Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.039
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Plant J ; 118(2): 457-468, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38198228

RESUMO

Carotenoids perform a broad range of important functions in humans; therefore, carotenoid biofortification of maize (Zea mays L.), one of the most highly produced cereal crops worldwide, would have a global impact on human health. PLASTID TERMINAL OXIDASE (PTOX) genes play an important role in carotenoid metabolism; however, the possible function of PTOX in carotenoid biosynthesis in maize has not yet been explored. In this study, we characterized the maize PTOX locus by forward- and reverse-genetic analyses. While most higher plant species possess a single copy of the PTOX gene, maize carries two tandemly duplicated copies. Characterization of mutants revealed that disruption of either copy resulted in a carotenoid-deficient phenotype. We identified mutations in the PTOX genes as being causal of the classic maize mutant, albescent1. Remarkably, overexpression of ZmPTOX1 significantly improved the content of carotenoids, especially ß-carotene (provitamin A), which was increased by ~threefold, in maize kernels. Overall, our study shows that maize PTOX locus plays an important role in carotenoid biosynthesis in maize kernels and suggests that fine-tuning the expression of this gene could improve the nutritional value of cereal grains.


Assuntos
Oxirredutases , Zea mays , Humanos , Oxirredutases/genética , Oxirredutases/metabolismo , Zea mays/genética , Zea mays/metabolismo , Carotenoides/metabolismo , beta Caroteno/metabolismo , Grão Comestível/genética , Grão Comestível/metabolismo , Plastídeos/genética , Plastídeos/metabolismo
2.
Plant J ; 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39121193

RESUMO

Biofortification of green leafy vegetables with pro-vitamin A carotenoids, such as ß-carotene, has remained challenging to date. Here, we combined two strategies to achieve this goal. One of them involves producing ß-carotene in the cytosol of leaf cells to avoid the negative impacts on photosynthesis derived from changing the balance of carotenoids and chlorophylls in chloroplasts. The second approach involves the conversion of chloroplasts into non-photosynthetic, carotenoid-overaccumulating chromoplasts in leaves agroinfiltrated or infected with constructs encoding the bacterial phytoene synthase crtB, leaving other non-engineered leaves of the plant to sustain normal growth. A combination of these two strategies, referred to as strategy C (for cytosolic production) and strategy P (for plastid conversion mediated by crtB), resulted in a 5-fold increase in the amount of ß-carotene in Nicotiana benthamiana leaves. Following several attempts to further improve ß-carotene leaf contents by metabolic engineering, hormone treatments and genetic screenings, it was found that promoting the proliferation of plastoglobules with increased light-intensity treatments not only improved ß-carotene accumulation but it also resulted in a much higher bioaccessibility. The combination of strategies C and P together with a more intense light treatment increased the levels of accessible ß-carotene 30-fold compared to controls. We further demonstrated that stimulating plastoglobule proliferation with strategy P, but also with a higher-light treatment alone, also improved ß-carotene contents and bioaccessibility in edible lettuce (Lactuca sativa) leaves.

3.
EMBO Rep ; 24(1): e55542, 2023 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-36394374

RESUMO

The Zn content in cereal seeds is an important trait for crop production as well as for human health. However, little is known about how Zn is loaded to plant seeds. Here, through a genome-wide association study (GWAS), we identify the Zn-NA (nicotianamine) transporter gene ZmYSL2 that is responsible for loading Zn to maize kernels. High promoter sequence variation in ZmYSL2 most likely drives the natural variation in Zn concentrations in maize kernels. ZmYSL2 is specifically localized on the plasma membrane facing the maternal tissue of the basal endosperm transfer cell layer (BETL) and functions in loading Zn-NA into the BETL. Overexpression of ZmYSL2 increases the Zn concentration in the kernels by 31.6%, which achieves the goal of Zn biofortification of maize. These findings resolve the mystery underlying the loading of Zn into plant seeds, providing an efficient strategy for breeding or engineering maize varieties with enriched Zn nutrition.


Assuntos
Estudo de Associação Genômica Ampla , Zea mays , Humanos , Zea mays/genética , Zea mays/metabolismo , Zinco/metabolismo , Melhoramento Vegetal , Sementes/genética , Proteínas de Membrana Transportadoras/genética
4.
Plant J ; 113(4): 749-771, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36573652

RESUMO

Rice (Oryza sativa) is an important staple crop to address the Hidden Hunger problem not only in Asia but also in Africa where rice is fast becoming an important source of calories. The brown rice (whole grain with bran) is known to be more nutritious due to elevated mineral composition. The genetics underlying brown rice ionome (sum total of such mineral composition) remains largely unexplored. Hence, we conducted a comprehensive study to dissect the genetic architecture of the brown rice ionome. We used genome-wide association studies, gene set analysis, and targeted association analysis for 12 micronutrients in the brown rice grains. A diverse panel of 300 resequenced indica accessions, with more than 1.02 million single nucleotide polymorphisms, was used. We identified 109 candidate genes with 5-20% phenotypic variation explained for the 12 micronutrients and identified epistatic interactions with multiple micronutrients. Pooling all candidate genes per micronutrient exhibited phenotypic variation explained values ranging from 11% to almost 40%. The key donor lines with larger concentrations for most of the micronutrients possessed superior alleles, which were absent in the breeding lines. Through gene regulatory networks we identified enriched functional pathways for central regulators that were detected as key candidate genes through genome-wide association studies. This study provided important insights on the ionome variations in rice, on the genetic basis of the genome-ionome relationships and on the molecular mechanisms underlying micronutrient signatures.


Assuntos
Oryza , Oligoelementos , Micronutrientes/análise , Oryza/genética , Estudo de Associação Genômica Ampla , Locos de Características Quantitativas , Melhoramento Vegetal
5.
BMC Genomics ; 25(1): 95, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38262915

RESUMO

BACKGROUND: Evolutionarily conserved in plants, the enzyme D-myo-inositol-3-phosphate synthase (MIPS; EC 5.5.1.4) regulates the initial, rate-limiting reaction in the phytic acid biosynthetic pathway. They are reported to be transcriptional regulators involved in various physiological functions in the plants, growth, and biotic/abiotic stress responses. Even though the genomes of most legumes are fully sequenced and available, an all-inclusive study of the MIPS family members in legumes is still ongoing. RESULTS: We found 24 MIPS genes in ten legumes: Arachis hypogea, Cicer arietinum, Cajanus cajan, Glycine max, Lablab purpureus, Medicago truncatula, Pisum sativum, Phaseolus vulgaris, Trifolium pratense and Vigna unguiculata. The total number of MIPS genes found in each species ranged from two to three. The MIPS genes were classified into five clades based on their evolutionary relationships with Arabidopsis genes. The structural patterns of intron/exon and the protein motifs that were conserved in each gene were highly group-specific. In legumes, MIPS genes were inconsistently distributed across their genomes. A comparison of genomes and gene sequences showed that this family was subjected to purifying selection and the gene expansion in MIPS family in legumes was mainly caused by segmental duplication. Through quantitative PCR, expression patterns of MIPS in response to various abiotic stresses, in the vegetative tissues of various legumes were studied. Expression pattern shows that MIPS genes control the development and differentiation of various organs, and have significant responses to salinity and drought stress. CONCLUSION: The MIPS genes in the genomes of legumes have been identified, characterized and their expression was analysed. The findings pave way for understanding their molecular functions and evolution, and lead to identify the putative MIPS genes associated with different cell and tissue development.


Assuntos
Arabidopsis , Cajanus , Cicer , Phaseolus , Verduras , Glycine max
6.
Funct Integr Genomics ; 24(2): 34, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38365972

RESUMO

Malnutrition, often termed "hidden hunger," represents a pervasive global issue carrying significant implications for health, development, and socioeconomic conditions. Addressing the challenge of inadequate essential nutrients, despite sufficient caloric intake, is crucial. Biofortification emerges as a promising solution by enhance the presence of vital nutrients like iron, zinc, iodine, and vitamin A in edible parts of different crop plants. Crop biofortification can be attained through either agronomic methods or genetic breeding techniques. Agronomic strategies for biofortification encompass the application of mineral fertilizers through foliar or soil methods, as well as leveraging microbe-mediated mechanisms to enhance nutrient uptake. On the other hand, genetic biofortification involves the strategic crossing of plants to achieve a desired combination of genes, promoting balanced nutrient uptake and bioavailability. Additionally, genetic biofortification encompasses innovative methods such as speed breeding, transgenic approaches, genome editing techniques, and integrated omics approaches. These diverse strategies collectively contribute to enhancing the nutritional profile of crops. This review highlights the above-said genetic biofortification strategies and it also covers the aspect of reduction in antinutritional components in food through genetic biofortification.


Assuntos
Biofortificação , Fome , Biofortificação/métodos , Melhoramento Vegetal , Produtos Agrícolas/genética , Solo
7.
BMC Plant Biol ; 24(1): 668, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39004715

RESUMO

BACKGROUND: Biofortification represents a promising and sustainable strategy for mitigating global nutrient deficiencies. However, its successful implementation poses significant challenges. Among staple crops, wheat emerges as a prime candidate to address these nutritional gaps. Wheat biofortification offers a robust approach to enhance wheat cultivars by elevating the micronutrient levels in grains, addressing one of the most crucial global concerns in the present era. MAIN TEXT: Biofortification is a promising, but complex avenue, with numerous limitations and challenges to face. Notably, micronutrients such as iron (Fe), zinc (Zn), selenium (Se), and copper (Cu) can significantly impact human health. Improving Fe, Zn, Se, and Cu contents in wheat could be therefore relevant to combat malnutrition. In this review, particular emphasis has been placed on understanding the extent of genetic variability of micronutrients in diverse Triticum species, along with their associated mechanisms of uptake, translocation, accumulation and different classical to advanced approaches for wheat biofortification. CONCLUSIONS: By delving into micronutrient variability in Triticum species and their associated mechanisms, this review underscores the potential for targeted wheat biofortification. By integrating various approaches, from conventional breeding to modern biotechnological interventions, the path is paved towards enhancing the nutritional value of this vital crop, promising a brighter and healthier future for global food security and human well-being.


Assuntos
Biofortificação , Desnutrição , Micronutrientes , Triticum , Triticum/metabolismo , Triticum/genética , Micronutrientes/metabolismo , Desnutrição/metabolismo , Produtos Agrícolas/genética , Produtos Agrícolas/metabolismo , Zinco/metabolismo , Valor Nutritivo
8.
BMC Plant Biol ; 24(1): 835, 2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39243061

RESUMO

Salinity is the major abiotic stress among others that determines crop productivity. The primary goal is to examine the impact of Zinc Oxide Nanoparticles (ZnO NPs) on the growth, metabolism, and defense systems of pea plants in simulated stress conditions. The ZnO NPs were synthesized via a chemical process and characterized by UV, XRD, and SEM. The ZnO NPs application (50 and 100) ppm and salt (50 mM and 100 mM) concentrations were carried out individually and in combination. At 50 ppm ZnO NPs the results revealed both positive and negative effects, demonstrating an increase in the root length and other growth parameters, along with a decrease in Malondialdehyde (MDA) and hydrogen peroxide concentrations. However, different concentrations of salt (50 mM and 100 mM) had an overall negative impact on all assessed parameters. In exploring the combined effects of ZnO NPs and salt, various concentrations yielded different outcomes. Significantly, only 50 mM NaCl combined with 50 ppm ZnO NPs demonstrated positive effects on pea physiology, leading to a substantial increase in root length and improvement in other physiological parameters. Moreover, this treatment resulted in decreased levels of MAD, Glycine betaine, and hydrogen peroxide. Conversely, all other treatments exhibited negative effects on the assessed parameters, possibly due to the high concentrations of both stressors. The findings offered valuble reference data for research on the impact of salinity on growth parameters of future agriculture crop.


Assuntos
Pisum sativum , Estresse Salino , Óxido de Zinco , Óxido de Zinco/farmacologia , Pisum sativum/efeitos dos fármacos , Pisum sativum/crescimento & desenvolvimento , Pisum sativum/fisiologia , Pisum sativum/metabolismo , Estresse Salino/efeitos dos fármacos , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Raízes de Plantas/fisiologia , Malondialdeído/metabolismo , Peróxido de Hidrogênio/metabolismo , Nanopartículas Metálicas , Nanopartículas , Salinidade
9.
BMC Plant Biol ; 24(1): 891, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39343926

RESUMO

BACKGROUND: Iron (Fe) deficiency affects 30-50% of the world's population. Genetic biofortification of staple crops is a promising strategy for improving human nutrition, but the number of effective precision breeding targets for Fe biofortification is small. Upstream open reading frames (uORFs) are cis-regulatory elements within the 5' leader sequence (LS) of genes that generally repress translation of the main open reading frame (mORF). RESULTS: We aligned publicly available rice (Oryza sativa L.) ribo-seq datasets and transcriptomes to identify putative uORFs within important Fe homeostasis genes. A dual luciferase assay (DLA) was used to determine whether these uORFs cause repression of mORF translation and pinpoint LS regions that can be mutated for mORF derepression. A translationally repressive uORF region was identified in two positive regulators of the Fe-deficiency response: IDEF1 and IDEF2. The IDEF2-uORF peptide was highly conserved among monocots and a mutation series in the 5' LS of the wheat (Triticum aestivum L.) TaIDEF2-A1 gene demonstrated variable mORF derepression. CONCLUSIONS: Together these results reveal a possible regulatory mechanism by which IDEF2 transcription factors modulate the Fe deficiency response in monocots, and highlight novel precision breeding targets to improve crop nutrition and abiotic stress tolerance.


Assuntos
Fases de Leitura Aberta , Oryza , Proteínas de Plantas , Triticum , Fases de Leitura Aberta/genética , Oryza/genética , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Triticum/genética , Triticum/metabolismo , Regulação da Expressão Gênica de Plantas , Deficiências de Ferro , Sequência Conservada
10.
BMC Plant Biol ; 24(1): 220, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38532321

RESUMO

BACKGROUND: Riboflavin is the precursor of several cofactors essential for normal physical and cognitive development, but only plants and some microorganisms can produce it. Humans thus rely on their dietary intake, which at a global level is mainly constituted by cereals (> 50%). Understanding the riboflavin biosynthesis players is key for advancing our knowledge on this essential pathway and can hold promise for biofortification strategies in major crop species. In some bacteria and in Arabidopsis, it is known that RibA1 is a bifunctional protein with distinct GTP cyclohydrolase II (GTPCHII) and 3,4-dihydroxy-2-butanone-4-phosphate synthase (DHBPS) domains. Arabidopsis harbors three RibA isoforms, but only one retained its bifunctionality. In rice, however, the identification and characterization of RibA has not yet been described. RESULTS: Through mathematical kinetic modeling, we identified RibA as the rate-limiting step of riboflavin pathway and by bioinformatic analysis we confirmed that rice RibA proteins carry both domains, DHBPS and GTPCHII. Phylogenetic analysis revealed that OsRibA isoforms 1 and 2 are similar to Arabidopsis bifunctional RibA1. Heterologous expression of OsRibA1 completely restored the growth of the rib3∆ yeast mutant, lacking DHBPS expression, while causing a 60% growth improvement of the rib1∆ mutant, lacking GTPCHII activity. Regarding OsRibA2, its heterologous expression fully complemented GTPCHII activity, and improved rib3∆ growth by 30%. In vitro activity assays confirmed that both OsRibA1 and OsRibA2 proteins carry GTPCHII/DHBPS activities, but that OsRibA1 has higher DHBPS activity. The overexpression of OsRibA1 in rice callus resulted in a 28% increase in riboflavin content. CONCLUSIONS: Our study elucidates the critical role of RibA in rice riboflavin biosynthesis pathway, establishing it as the rate-limiting step in the pathway. By identifying and characterizing OsRibA1 and OsRibA2, showcasing their GTPCHII and DHBPS activities, we have advanced the understanding of riboflavin biosynthesis in this staple crop. We further demonstrated that OsRibA1 overexpression in rice callus increases its riboflavin content, providing supporting information for bioengineering efforts.


Assuntos
Arabidopsis , Oryza , Humanos , Riboflavina/genética , Riboflavina/metabolismo , Sequência de Aminoácidos , GTP Cicloidrolase/genética , GTP Cicloidrolase/metabolismo , Oryza/metabolismo , Arabidopsis/metabolismo , Filogenia , Isoformas de Proteínas/metabolismo
11.
New Phytol ; 2024 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-39400352

RESUMO

Carotenoids play essential roles in photosynthesis, photoprotection, and human health. Efforts to increase carotenoid content in several staple crops have been successful through both conventional selection and genetic engineering methods. Interestingly, in some cases, altering carotenoid content has had unexpected effects on other aspects of plant metabolism, impacting traits like sugar content, dry matter percentage, fatty acid content, stress tolerance, and phytohormone concentrations. Studies across several diverse crop species have identified negative correlations between carotenoid and starch contents, as well as positive correlations between carotenoids and soluble sugars. Collectively, these reports suggest a metabolic interaction between carotenoids and carbohydrates. We synthesize evidence pointing to four hypothesized mechanisms: (1) direct competition for precursors; (2) physical interactions in plastids; (3) influences of sugar or apocarotenoid signaling networks; and (4) nonmechanistic population or statistical sources of correlations. Though the carotenoid biosynthesis pathway is well understood, the regulation and interactions of carotenoids, especially in nonphotosynthetic tissues, remain unclear. This topic represents an underexplored interplay between primary and secondary metabolism where further research is needed.

12.
New Phytol ; 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39351644

RESUMO

Rice grains typically contain relatively high levels of toxic arsenic (As) but low levels of essential micronutrients. Biofortification of essential micronutrients while decreasing As accumulation in rice would benefit human nutrition and health. We generated transgenic rice expressing a gain-of-function mutant allele astol1 driven by the OsGPX1 promoter. astol1 encodes a plastid-localized O-acetylserine (thiol) lyase (OAS-TL) with Ser189Asn substitution (OsASTOL1S189N), which enhances cysteine biosynthesis by forming an indissociable cysteine synthase complex with its partner serine acetyltransferase (SAT). The effects on growth, As tolerance, and nutrient and As accumulation in rice grain were evaluated in hydroponic, pot and field experiments. The expression of OsASTOL1S189N in pOsGPX1::astol1 transgenic lines enhanced SAT activity, sulphate uptake, biosynthesis of cysteine, glutathione, phytochelatins and nicotianamine, and enhanced tolerance to As. The expression of OsASTOL1S189N decreased As accumulation while increased the accumulation of multiple macronutrients (especially sulphur, nitrogen and potassium) and micronutrients (especially zinc and selenium) in rice grain in a pot experiment and two field experiments, and had little effect on plant growth and grain yield. Our study provides a new strategy to genetically engineer rice to biofortify multiple essential nutrients, reducing As accumulation in rice grain and enhancing As tolerance simultaneously.

13.
J Nutr ; 154(8): 2575-2582, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38936549

RESUMO

BACKGROUND: South, East, and Southeast Asia are among the regions of the world with the highest estimated prevalence of inadequate zinc intake. Because populations in those regions eat rice as their main staple, zinc biofortification of rice can potentially improve zinc intake, especially among the most vulnerable. OBJECTIVES: We modeled the impact of the consumption of zinc-biofortified rice on zinc intake and inadequacy among women of childbearing age and young children nationally in Indonesia, the Philippines, and at a subnational level in Bangladesh. METHODS: We conducted an ex-ante analysis by applying increments of zinc content in rice, from a baseline level of 16 parts per million (ppm) to 100 ppm, and based on rice consumption data to substitute levels of conventional rice with zinc-biofortified rice varying between 10% and 70%. RESULTS: Among all datasets evaluated from these 3 countries, the prevalence of dietary zinc inadequacy at baseline was 94%-99% among women of childbearing age, 77%-100% among children 4-5 y old, and 27%-78% among children 1-3 y old. At the current breeding target of 28 ppm, zinc-biofortified rice has the potential to decrease zinc inadequacy by ≤50% among women and children in rural Bangladesh and among children in the Philippines where consumption of rice is higher compared with Indonesia. CONCLUSIONS: Our analysis shows that increasing zinc content in rice ≤45 ppm reduces the burden of zinc inadequacy substantially, after which we encourage programs to increase coverage to reach the highest number of beneficiaries.


Assuntos
Alimentos Fortificados , Oryza , Zinco , Oryza/química , Humanos , Filipinas , Bangladesh , Zinco/análise , Indonésia , Feminino , Pré-Escolar , Lactente , Adulto , Dieta , Masculino , Adulto Jovem , Biofortificação , Adolescente , Prevalência
14.
Int Microbiol ; 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38740653

RESUMO

The current study was aimed for the generation of Pleurotus extracellular extract-mediated selenium and zinc-oxide nanoparticles (NPs). The Pleurotus djamor (PD) and Pleurotus sajor-caju (PSC) extracts were incubated with different concentrations of sodium selenate and zinc acetate to yield BioSeNPs and BioZnONPs. The NPs formation led to visual color change (brick-red and white for Se and Zn nanosols, respectively). The synthesized NPs were spherical with size of 124 and 68 nm and 84 and 91 nm for PD and PSC BioSeNPs and BioZnONPs respectively. The UV absorbance peaks were recorded at 293.2 and 292.2 nm and 365.9 and 325.5 nm for BioSeNPs and BioZnONPs derived from PD and PSC respectively. FT-IR spectroscopy indicated specific functional group adoration on metal-based NPs. On supplementation in straw, these NPs improved the fruit body yield besides enhancing their protein and Se/ Zn contents. These biofortified mushrooms could be potential dietary supplement/ nutraceutical.

15.
Br J Nutr ; : 1-13, 2024 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-39479900

RESUMO

Selenium (Se) deficiency among populations in Ethiopia is consistent with low concentrations of Se in soil and crops that could be addressed partly by Se-enriched fertilisers. This study examines the disease burden of Se deficiency in Ethiopia and evaluates the cost-effectiveness of Se agronomic biofortification. A disability-adjusted life years (DALY) framework was used, considering goiter, anaemia, and cognitive dysfunction among children and women. The potential efficiency of Se agronomic biofortification was calculated from baseline crop composition and response to Se fertilisers based on an application of 10 g/ha Se fertiliser under optimistic and pessimistic scenarios. The calculated cost per DALY was compared against gross domestic product (GDP; below 1-3 times national GDP) to consider as a cost-effective intervention. The existing national food basket supplies a total of 28·2 µg of Se for adults and 11·3 µg of Se for children, where the risk of inadequate dietary Se reaches 99·1 %-100 %. Cereals account for 61 % of the dietary Se supply. Human Se deficiency contributes to 0·164 million DALYs among children and women. Hence, 52 %, 43 %, and 5 % of the DALYs lost are attributed to anaemia, goiter, and cognitive dysfunction, respectively. Application of Se fertilisers to soils could avert an estimated 21·2-67·1 %, 26·6-67·5 % and 19·9-66·1 % of DALY via maize, teff and wheat at a cost of US$129·6-226·0, US$149·6-209·1 and US$99·3-181·6, respectively. Soil Se fertilisation of cereals could therefore be a cost-effective strategy to help alleviate Se deficiency in Ethiopia, with precedents in Finland.

16.
Mol Biol Rep ; 51(1): 242, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38300326

RESUMO

Sulfur-containing amino acids (SAA), namely methionine, and cysteine are crucial essential amino acids (EAA) considering the dietary requirements of humans and animals. However, a few crop plants, especially legumes, are characterized with suboptimal levels of these EAA thereby limiting their nutritive value. Hence, improved comprehension of the mechanistic perspective of sulfur transport and assimilation into storage reserve, seed storage protein (SSP), is imperative. Efforts to augment the level of SAA in seed storage protein form an integral component of strategies to balance nutritive quality and quantity. In this review, we highlight the emerging trends in the sulfur biofortification approaches namely transgenics, genetic and molecular breeding, and proteomic rebalancing with sulfur nutrition. The transgenic 'push and pull strategy' could enhance sulfur capture and storage by expressing genes that function as efficient transporters, sulfate assimilatory enzymes, sulfur-rich foreign protein sinks, or by suppressing catabolic enzymes. Modern molecular breeding approaches that adopt high throughput screening strategies and machine learning algorithms are invaluable in identifying candidate genes and alleles associated with SAA content and developing improved crop varieties. Sulfur is an essential plant nutrient and its optimal uptake is crucial for seed sulfur metabolism, thereby affecting seed quality and yields through proteomic rebalance between sulfur-rich and sulfur-poor seed storage proteins.


Assuntos
Aminoácidos Essenciais , Proteômica , Animais , Humanos , Transporte Biológico , Proteínas de Armazenamento de Sementes , Enxofre , Sulfatos
17.
Ecotoxicol Environ Saf ; 283: 116810, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39096692

RESUMO

Selecting and breeding rice cultivars that enable strong cadmium (Cd) accumulation in rice straw but low accumulation in brown rice is a promising way to achieve Cd phytoremediation as well as to ensure the food safety of rice. Herein, we isolated a gene OsWNK9 from the quantitative trait locus associated with reducing Cd translocation from rice straw to brown rice and decreasing the Cd concentration in brown rice (BRCdC). Continuous strong expression of OsWNK9 was observed in nodes and internode and was induced after Cd supply. OsWNK9 was localized in the rice cell nucleus and participated in the regulation of Cd transport in yeast. Two independent oswnk9 rice mutants were generated via CRISPR/Cas9 gene-editing and showed significantly higher BRCdC than that of the wild type (WT). The BRCdC of knockout oswnk9 mutants was 0.227 mg kg-1and 0.238 mg kg-1, increased by 14 % and 19 % compared with that of the WT due to the lower Cd allocation in the basal stem, internode, and node III, which was unrelated to Cd uptake. Interestingly, OsWNK9 could promote iron (Fe) accumulation in rice under Cd-contaminated conditions, suggesting that OsWNK9 is an ideal gene for Cd phytoremediation and Fe biofortification in rice to support safe food production.


Assuntos
Biodegradação Ambiental , Cádmio , Oryza , Oryza/metabolismo , Oryza/genética , Cádmio/metabolismo , Poluentes do Solo/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Transporte Biológico , Locos de Características Quantitativas , Ferro/metabolismo
18.
Int J Phytoremediation ; 26(11): 1728-1740, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38745404

RESUMO

Soil contamination with chromium (Cr) is becoming a primary ecological and health concern, specifically in the Kasur and Sialkot regions of Pakistan. The main objective of the current study was to evaluate the impact of foliar application of zinc oxide nanoparticles (ZnO NPs) (0, 25, 50, 100 mg L-1) and Fe NPs (0, 5, 10, 20 mg L-1) in red sails lettuce plants grown in Cr-contaminated soil. Our results showed that both ZnO and Fe NPs improved plant growth, and photosynthetic attributes by minimizing oxidative stress in lettuce plants through the stimulation of antioxidant enzyme activities. At ZnO NPs (100 mgL-1), dry weights of shoots and roots and fresh weights of shoots and roots were improved by 53%, 58%, 34%, and 45%, respectively, as compared to the respective control plants. The Fe NPs treatment (20 mgL-1) increased the dry weight of shoots and the roots and fresh weights of shoots and roots by 53%, 76%, 42%, and 70%, respectively. Application of both NPs reduced the oxidative stress caused by Cr, as evident by the findings of the current study, i.e., at the ZnO NPs (100 mgL-1) and Fe NPs (20 mgL-1), the EL declined by 32% and 44%, respectively, in comparison with respective control plants. Moreover, Fe and ZnO NPs enhanced the Fe and Zn contents in red sails lettuce plants. Application of ZnO NPs at 100 mg L-1 and Fe NPs at 20 mg L-1, improved the Zn and Fe contents in plant leaves by 86%, and 68%, respectively, as compared to the control plants. This showed that the exogenous application of these NPs helped in Zn and Fe fortification in plants. At similar of concenteration ZnO NPs, CAT and APX activities were improved by 52% and 53%, respectively. Similarly, the POD contents were improved by 17% and 45% at 5 and 10 mg/L of Fe NPs. Furthermore, ZnO and Fe NPs limited the Cr uptake by plants, and the concentration of Cr in the leaves of lettuce was under the threshold limit. The exogenous application of ZnO NPs (100 mg L-1) and Fe NPs (20 mg L-1) reduced the Cr uptake in the leaves of red sails lettuce by 57% and 51%, respectively. In conclusion, ZnO and Fe NPs could be used for the improvement of plant growth and biomass as well as nutrient fortification in stressed environments. These findings not only underscore the efficacy of nanoparticle-assisted phytoremediation but also highlight its broader implications for sustainable agriculture and environmental health. However, future studies on other crops with molecular-level investigations are recommended for the validation of the results.


ZnO and Fe NPs improved the growth and photosynthesis of red sails lettuce plantsBoth NPs enhanced antioxidants enzymes activities in stressed plantsNPs mediated response reduced the oxidative stress and Cr uptake in red sails lettuceZnO and Fe NPs resulted in Zn and Fe fortification, respectively, in red sails lettuce.


Assuntos
Antioxidantes , Biodegradação Ambiental , Cromo , Ferro , Lactuca , Nanopartículas Metálicas , Poluentes do Solo , Óxido de Zinco , Cromo/metabolismo , Lactuca/metabolismo , Lactuca/crescimento & desenvolvimento , Poluentes do Solo/metabolismo , Ferro/metabolismo , Antioxidantes/metabolismo , Estresse Oxidativo
19.
Int J Mol Sci ; 25(13)2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-39000115

RESUMO

Selenium (Se) is an essential trace element for humans. Low concentrations of Se can promote plant growth and development. Enhancing grain yield and crop Se content is significant, as major food crops generally have low Se content. Studies have shown that Se biofortification can significantly increase Se content in plant tissues. In this study, the genetic transformation of wheat was conducted to evaluate the agronomic traits of non-transgenic control and transgenic wheat before and after Se application. Se content, speciation, and transfer coefficients in wheat grains were detected. Molecular docking simulations and transcriptome data were utilized to explore the effects of selenium-binding protein-A TaSBP-A on wheat growth and grain Se accumulation and transport. The results showed that TaSBP-A gene overexpression significantly increased plant height (by 18.50%), number of spikelets (by 11.74%), and number of grains in a spike (by 35.66%) in wheat. Under normal growth conditions, Se content in transgenic wheat grains did not change significantly, but after applying sodium selenite, Se content in transgenic wheat grains significantly increased. Analysis of Se speciation revealed that organic forms of selenomethionine (SeMet) and selenocysteine (SeCys) predominated in both W48 and transgenic wheat grains. Moreover, TaSBP-A significantly increased the transfer coefficients of Se from solution to roots and from flag leaves to grains. Additionally, it was found that with the increase in TaSBP-A gene overexpression levels in transgenic wheat, the transfer coefficient of Se from flag leaves to grains also increased.


Assuntos
Regulação da Expressão Gênica de Plantas , Proteínas de Plantas , Plantas Geneticamente Modificadas , Proteínas de Ligação a Selênio , Selênio , Selenito de Sódio , Triticum , Triticum/genética , Triticum/metabolismo , Triticum/crescimento & desenvolvimento , Proteínas de Ligação a Selênio/metabolismo , Proteínas de Ligação a Selênio/genética , Selênio/metabolismo , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Selenito de Sódio/metabolismo , Grão Comestível/metabolismo , Grão Comestível/genética , Grão Comestível/crescimento & desenvolvimento , Simulação de Acoplamento Molecular , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , Sementes/genética , Sementes/efeitos dos fármacos
20.
Molecules ; 29(19)2024 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-39407668

RESUMO

Mushrooms exhibit a broad spectrum of pharmacological activities and are widely used for medical purposes and in nutrition. Numerous bioactive metabolites are responsible for these activities. Their distribution and biological effects differ depending on the fungal species and their chemical composition. Biofortification is a sustainable process that aims to improve the nutritional profile of food crops, as most of them are low in key nutrients. This review aims to delve into the process of fungal biofortification and review the most commonly used elements and species. Through biofortification, it is possible to combat hidden hunger, which affects as many as 2 billion people worldwide. "Hidden hunger" is a phenomenon in which the organism lacks the minerals and vitamins needed for development, growth, and good overall health. Mushrooms are increasingly being considered for biofortification due to their ability to accumulate various elements (both micro- and macroelements).


Assuntos
Agaricales , Biofortificação , Agaricales/química , Agaricales/metabolismo , Humanos , Alimentos Fortificados/análise , Minerais/análise , Minerais/metabolismo , Valor Nutritivo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA