Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Environ Res ; 214(Pt 3): 114014, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35948152

RESUMO

Based on studies of the wintering population of mute swans in large urban agglomerations, it is possible to identify and infer the impact of environmental pollution in coastal regions near Baltic Sea on the physiological and biochemical changes in the blood of waterfowls. Hematological and biochemical changes in the blood in relation to chemical elements in their feathers are a useful tool for general ecophysiological conclusions. Hematological changes and blood chemistry in Mute Swan Cygnus olor is particularly environmentally dependent, therefore we examined hematological picture (red blood cells RBC, white blood cells WBC, heterophiles, eosinophils, basophils, monocytes, lymphocytes, hemoglobin, heterophile to lymphocyte ratio H/L, biochemical indicators (glucose, uric acid, total cholesterol, triglycerides, calcium, inorganic phosphorus, magnesium, total protein), stability of erythrocyte membranes, concentration of Ca, P, Mg in the blood, concentration of Al, Zn, Rh, Cu, Ru, Fe, Pb in feathers, in wintering population of 172 mute swans of different age (juvenile, adult) and gender, in three coastal types of areas of Southern Polish zone of Baltic Sea (Slupsk, Gdynia, Sopot). Percentage of changes in the morphological indices in the blood of mute swans with three independent characteristics (environment, sex, age) revealed that hemoglobin content exhibited the highest value (R2 = 53.8%) in the analysis of morphological indices; the effect of RBC, WBC, and basophils was much lower (WBC > RBC > basophils). Male and female erythrocytes from the coastal of Gdynia were more fragile than those of birds from coasts of Sopot and Slupsk. We found that osmotic fragility is altered in juvenile swans from Slupsk area and males from Gdynia area. The consequence was a higher level of hemolyzed erythrocytes in their blood. The effect of type of environment, age-, and sex-related impact on hematological indices and biomarkers of biochemical alterations in the blood of swans and comparison of these data with bioaccumulation of chemical elements in feathers of swans inhabiting 3 types of environment of Baltic coastal zone show significant differences in the hematological and biochemical indices. Albumins and globulins maintain the blood cations balance, however, changes in their concentrations in the blood suggest an impact on physiological mechanisms and body condition of swans.


Assuntos
Anseriformes , Animais , Anticorpos Antivirais , Aves , Poluição Ambiental , Feminino , Masculino , Estações do Ano
2.
Regul Toxicol Pharmacol ; 129: 105118, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35038484

RESUMO

Piper amalago L. (Piperaceae) is traditionally used due to its anti-inflammatory, analgesic, diuretic, and antiparasitic properties. However, few studies have focused on its adverse effects, compromising its safe use. This study evaluated the toxicological safety of ethanolic extract from Piper amalago leaves (EEPA), through subacute toxicity and genotoxicity assays in rodents. In subacute toxicity, 100, 200 or 300 mg/kg of EEPA were tested in female Wistar rats, by gavage, for 28 days. For genotoxicity test, female Swiss mice were orally treated with 17.5, 175 or 1750 mg/kg of EEPA and the comet, micronucleus, and splenic phagocytic assays were evaluated. In subacute toxicity, the extract induced an increase in the food and water intakes, as well as in the liver absolute weight, and in the heart and kidney relative weights. EEPA also provoked alterations in histopathological analysis of liver and in hemato-biochemical parameters, evidenced by a decrease in hematocrit levels and albumin levels, and an increase in the number of platelets and in alkaline phosphatase and cholesterol levels. However, EEPA did not presented genotoxic nor mutagenic properties. EEPA showed hemato-biochemical toxicity profile in rats and should be used with caution, especially when for prolonged period.


Assuntos
Piper , Extratos Vegetais/farmacologia , Animais , Sangue/efeitos dos fármacos , Análise Química do Sangue , Dano ao DNA/efeitos dos fármacos , Relação Dose-Resposta a Droga , Feminino , Fígado/efeitos dos fármacos , Camundongos , Testes de Mutagenicidade , Folhas de Planta , Distribuição Aleatória , Ratos , Ratos Wistar , Testes de Toxicidade Subaguda
3.
Int J Mol Sci ; 22(15)2021 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-34360756

RESUMO

This study focuses on a commercial plant elicitor based on chitooligosaccharides (BIG®), which aids in rice plant growth and disease resistance to bacterial leaf blight (BLB). When the pathogen (Xoo) vigorously attacks rice that has suffered yield losses, it can cause damage in up to 20% of the plant. Furthermore, Xoo is a seed-borne pathogen that can survive in rice seeds for an extended period. In this study, when rice seeds were soaked and sprayed with BIG®, there was a significant increase in shoot and root length, as well as plant biomass. Furthermore, BIG®-treated rice plants showed a significant reduction in BLB severity of more than 33%. Synchrotron radiation-based Fourier transform infrared (SR-FTIR) analysis was used to characterize BIG®'s mechanism in the chemical structure of rice leaves. The SR-FTIR results at 1650, 1735, and 1114 cm-1 indicated changes in biochemical components such as pectins, lignins, proteins, and celluloses. These findings demonstrated that commercial BIG® not only increased rice growth but also induced resistance to BLB. The drug's target enzyme, Xoo 1075 from Xanthomonas oryzae (PDB ID: 5CY8), was analyzed for its interactions with polymer ingredients, specifically chitooligosaccharides, to gain molecular insights down to the atomic level. The results are intriguing, with a strong binding of the chitooligosaccharide polymer with the drug target, revealing 10 hydrogen bonds between the protein and polymer. Overall, the computational analysis supported the experimentally demonstrated strong binding of chitooligosaccharides to the drug target.


Assuntos
Quitina/análogos & derivados , Resistência à Doença/efeitos dos fármacos , Oryza/microbiologia , Doenças das Plantas/microbiologia , Xanthomonas/crescimento & desenvolvimento , Quitina/química , Quitina/farmacologia , Quitosana , Oligossacarídeos
4.
Biomarkers ; 23(1): 33-43, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28748734

RESUMO

CONTEXT: Nickel oxide (NiO) nanoparticles (NPs) with appropriate surface chemistry have been widely used for their potential new applications in biomedical industry. Increased usage of these NPs enhances the chance of exposure of personnel involved in the work place. OBJECTIVE: This study was designed to assess the ability of NiO NPs to cause biochemical alterations post-acute oral exposure in female Wistar rats. MATERIALS AND METHODS: Rats were administered with 125, 250, and 500 mg/kg doses of NiO NPs for haematological, biochemical, and histopathological studies. Biodistribution patterns of NiO NPs in female Wistar rats were also monitored. RESULTS: NiO NPs caused significant (p < 0.01) inhibition of RBC and brain AchE of treated rats at the high dose. Activation of the hepatotoxicity marker enzymes, aminotransferases, was recorded in serum and liver, whereas inhibition was observed in kidney. The activity of antioxidant enzymes was also altered by NiO NPs in a dose-dependent manner and found to be significant at the high dose of exposure. CONCLUSIONS: This study revealed that exposure to nanosized NiO particles at acute doses may cause adverse changes in animal biochemical profiles. Further, the in vivo studies on toxicity evaluation help in biomonitoring of the potential contaminants.


Assuntos
Rim/efeitos dos fármacos , Fígado/efeitos dos fármacos , Nanopartículas Metálicas/toxicidade , Níquel/toxicidade , Acetilcolinesterase/metabolismo , Administração Oral , Animais , Antioxidantes/metabolismo , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Eritrócitos/efeitos dos fármacos , Eritrócitos/metabolismo , Feminino , Rim/metabolismo , Rim/patologia , Fígado/metabolismo , Fígado/patologia , Nanopartículas Metálicas/administração & dosagem , Nanopartículas Metálicas/ultraestrutura , Microscopia Eletrônica de Transmissão , Níquel/administração & dosagem , Níquel/farmacocinética , Ratos Wistar , Distribuição Tecidual , Testes de Toxicidade Aguda
5.
Int J Phytoremediation ; 20(13): 1324-1329, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30666898

RESUMO

Chelate employed wrenching out of Chromium from contaminated soils is a comparably new technology. The pot culture experiments were carried out to study the toxicological, physiological and biochemical changes in Lemongrass using different chelators such as Ethylenediaminetetraaceticacid (EDTA), Diethylenetriaminepentaacetic acid (DTPA), Citric acid (CA) and Salicylic acid (SA) and metal ions (Fe, Mg and Zn) in Cr+6 contaminated soil. The application of heavy metal Cr induced number of adverse consequences like reduction in root/shoot length, biomass and chlorophyl content in Lemongrass plants grown in soil with Cr+6 (50mgkg-1). On the contrary, the growth of Lemongrass was stimulated by the addition of chelators such as EDTA, DTPA, Citric acid, salicylic acid including metal ions (Fe, Mg and Zn). The increase in proline content was associated with the synthesis of antioxidant enzymes by the applications of chelators and metal ions. The treated plants with reduced Transportation index (Ti) values indicated more root Chromium accumulation as compared to shoot. The Bio-Concentration Factor (BCF) and Total Accumulation Rate (TAR) of Chromium were elevated with the supplementation of chelators and metal ions, thus, illustrating more metal bioavailability in plants.


Assuntos
Cymbopogon , Poluentes do Solo/análise , Biodegradação Ambiental , Cromo/análise , Solo/química
6.
Drug Chem Toxicol ; 38(3): 278-85, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25116447

RESUMO

Primextra is a commercial herbicide formulation generally used in agriculture for weed control. The present study was designed to investigate the oxidative stress biomarkers and biochemical responses in the tissues of Clarias gariepinus juvenile exposed to primextra. Fish were exposed to 0.24 and 0.47 mgL(-1) corresponding to 1/20 and 1/10th of 96 h LC50 of the herbicide. The liver and muscle tissues were sampled on day 1, 5, 10 and 15 and results showed concentration and time dependent significant increase (p < 0.05) in the values of lipid peroxidation, glutathione peroxidase, catalase and alkaline phosphatase in both tissues. A marked significant increase (p < 0.05) was observed in the values of aspartate aminotransferase, alanine aminotransferase and glucose in the liver while a mixed trend in their values were observed in the muscle. The values of superoxide dismutase and protein in both tissues were comparable to the control except on day 15 in the liver where the values significantly declined. The condition factor was not directly affected but values of hepatosomatic index were significantly reduced. The present findings revealed that primextra induced toxic stress even at sublethal concentrations resulting in alterations of the studied parameters which were more evident in the fish liver than in the muscle tissue.


Assuntos
Acetamidas/toxicidade , Atrazina/toxicidade , Peixes-Gato/metabolismo , Herbicidas/toxicidade , Fígado/efeitos dos fármacos , Músculos/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Animais , Biomarcadores/metabolismo , Relação Dose-Resposta a Droga , Combinação de Medicamentos , Proteínas de Peixes/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Fígado/enzimologia , Músculos/enzimologia , Medição de Risco , Fatores de Tempo
7.
Sci Total Environ ; 915: 169754, 2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38163599

RESUMO

The global effort to achieve carbon neutrality has led to an increased demand for renewable energy technologies and their raw materials, namely rare earth elements (REEs). These elements possess unique properties and are used in various applications. However, the increased use of REE-based technologies has resulted in higher amounts of electronic waste, leading to elevated REEs concentrations found in the aquatic environment, with poorly understood threats to wildlife. Praseodymium (Pr) and europium (Eu) are two REEs that, despite their potential environmental risks, have almost unknown effects on aquatic organisms. Therefore, the present study aimed to assess the impacts of different concentrations of Pr and Eu (0, 10, 20, 40, and 80 µg/L) in the mussel species Mytilus galloprovincialis, as well as their ability to recover from exposure to the highest concentration. Mussels accumulated both elements in a dose-dependent manner, with the accumulation of Pr being higher. Accompanying the increase of metabolism, mussels exposed to Pr not only enhanced the activity of the antioxidant enzymes superoxide dismutase (up to 40 µg/L) and glutathione reductase (at 80 µg/L) but also the activity of the biotransformation enzymes carboxylesterases (CbE's) and glutathione S-transferases (GSTs) (at 80 µg/L). Nevertheless, these defence mechanisms were not sufficient to prevent cellular damage. All the Eu concentrations induced cellular damage, despite an increase in the activity of biotransformation enzymes (CbE's and GSTs) in mussel tissue. According to the histopathology assessment, mussels were not able to recover after exposure to both elements and lower concentrations induced higher injuries in digestive tubules. This study highlights that exposure to Pr and Eu had adverse effects on M. galloprovincialis, even at the lowest tested concentration, which may eventually impact mussels' growth, reproductive capacity, and survival.


Assuntos
Mytilus , Poluentes Químicos da Água , Animais , Antioxidantes/metabolismo , Estresse Oxidativo , Biotransformação , Európio , Poluentes Químicos da Água/análise , Biomarcadores/metabolismo
8.
Toxicol Rep ; 12: 23-40, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38193024

RESUMO

Organophosphate poisoning remains a global health crisis without efficacious treatments to prevent neurotoxicity. We examined whether antidotal tiger nut and coconut dietary intervention could ameliorate neurobehavioral deficits from organophosphate dichlorvos-induced gut-brain axis dysregulation in a mouse model. Mice were divided into groups given control diet, dichlorvos-contaminated diets, or dichlorvos plus nut-enriched diets. They were exposed to a DDVP-contaminated diet for 4 weeks before exposure to the treatment diets for another 8 weeks. This was followed by behavioural assessments for cognitive, motor, anxiety-, and depressive-like behaviours. Faecal samples (pre- and post-treatment), as well as blood, brain, and gut tissues, were collected for biochemical assessments following euthanasia. Dichlorvos-exposed mice displayed impairments in cognition, motor function, and mood along with disrupted inflammatory and antioxidant responses, neurotrophic factor levels, and acetylcholinesterase activity in brain and intestinal tissues. Weight loss and altered short-chain fatty acid levels additionally indicated gut dysfunction. However, intervention with tiger nut and/or coconut- enriched diet after dichlorvos exposure attenuated these neurobehavioral, and biochemical alterations. Our findings demonstrate organophosphate-induced communication disruptions between the gut and brain pathways that manifest in neuropsychiatric disturbances. Overall, incorporating fibre-rich nuts may represent an antidotal dietary strategy to reduce neurotoxicity and prevent brain disorders associated with organophosphate poisoning.

9.
Mol Neurobiol ; 61(10): 8144-8155, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38472652

RESUMO

This paper examines the role of dietary peptides gluten and casein in modulating brain function in individuals with autism spectrum disorder (ASD) from a biochemical perspective. Neurotransmitter systems and neural networks are crucial for brain function, and alterations at the biochemical level can contribute to the characteristic symptoms and behaviors of ASD. The paper explores how dietary peptides influence neurotransmitter systems and neural networks, highlighting their potential as interventions to improve brain function in ASD. The evidence suggests that dietary peptides can impact neurotransmitter synthesis, release, and receptor interactions, disrupting the balance of neurotransmitter systems and affecting neural network function. The findings underscore the potential of dietary interventions in modulating brain function in ASD and call for further research to elucidate the underlying mechanisms and optimize clinical practice. Considering individual dietary sensitivities and preferences, personalized dietary approaches may be necessary for optimal outcomes. Dietary interventions' timing, duration, and integration with other evidence-based treatments are crucial considerations. Safety considerations and regular monitoring are important to ensure the implementation of dietary interventions safely and effectively.


Assuntos
Transtorno do Espectro Autista , Caseínas , Glutens , Humanos , Transtorno do Espectro Autista/dietoterapia , Transtorno do Espectro Autista/metabolismo , Caseínas/administração & dosagem , Animais , Encéfalo/metabolismo , Neurotransmissores/metabolismo
10.
Sci Total Environ ; : 176608, 2024 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-39349203

RESUMO

Recent societal and technological developments have led to new sources of contamination, particularly from electronic waste (e-waste). The rapid increase in e-waste, combined with inadequate disposal and recycling practices has resulted in rising levels of hazardous substances in aquatic systems, including rare-earth elements (REEs). However, the effects of REEs on aquatic organisms remain poorly understood. This lack of understanding is concerning since REEs can simultaneously appear in aquatic systems. Thus, this study aimed to evaluate the impacts of Y, La, and Gd, individually and as mixtures on the mussel species Mytilus galloprovincialis. Biomarkers related to metabolism, energy reserves, defence enzymes, redox balance, cellular damage and neurotoxicity were analyzed. The results obtained showed that yttrium alone caused minimal stress, while gadolinium, lanthanum, and their mixtures induced moderate to severe stress, increased metabolic activity, and enzyme responses. This study highlights the ecological impacts of rare earth element (REE) mixtures on aquatic organisms. The complex interactions and additive effects, especially with gadolinium, underline the need for further research on contaminant mixtures.

11.
Chemosphere ; 341: 140070, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37689151

RESUMO

The antidiabetic drug metformin (MET) and its metabolite guanylurea (GUA) have been frequently and ubiquitously detected in surface water. Consequently, there has been a consistent rise in studying the toxicity of MET and GUA in fish over the past decade. Nonetheless, it is noteworthy that no study has assessed the harmful effects both compounds might trigger on fish blood and organs after chronic exposure. Taking into consideration the data above, our research strived to accomplish two primary objectives: Firstly, to assess the effect of comparable concentrations of MET and GUA (1, 40, 100 µg/L) on the liver, gills, gut, and brain of Danio rerio after six months of flow-through exposure. Secondly, to compare the outcomes to identify which compound prompts more significant oxidative stress and apoptosis in organs and blood parameter alterations. Herein, findings indicate that both compounds induced oxidative damage and increased the expression of genes associated with apoptosis (bax, bcl2, p53, and casp3). Chronic exposure to MET and GUA also generated fluctuations in glucose, creatinine, phosphorus, liver enzymes, red and white blood count, hemoglobin, and hematocrit levels. The observed biochemical changes indicate that MET and GUA are responsible for inducing hepatic damage in fish, whereas hematological alterations suggest that both compounds cause anemia. Considering GUA altered to a more considerable extent the values of all endpoints compared to the control group, it is suggested transformation product GUA is more toxic than MET. Moreover, based on the above evidence, it can be inferred that a six-month exposure to MET and GUA can impair REDOX status and generate apoptosis in fish, adversely affecting their essential organs' functioning.


Assuntos
Metformina , Peixe-Zebra , Animais , Metformina/toxicidade , Avaliação do Impacto na Saúde , Hipoglicemiantes
12.
Environ Pollut ; 336: 122309, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37543068

RESUMO

Humans are routinely exposed to nanoplastics (NPs) in various ways, and this exposure presents a significant health risk. Nevertheless, there remain gaps in our knowledge, particularly in the mechanisms of toxicity of NPs with different surface charges at very low environmental concentrations. Herein, a spectrochemical approach was used to profile the cytotoxicity of NPs with different surface charges in HepG2 cells. It was found that all three NPs can cause some biomolecular alterations in cells, affecting cellular lipids, proteins, amino acids, and genetic material. Of these, PS and PS-COOH led to a non-linear dose-response, which may be related to a biphasic dose-response, whereas PS-NH2 led to a linear dose-response with a gradual increase in toxicity with increasing exposure concentration. In addition, the spectroscopic results showed that surface modifications led to cellular biochemical changes and caused adverse biological effects, with PS-NH2 exhibiting higher toxicity compared to PS or PS-COOH along with an inhibition of cell proliferation. Surprisingly PS-COOH, although considered the least toxic NP, appears to cause DNA damage. Overall, the toxic effects of different surface-modified NPs in cells were detected for the first time by applying spectrochemical techniques, and these findings provide important data towards understanding the emerging widespread environmental pollution of NPs and their effects on humans.

13.
Environ Toxicol Pharmacol ; 97: 104029, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36455836

RESUMO

Climate change-associated factors and pollutants, such as rare earth elements (REEs), have been identified as contributors to environmental changes. However, the toxicity resulting from the combination of these stressors has received little attention. Neodymium (Nd) is a REE that has been widely used, and this study aimed to evaluate the responses of Mytilus galloprovincialis to Nd exposure (10 µg/L), under actual (17 °C) and predicted warming conditions (21 °C), after fourteen days of exposure followed by fourteen days of recovery (without Nd), analyzing Nd accumulation, histopathological and biochemical alterations. The results showed that increased temperature and Nd exposure caused histopathological injuries in the gills. Contaminated mussels at 17 °C showed cellular damage, while at 21 °C, mussels were able to avoid cellular damage. After the recovery period, no improvements in gill's status were found and cellular damage was still present, highlighting the impacts caused by previous exposure to Nd.


Assuntos
Mytilus , Poluentes Químicos da Água , Animais , Temperatura , Neodímio/toxicidade , Estresse Oxidativo , Mytilus/fisiologia , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise
14.
Environ Sci Pollut Res Int ; 30(32): 78641-78652, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37273057

RESUMO

Bulinus truncatus snail is one of the most medically important snails. The goal of this study was to evaluate the molluscicidal effect of saponin on these snails and study how it affects their biological functions. The present results showed that saponin had a molluscicidal activity against adult B. truncatus snails after 24h and 72h with LC50 (57.5 and 27.1 ppm, respectively) and had ovicidal acivity on the snails' embryos. By studying the effect of the sublethal concentrations (LC10 48.63 ppm or LC25 52.83 ppm) exposure on B. truncatus snails, they resulted in significant decreases in the survivorship, egg-laying, and the reproductive rate compared to untreated snails. Both concentrations caused morphological changes to the snails' hemocytes, where, after the exposure, granulocytes and hyalinocytes had irregular outer cell membrane and some cell formed pseudopodia. Granulocytes had large number of granules, vacuoles, while hyalinocytes' nucleus was shrunken. Also, these concentrations resulted in significant increases in sex hormone levels (17ß-estradiol and testosterone) in tissue homogenate of B. truncatus snails. It resulted in significant decrease in total antioxidant (TAO) activity, while, significantly increased lipid peroxidase (LPO) level, superoxide dismutase (SOD), nitrogen oxide (NO), and glutathione-S-transferase (GST) as compared to control group. Histopathological and genotoxicological damages occurred in snails' tissue after exposure to these concentrations. Conclusion, saponin has a molluscicidal effect on B. truncatus snails and might be used for the control of schistosomiasis haematobium. Besides, these snails could be used as invertebrate models to reflect the toxic effects of saponin in the aquatic ecosystem.


Assuntos
Moluscocidas , Saponinas , Animais , Bulinus , Saponinas/farmacologia , Ecossistema , Caramujos , Moluscocidas/toxicidade , Estresse Oxidativo
15.
Environ Pollut ; 317: 120671, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36436661

RESUMO

As a class of common emerging pollutants, per- and polyfluoroalkyl substances (PFASs) and their alternatives have been widely detected in various environmental matrices, exhibiting a great threat to the ecological environment and human health. Nevertheless, changes in biomolecular structure and function of duckweed caused by PFASs and their alternatives remain unknown thus far. Herein, the effects of four PFASs, including two common legacy PFASs (perfluorooctane sulfonic acid (PFOS) and perfluorooctanoic acid (PFOA)) and two PFASs alternatives (perfluorobutane sulfonic acid (PFBS) and 1H,1H,2H, 2H-perfluorooctane sulfonic acid (6:2 FTS)) on duckweed (Lemna minor) at biochemical level were investigated with Fourier transform infrared spectroscopy (FTIR). Although no obvious inhibitions were observed in the growth of L. minor with PFASs exposure at three levels of 1 µg L-1, 100 µg L-1, and 10 mg L-1, significant structural and functional alterations were induced at the biochemical level. In response to PFASs exposure, lipid peroxidation, proteins aggregation and α-helix to ß-sheet transformation of the protein conformation, as well as changes of DNA conformations were detected. Moreover, alterations in lipid, protein, and DNA were proved to be concentration-related and compound-specific. Compared to the two legacy PFASs (PFOS and PFOA), alternative ones exhibited greater effects on the biological macromolecules of L. minor. The findings of this study firstly reveal structural and functional alterations in L. minor induced by PFASs exposure, providing further understanding of their toxicity effects.


Assuntos
Ácidos Alcanossulfônicos , Araceae , Fluorocarbonos , Humanos , Espectroscopia de Infravermelho com Transformada de Fourier , Fluorocarbonos/análise , Ácidos Alcanossulfônicos/toxicidade , Ácidos Alcanossulfônicos/metabolismo , Araceae/metabolismo , China
16.
Nanomaterials (Basel) ; 14(1)2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38202484

RESUMO

The widespread biomedical and commercial applications of silver nanoparticles (AgNPs) have increased their potential for human and environmental exposure and toxicity to human health. The bio-distribution and toxicity of AgNPs in rodents following inhalation, intratracheal instillation, and oral ingestion are well documented; however, little is known about the bio-distribution of intravenously (IV)-administered AgNPs and their organ-specific pathophysiological effects. Here, we investigate the pharmacokinetic pattern and tissue distribution of AgNPs in male rats following IV administration. The animals were humanely sacrificed after 10 min, 1 h, 6 h, 12 h, 24 h, and 168 h of AgNP administration, and the silver (Ag) content was measured from blood samples and various tissues following acid digestion. The AgNPs were readily absorbed and subsequently distributed into most organs predominantly in the colon, small intestine, kidney, and heart after 6 h; however, they were the highest in the spinal cord after 168 h. White blood cells (WBCs) were significantly increased (42-60%) in AgNP-administered animals at all time points except 10 min. Regarding platelets, all AgNP-administered animals showed counts 7.8-39.2% lower, with the lowest count at 168 h post-administration. In the case of lymphocytes (LYMs), the AgNP-treated animals exhibited a count 19.5-41% lower at 10 min and 1 h post-administration; however, the animals at 168 h post-administration showed a count 30.5% more. The mean corpuscular hemoglobin (MCH) counts from the AgNP-treated animals were decreased by 50-62%. The concentrations of aspartate transaminase (AST), urea, and creatinine were increased in the AgNP-treated animals. Taken together, the results suggest that the acute IV administration of AgNPs alters metabolic and hematological parameters in animals and may pose a health risk to humans.

17.
J Parasit Dis ; 46(2): 454-465, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35692468

RESUMO

The effect of thymol and ivermectin on the development and embryonation of Toxocara vitulorum (T. vitulorum) eggs, as well as their migration in albino rats was investigated both in vitro and in vivo. A total of forty male albino rats were divided into four groups for an in vivo experiment. The first group was uninfected; the second group was infected but left untreated; the third group was infected and received thymol at a dose of 40 mg/kg; and the fourth group was infected and received ivermectin (0.2 mg/kg). In vitro, thymol inhibited the development of Toxocara larvae within the eggs. However, ivermectin, produced inconsistent results. The in vivo results indicated that the recovery rates of Toxocara larvae from the liver and lungs on day 7 post-infection were significantly lower in the thymol or ivermectin-treated groups than in the infected untreated control. Albumin levels were significantly increased in the thymol-treated group as compared to the positive control and ivermectin groups. Nitric oxide, IL-4, and IFN- levels in the serum of the thymol or ivermectin-treated groups were significantly lower than that of the positive control group. Histopathological examination demonstrated that thymol and ivermectin were effective in reducing larval load, reducing the number and size of granulomas in the absence of larvae, and improving tissue architecture. The current study concluded that thymol possessed anti-Toxocara activity in a rat model. Additionally, thymol possessed ovicidal properties and may be used as a disinfectant.

18.
Chronobiol Int ; 39(11): 1419-1434, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36043484

RESUMO

The objective of the current study was to determine the photoperiod-induced variations and the impact of exercise on oxidative stress biomarkers [2-thiobarbituric acid reactive substances (TBARS), aldehydic (AD) and ketonic (KD) derivatives of oxidatively modified proteins (OMP), total antioxidant capacity (TAC), and activities of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx)] and biomarkers of metabolic alterations [glucose, urea, and uric acid and the activity of lactate dehydrogenase (LDH)] in the blood of Shetland pony mares and stallions involved in recreational horseback riding. Twenty-one healthy adult Shetland ponies (11 mares and 10 stallions) aged 6.5 ± 1.4 years old from the central Pomeranian region in Poland were used in this study. Blood samples were taken once per season for one year: spring (3 April), summer (5 July), autumn (1 October) and winter (25 January). A MANOVA analysis revealed that the photoperiod factor had a leading role in alterations of these biomarkers, while the exercise and sex of the ponies exerted a lower impact. The lipid peroxidation biomarkers, for example, the plasma TBARS level, indicated the maximum adjusted coefficient of determination R2ad = 0.77. Before exercise (at rest), the plasma of the stallions and mares exhibited minimum values of TBARS levels in the spring and summer photoperiods and maximum levels in autumn and winter. A statistically significant reduction in the levels of both aldehydic and ketonic derivatives of OMP in the blood of ponies was observed during the autumn and winter periods; additionally, the level of ketonic derivatives of OMP declined after exercise in spring. TAC was statistically significant in the spring and winter photoperiods both before and after exercise. SOD activity did not have a pronounced photoperiod-induced pattern but was dependent on the sex and exercise. CAT activity varied and was statistically significant only in the plasma of the mares after exercise in the spring, summer, and winter photoperiods. The minimum GPx activity in the blood of the mares before exercise (at rest) was observed in autumn, while the maximum was noted in winter and summer. Photoperiod- and exercise-induced alterations in markers of oxidative stress and antioxidant defences may contribute to the adaptation of animals to exercise, depending on sex. The seasonal variations in the antioxidant defences demonstrated in our study, as well as substrates of energy metabolism in the blood of mares and stallions, depending on exercise capacity, could be an important aspect in the ability of endogenous adaptive mechanisms of animals to react in advance to environmental changes associated with seasons.


Assuntos
Antioxidantes , Fotoperíodo , Cavalos , Animais , Feminino , Masculino , Antioxidantes/metabolismo , Substâncias Reativas com Ácido Tiobarbitúrico , Ritmo Circadiano , Estações do Ano , Superóxido Dismutase/metabolismo , Estresse Oxidativo , Biomarcadores/metabolismo
19.
Biology (Basel) ; 11(2)2022 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-35205082

RESUMO

The current report provides a brief overview of the clinical features, hematological/biochemical abnormalities, biomarkers, and AI-related strategies in COVID-19; presents in a nutshell the pharmacological and non-pharmacological therapeutic options; and concisely summarizes the most important aspects related to sociodemographic and behavioral factors as well as comorbidities having an impact on this disease. It also gives a brief outline of the effect of selected elements on immune response and collects data on the levels of micro-/macro-elements and toxic metals in the blood/urine of SARS-CoV-2 infected patients and on supplementation with minerals in COVID-19 subjects. Moreover, this review provides an overview of clinical trials based on the use of minerals alone or in combination with other agents that can provide effective responses toward SARS-CoV-2 infection. The knowledge compiled in this report lays the groundwork for new therapeutic treatments and further research on biomarkers that should be as informative as possible about the patient's condition and can provide more reliable information on COVID-19 course and prognosis. The collected results point to the need for clarification of the importance of mineral supplementation in COVID-19 and the relationships of the levels of some minerals with clinical improvement.

20.
Cureus ; 14(8): e28594, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36185918

RESUMO

Background Prognostication plays a pivotal role in critical care medicine. Its importance is indisputable in the management of coronavirus disease 2019 (COVID-19), as the presentation of this disease may vary from docile, self-limiting symptoms to lethal conditions. Amid the COVID-19 pandemic, much emphasis was initially placed on molecular and serological testing. However, it was realized later that routine laboratory tests also provide key information in terms of the severity of the disease and thus could be used to predict the outcome of these patients. Methodology The aim of our study was to evaluate the biochemical parameters as prognostic markers in severely ill COVID-19 patients. We carried out a retrospective, case-control study. The study population was comprised of all severely ill COVID-19 patients admitted between October 2020 and January 2021 at our level 3 COVID hospital. Cases were defined as the patients who expired despite treatment and all resuscitative measures as per the standard operating procedures (SOPs) of our COVID intensive care unit (ICU) while controls were defined as the patients that were transferred out of the COVID ICU for further recovery. The detailed history, findings of physical examination, vitals recorded by point of care testing (POCT) devices at our ICU, clinical diagnosis, and the results of the biochemical analysis were recorded in a specially designed pro forma. The biochemical parameters recorded at the time of admission were compared between the groups of controls and cases in order to evaluate their role as predictors of mortality using appropriate statistical methods. P-values less than 0.05 were considered statistically significant. For all the parameters that showed a statistically significant difference, receiver operating characteristics (ROC) analysis was done to assess the utility of biochemical parameters as predictors of mortality or survival. Areas under the curve (AUCs) of 0.6 to 0.7, 0.7 to 0.8, 0.8 to 0.9, and >0.9 were considered acceptable, fair, good, and excellent for discrimination, respectively. Results Of the 178 severely ill COVID-19 patients enrolled in the study, 86 were controls and 92 were cases (52% mortality). Serum urea (p<0.0001), creatinine (p=0.0019), aspartate transaminase (AST) (p=0.0104), lactate dehydrogenase (LDH) (p=0.0001), procalcitonin (PCT) (p=0.0344), and interleukin 6 (IL-6) (p=0.0311) levels were significantly higher (p<0.05), while total protein (p=0.0086), albumin (p<0.0001), and indirect bilirubin (p=0.0147) levels were significantly lower (p<0.05) in cases as compared to controls. The difference was statistically insignificant (p>0.05) for serum sodium, potassium, total and direct bilirubin, globulin, alanine transaminase (ALT), alkaline phosphatase (ALP), D-dimer, and ferritin. On ROC analysis, urea was fair (AUC=0.721), creatinine (AUC=0.698) and IL-6 (AUC=0.698) were acceptable predictors of mortality, while albumin (AUC=0.698) was an acceptable predictor of survival in severely ill COVID-19 patients during their intensive care stay. Conclusion Understanding the pathophysiological changes associated with the severity of COVID-19 in terms of an alteration of biochemical parameters is a pressing priority. Our study highlights the importance of routine laboratory tests in predicting outcomes in severely ill COVID-19 patients.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA