O3∙3H2O) is manufactured in the largest quantity and is known as an article of commerce as 2ZnO∙3B2O3∙3.5H2O. Other hydrated zinc borates in commercial use include 4ZnO∙B2O3∙H2O, 3ZnO∙3B2O3∙5H2O and 2ZnO∙3B2O3∙7H2O. The history, chemistry, and applications of these and other hydrated zinc borate phases are briefly reviewed, and outstanding problems in the field are highlighted.


Assuntos
Boratos/química , Cerâmica/química , Cerâmica/síntese química , Zinco/química , Boratos/síntese química
7.
J Environ Manage ; 209: 112-125, 2018 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-29287176

RESUMO

The synthesis parameters for preparing a novel bio-composite adsorbent by integrating a copolymer of 2-hydroxyethyl methacrylate (HEMA), acrylamide (AM) and crosslinker N, N'-methylene bis acrylamide (MBA), polyethylene glycol (PEG) and Azadirachta Indica or Neem leaf (NL) and the process parameters for its subsequent use for adsorption of Pb(II) ion from water were optimized with central composite design (CCD) of response surface methodology (RSM). The structure of the bio-composite was characterized by FTIR, XRD, TGA, DMA, FESEM-EDX and PZC analysis. The optimized adsorbent prepared with a AM: HEMA molar ratio of 5:1, MBA, PEG and NL wt% of 0.75, 4 and 2.5, respectively showed 182.85 mg/g (92.5%) adsorption of Pb(II) from water containing low concentration of 50 mg/L of Pb(II) ion and 911 mg/L (57%) adsorption of the same metal ion for a high feed concentration of 400 mg/L in a solution pH of 6, adsorbent dose of 0.25 g/L and a feed temperature of 30 °C. This functional bio-composite may also be suitably used for separation of other metal ions and polar molecules from water.


Assuntos
Chumbo/isolamento & purificação , Poluentes Químicos da Água/isolamento & purificação , Adsorção , Concentração de Íons de Hidrogênio , Cinética , Água
8.
J Food Sci Technol ; 53(3): 1608-19, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27570286

RESUMO

Active antioxidant food packaging films were developed by incorporation of apple pomace (AP) with 1, 5, 10, and 30 % (w/w) into polyvinyl alcohol (PVA) matrix. A complete thermal, structural, mechanical and functional characterization was carried out. The findings of this study showed that the incorporation of AP into PVA films enhanced the total phenolic content and antioxidant properties. As regards the physical properties, higher AP content incorporated into PVA films revealed significantly lower tensile strength, elongation at break and increase in thickness. PVA-AP films exhibited lower transparency value compared to control film. The thermal stability of PVA-AP films was improved and grew with the increasing concentration of AP. FTIR spectra indicated that protein-polyphenol interactions were involved in the PVA-AP films. Rough surface and compact-structure were observed in PVA-AP films. The storage study of soybean oil at 60 °C in PVA-AP pouch showed the antioxidant activity and the effectiveness for delaying its lipid oxidation.

9.
Int J Biol Macromol ; 264(Pt 1): 130408, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38417764

RESUMO

Water is the most essential resource for the biotic and abiotic components of an ecosystem. Any change in the quality of this water may cause adverse impact on the ecosystem. Hexavalent chromium is one such important pollutant that gets exposed in the water mainly through anthropogenic processes. Adsorption is considered to be an effective, economic and easiest method for remediation of such pollutants. Amongst the innumerable adsorbents available, biopolymers fetch the interest due to its cost effectiveness, efficiency and biocompatibility. But, the mechanical strength and workability of such biopolymers makes it unfit to use as an adsorbent. To improve these drawbacks, synthesis of biopolymeric composites become the need of the hour. So, an attempt was made here to synthesize metal cross-linked binary bio-composites using Alginate and Chitosan polymer matrix. Synthesized bio-composites were characterised with the aid of FTIR, XPS, Thermal analysis, SEM with EDAX and subjected for hexavalent chromium removal from water. Analysis of variance (ANOVA) with 95 % confidence intervals was used to assess the significance of independent variables and their interactions. Adsorption studies were done using batch process and to achieve greater sorption, various influencing parameters were optimized one by one. While investigating one parameter, other parameters were kept unaltered. Optimization was done for the parameters like contact time, dosage of the adsorbent, pH of the medium and presence of co-ions. Contact time and dosage for all the composites was 30 mins and 0.1 g respectively. Amongst the composites, Zirconium loaded binary composite possess high sorption capacity of around 14.8 mg/g. While Calcium and Iron loaded composites exhibit sorption capacity of around 9.8 mg/g and 10.4 mg/g respectively. Presence of other co-ions in the medium doesn't affect the sorption process. Isothermal studies infer the adsorption follows Langmuir model and thermodynamic parameters concludes the endothermic and randomness of the adsorption. The bio-composites can be recycled and used upto three cycles. Field trial was conducted and the composites work well in such conditions.


Assuntos
Quitosana , Poluentes Ambientais , Alginatos , Ecossistema , Cromo , Água , Biopolímeros , Cálcio
10.
Carbohydr Polym ; 334: 122044, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38553240

RESUMO

Chitosan, known for its appealing biological properties in packaging and biomedical applications, faces challenges in achieving a well-organized crystalline structure for mechanical excellence under mild conditions. Herein, we propose a facile and mild bioengineering approach to induce organized assembly of amorphous chitosan into mechanically strong bio-composite via incorporating a genetically engineered insect structural protein, the cuticular protein hypothetical-1 from the Ostrinia furnacalis (OfCPH-1). OfCPH-1 exhibits high binding affinity to chitosan via hydrogen-bonding interactions. Simply mixing a small proportion (0.5 w/w%) of bioengineered OfCPH-1 protein with acidic chitosan precursor induces the amorphous chitosan chains to form fibrous networks with hydrated chitosan crystals, accompanied with a solution-to-gel transition. We deduce that the water shell destruction driven by strong protein-chitosan interactions, triggers the formation of well-organized crystalline chitosan, which therefore offers the chitosan with significantly enhanced swelling resistance, and strength and modulus that outperforms that of most reported chitosan-based materials as well as petroleum-based plastics. Moreover, the composite exhibits a stretch-strengthening behavior similar to the training living muscles on cyclic load. Our work provides a route for harnessing the OfCPH-1-chitosan interaction in order to form a high-performance, sustainably sourced bio-composite.


Assuntos
Quitosana , Animais , Quitosana/química , Água , Ligação de Hidrogênio , Insetos
11.
Int J Biol Macromol ; 262(Pt 2): 130155, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38365153

RESUMO

Carrageenan is an emerging biopolymer for wound healing and regenerative applications. In this study, reduced graphene oxide (rGO) and hydroxyapatite (HAp) nano-composites infused carrageenan bioactive membrane was fabricated. Here, hydroxyapatite was synthesized from cuttlefish bone (CF-HAp) and its properties were compared with that of chemically synthesized HAp. Crystalline Ca5(PO4)3(OH) and Ca3(PO4)2) phases were obtained in cuttlefish bone derived HAp. Reduced graphene oxide was synthesized and composites were prepared with chemical HAp and CF-HAp. FT-IR spectral analysis showed the imprints of hydroxyapatite on the membrane and also nano-structured particles were evident through morphological estimations that confirm the distribution of nano-particles on the carrageenan membrane. Nano-particulates infused carrageenan membrane showed the maximum tensile strength, in which graphene incorporated carrageenan bioactive membrane showed highest stability of 15.26 MPa. The contact angle of chemical HAp infused carrageenan membrane (CAR-HAp) showed more hydrophilic in nature (48.63° ± 7.47°) compared to control (61.77° ± 1.28°). Bio-compatibility features enunciate the optimal compatibility of fabricated bioactive membrane with fibroblast cell line; simultaneously, CAR-rGO-CF-HAp showed tremendous wound healing behavior with zebrafish model. Hence, fabricated bioactive membrane with the infusion of rGO- hydroxyapatite derived from cuttlefish bone was found to be a versatile biopolymer membrane for wound healing application.


Assuntos
Durapatita , Grafite , Animais , Durapatita/química , Grafite/química , Carragenina , Decapodiformes , Espectroscopia de Infravermelho com Transformada de Fourier , Peixe-Zebra , Biopolímeros
12.
Front Chem ; 12: 1383620, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39086984

RESUMO

Oral bacterial biofilms are the main reason for the progression of resistance to antimicrobial agents that may lead to severe conditions, including periodontitis and gingivitis. Essential oil-based nanocomposites can be a promising treatment option. We investigated cardamom, cinnamon, and clove essential oils for their potential in the treatment of oral bacterial infections using in vitro and computational tools. A detailed analysis of the drug-likeness and physicochemical properties of all constituents was performed. Molecular docking studies revealed that the binding free energy of a Carbopol 940 and eugenol complex was -2.0 kcal/mol, of a Carbopol 940-anisaldehyde complex was -1.9 kcal/mol, and a Carbapol 940-eugenol-anisaldehyde complex was -3.4 kcal/mol. Molecular docking was performed against transcriptional regulator genes 2XCT, 1JIJ, 2Q0P, 4M81, and 3QPI. Eugenol cinnamaldehyde and cineol presented strong interaction with targets. The essential oils were analyzed against Staphylococcus aureus and Staphylococcus epidermidis isolated from the oral cavity of diabetic patients. The cinnamon and clove essential oil combination presented significant minimum inhibitory concentrations (MICs) (0.0625/0.0312 mg/mL) against S. epidermidis and S. aureus (0.0156/0.0078 mg/mL). In the anti-quorum sensing activity, the cinnamon and clove oil combination presented moderate inhibition (8 mm) against Chromobacterium voilaceum with substantial violacein inhibition (58% ± 1.2%). Likewise, a significant biofilm inhibition was recorded in the case of S. aureus (82.1% ± 0.21%) and S. epidermidis (84.2% ± 1.3%) in combination. It was concluded that a clove and cinnamon essential oil-based formulation could be employed to prepare a stable nanocomposite, and Carbapol 940 could be used as a compatible biopolymer.

13.
Int J Biol Macromol ; 256(Pt 1): 128041, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37979768

RESUMO

Due to environmental issues, production costs, and the low recycling capability of conventional epoxy polymers and their composites, many science groups have tried to develop a new type of epoxy polymers, which are compatible with the environment. Considering the precursors, these polymers can be produced from plant oils, saccharides, lignin, polyphenol, and natural resins. The appearance of these bio-polymers caused to introduce a new type of composites, namely bio-epoxy nanocomposites, which can be classified according to the synthesized bio-epoxy, the used nanomaterials, or both. Hence, in this work, various bio-epoxy resins, which have the proper potential for application as a matrix, are completely introduced with the synthesis viewpoint, and their characterized chemical structures are drawn. In the next steps, the bio-epoxy nanocomposites are classified based on the used nanomaterials, which are carbon nanoparticles (carbon nanotubes, graphene nanoplatelets, graphene oxide, reduced graphene oxide, etc.), nano-silica (mesoporous and spherical), cellulose (nanofibers and whiskers), nanoclay and so on. Also, the features of these bio-nanocomposites and their applications are introduced. This review study can be a proper guide for developing a new type of green nanocomposites in the near future.


Assuntos
Grafite , Nanocompostos , Nanotubos de Carbono , Lignina , Borracha , Polifenóis , Resinas Epóxi/química , Nanotubos de Carbono/química , Polímeros , Nanocompostos/química , Óleos de Plantas
14.
Int J Biol Macromol ; 257(Pt 1): 128357, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38035970

RESUMO

This study attempted to develop a low-cost and eco-friendly bio-based composite adsorbent that is highly efficient in capturing potential toxic metals. The bio-composite adsorbent was prepared using graphene oxide (GO), carboxymethyl cellulose (CMC) and chitosan (CS); and characterized using FTIR, SEM-EDX and WAXD techniques. Metal-ion concentration in an aqueous solution was measured by ICP-OES. This article reveals that the adsorption of heavy metal ions varied according to the adsorbent quantity, initial metal concentration, pH, and interaction time. The metal ions' adsorption capacity (mg/g) was observed to increase when the interaction time and metal concentration increased. Conversely, metal ions adsorption was decreased with an increase in adsorbent dosages. The effect of pH on metal ions' adsorption was ion-specific. The substantial adsorption by GO/CMC/CS composite for Co2+, CrO42-, Mn2+ and Cd2+, had the respective values of 43.55, 77.70, 57.78, and 91.38 mg/g under acidic conditions. The metal ions experimental data were best fitted with pseudo-second-order (PSO) kinetics, and Freundlich isotherm model (except Co2+). The separation factors (RL) value in the present investigation were found between 0 and 1, meaning that the metal ions adsorption onto GO/CS/CMC composite is favorable. The RL and sorption intensity (1/n) values fitted well to the adsorption isotherm.


Assuntos
Quitosana , Grafite , Poluentes Químicos da Água , Carboximetilcelulose Sódica/química , Adsorção , Quitosana/química , Água/química , Cinética , Poluentes Químicos da Água/análise , Concentração de Íons de Hidrogênio , Íons
15.
Environ Sci Pollut Res Int ; 31(14): 21302-21325, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38383933

RESUMO

The growing need to examine the adsorption capabilities of innovative materials in real-world water samples has encouraged a shift from single to multicomponent adsorption systems. In this study, a novel composite, PANI-g-SM was synthesized by covalently grafting a lignocellulosic biomass, Saccharum munja (SM) with polyaniline (PANI). The as-synthesized composite was investigated for the simultaneous adsorption of cationic (Methylene Blue (MB); Crystal Violet (CV)) and anionic dyes (Reactive Red 35 (RR); Fast Green FCF (FG)) from four single components and two binary systems, MB + RR and CV + FG. Further, the effect and interaction of pH (2-11), dosage (0.01-0.04 g/10 mL), and initial concentration (0.0313 to 0.1563 mmol/L) on the elimination of dyes by PANI-g-SM were studied through a novel design of Box-Behnken of Response Surface Methodology (RSM) technique which was found to be highly useful for revealing the chemistry of interfaces in multi-component systems. The extended Langmuir model for the binary system indicated the presence of synergism, as result the maximum monolayer adsorption capacity increased by 44.44%, 645.83%, 67.88%, and 441.07% for MB, RR, CV, and FG dye, respectively. Further, the adsorption process mainly followed a pseudo-second-order kinetic model, and the thermodynamic studies revealed the exothermic nature of adsorption for RR and FG dye while endothermic for MB and CV dye, respectively with Δ G varying from - 1.68 to - 6.12 kJ/mol indicating the spontaneity of the process. Importantly, the efficacy of the composite was evaluated for the treatment of textile industry effluent highlighting its potential as an adsorbent for wastewater treatment.

16.
Artigo em Inglês | MEDLINE | ID: mdl-38419505

RESUMO

Due to entry of body fluid like saliva, blood, etc. in the dental implant assembly lowers the preload value, thus dental implant abutment tightening torque loses. In this article a novel chitosan-reinforced bamboo and nano bio-silica-reinforced five composite materials (CP, CF, C1, C2, and C3) are fabricated using the hand layup method, and their mechanical, biocompatible, and moisture absorption properties are observed and discussed. The present study examines the impact of friction and Young's modulus on the correlation between torque and starting load in dental implant abutment screws, utilizing the attributes of a bio-composite material. C2 bio-composite composite material exhibits the highest tensile strength (139.442 MPa), flexural strength (183.571 MPa), compressive strength (62.78 MPa), and a minimum value of 1.35% absorption of water. C3 is tested with no cytotoxicity, while C3 and CF exhibit weak biofilm resistance against S. aureus gram-positive bacteria. The C2 bio-composite material demonstrated a maximum initial load of 20 N with a tightening torque of 20 N-cm, under both 0.12 and 0.16 coefficients of friction. The simulated results were compared with several theoretical relations of torque and initial load and found that the Motos equation holds the nearest result to the obtained preload value from finite element analysis. Overall, the experimental findings suggest that the C2 bio-composite material holds significant potential as a prominent material for dental implants or fixtures.

17.
J Biomed Mater Res B Appl Biomater ; 112(6): e35415, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38773744

RESUMO

This study reports the synthesis and characterization of hydroxyapatite (HA)-based bio-composites reinforced with varying amounts (by weight, 1-15 wt.%) of bio-medium entropy alloy (BioMEA) for load-bearing implant applications. BioMEA powders consisting of Ti, Nb, Zr, and Mo were mechanically alloyed for 100 h and subsequently added to HA using powder metallurgy techniques. To show the effect of BioMEA, the microstructure, density, and mechanical tests have been conducted and the synthesized BioMEA was characterized by scanning electron microscope (SEM), x-ray diffractometer (XRD), and Fourier-transform infrared spectroscopy (FTIR) analysis. In addition, in vitro degradation behavior and bioactivity analyses of bio-composites have been conducted. XRD analysis revealed the formation of BioMEA after 20 h of mechanical alloying. The highest density value of 2.47 g/cm3 was found in 15 wt.% BioMEA-reinforced bio-composite. The addition of BioMEA reinforcement led to a significant increase in hardness and tensile strength values, with the highest values observed at 15 wt.% reinforcement. Compression tests demonstrated a significant increase in compressive strength and deformation capability of the bio-composites with the highest values observed at 15 wt.% BioMEA addition. The highest toughness of 7.68 kJ/m2 was measured in 10 wt.% MEA-reinforced bio-composites. The produced bio-composite materials have an elastic modulus between 3.5-5.5 GPa, which may provide a solution to the stress shielding problems caused by the high elastic modulus of metallic implant materials. The most severe degradation occurred in 15 wt.% MEA-reinforced bio-composites, and the effect of degradation caused a decrease in Ca and an increase in Ti-Ni-Zr-Mo in all bio-composites. These findings suggest that HA/BioMEA bio-composites have the potential to be developed as advanced biomaterials with moderate mechanical and biological properties for load-bearing implant applications.


Assuntos
Estresse Mecânico , Titânio/química , Nióbio/química , Zircônio/química , Molibdênio/química , Entropia , Ligas/química , Materiais Biocompatíveis/química , Difração de Raios X
18.
Materials (Basel) ; 17(19)2024 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-39410482

RESUMO

The growing demand for sustainable building materials has boosted research on plant-based composite materials, including hemp shives bound with biodegradable binders. This study investigates the enhancement of potato-starch-based binders with sodium metasilicate and glycerol to produce eco-friendly bio-composites incorporating hemp shives. Potato starch, while renewable, often results in suboptimal mechanical properties and durability in its unmodified form. The addition of sodium metasilicate is known to improve the mechanical strength and thermal stability of starch-based materials, while glycerol acts as a plasticizer, potentially enhancing flexibility and workability. Bio-composites were produced with varying concentrations of sodium metasilicate (0-107% by mass of starch) and glycerol (0-133% by mass of starch), and their properties were evaluated through thermal analysis, density measurements, water absorption tests, compressive strength assessments, and thermal conductivity evaluations. The results demonstrate that sodium metasilicate significantly increases the bulk density, water resistance, and compressive strength of the bio-composites, with enhancements up to 19.3% in density and up to 2.3 times in compressive strength. Glycerol further improves flexibility and workability, though excessive amounts can reduce compressive strength. The combination of sodium metasilicate and glycerol provides optimal performance, achieving the best results with an 80% sodium metasilicate and 33% glycerol mixture by weight of starch. These modified bio-composites offer promising alternatives t2 o conventional building materials with improved mechanical properties and environmental benefits, making them suitable for sustainable construction applications.

19.
Artigo em Inglês | MEDLINE | ID: mdl-38573079

RESUMO

Because of the critical usage of biomedical applications, their constitutive materials must possess specific properties to satisfy the environmental conditions. Consequently, the selection of the best materials is one of the most important subjects in the manufacturing industry. Bio-composites are outstanding alternatives to customary biomaterials in biomedical applications owing to their supreme material properties. On the other hand, mechanical analyses including static and dynamic analyses of bio-systems should be carried out to optimize the designed biomedical applications like medical implants. Thus, wave dispersion analysis of functionally graded (FG) bio-composite plate could serve for design goals of biomedical structures. In this investigation, the influence of various higher-order shear deformation theories of the plate on the dispersion of bulk waves in FG bio-composite plate lying on Kerr foundation has been explored for the first time. The constituent materials of FG structure are gold alloy as metal phase and hydroxyapatite as ceramic phase. In order to compute the effective properties of the studied structure, the upper Hashin-Shtrikman homogenization scheme has been implemented. Higher-order theories and Hamilton's principle have been applied to derive the governing equations and the obtained equations are analytically solved via a harmonic function. Eventually, the sensitivity of various important parameters has been surveyed and discussed comprehensively. The obtained outcomes have been indicated in detail.

20.
Environ Sci Pollut Res Int ; 31(14): 21057-21072, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38381287

RESUMO

The concept of circular economy, aiming at increasing the sustainability of products and services in the water and other sectors, is gaining momentum worldwide. Driven by this concept, novel bio-composite materials produced by recovering resources from different parts of the water cycle are now manufactured in The Netherlands. The new materials are used for different products such as canal bank protection elements, as an alternative to similar elements made of hardwood. As much as these new materials are appealing from the sustainability point of view, they may leach toxic substances into the aquatic environment given some of their ingredients, e.g., cellulose recovered from wastewater treatment. Therefore, a methodology for the assessment of related environmental risks is needed and it does not exist currently. This paper addresses this knowledge gap by presenting a framework for this. The framework is based on European environmental risk assessment guidelines, and it includes four key steps: (i) hazard identification, (ii) dose-response modelling, (iii) exposure assessment and (iv) risk characterisation (i.e. assessment). As part of the first step, laboratory leaching tests were carried out to evaluate the potential release of specific chemical substances such as heavy metals and resin compounds into the aquatic environment. Laboratory test results were then used as input data to evaluate the risk of potential leaching from canal bank protection elements into surface water. A deterministic model was used first to identify the chemicals exceeding the guideline threshold. Subsequently, a stochastic model was applied to evaluate the environmental risks across a range of leachate concentrations and water velocities in the canal, thereby simulating a broader spectrum of possible situations. The risk analyses were conducted for four alternative bio-composite materials made of different ingredients, two different flow conditions (stagnant water and advective flow) in two types of canals (wide ditch and primary watercourse) and for two different water levels based on season conditions (summer and winter conditions). The results obtained from leaching tests identified Cu, Mn, Zn, styrene and furfuryl alcohol as potentially troublesome chemicals. In the case of stagnant water, the absence of a flow rate increases the residence time of the chemicals in the surface water, resulting in a higher PEC/PNEC (i.e. risk) value. However, under stagnant case conditions, environmental risks for all chemicals considered turned out to be below the safety threshold. In the advective case, the existence of a flow rate, even at low velocities simulating the conditions of 'almost no flow,' contributes to increased dilution, resulting in lower PEC/PNEC ratio values. The results presented here, even though representing real-case scenarios, are only indicative as these are based on laboratory leaching tests and a number of assumptions made. Additional field tests involving collecting and analysing water and sediment samples from the canal where the canal bank protection elements are located, over a prolonged period, are required to come up with more conclusive findings.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Poluentes Químicos da Água/análise , Países Baixos , Água/análise , Medição de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA