Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Environ Manage ; 204(Pt 2): 804-812, 2017 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-28238364

RESUMO

Subgrade biogeochemical reactors (SBGRs), also commonly referred to as in situ bioreactors, are a unique technology for treatment of contaminant source areas and groundwater plume hot spots. SBGRs have most commonly been configured for enhanced reductive dechlorination (ERD) applications for chlorinated solvent treatment. However, they have also been designed for other contaminant classes using alternative treatment media. The SBGR technology typically consists of removal of contaminated soil via excavation or large-diameter augers, and backfill of the soil void with gravel and treatment amendments tailored to the target contaminant(s). In most cases SBGRs include installation of infiltration piping and a low-flow pumping system (typically solar-powered) to recirculate contaminated groundwater through the SBGR for treatment. SBGRs have been constructed in multiple configurations, including designs capable of meeting limited access restrictions at heavily industrialized sites, and at sites with restrictions on surface disturbance due to sensitive species or habitat issues. Typical performance results for ERD applications include 85 to 90 percent total molar reduction of chlorinated volatile organic compounds (CVOCs) near the SBGR and rapid clean-up of adjacent dissolved contaminant source areas. Based on a review of the literature and CH2M's field-scale results from over a dozen SBGRs with a least one year of performance data, important site-specific design considerations include: 1) hydraulic residence time should be long enough for sufficient treatment but not too long to create depressed pH and stagnant conditions (e.g., typically between 10 and 60 days), 2) reactor material should balance appropriate organic mulch as optimal bacterial growth media along with other organic additives that provide bioavailable organic carbon, 3) a variety of native bacteria are important to the treatment process, and 4) biologically mediated generation of iron sulfides along with addition of iron pyrite sands as an abiotic polishing step within the reactor has been observed to be an efficient treatment train for chlorinated solvent sites.


Assuntos
Reatores Biológicos , Poluentes Químicos da Água , Água Subterrânea , Purificação da Água
2.
J Hazard Mater ; 420: 126600, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34271444

RESUMO

In this study, a protocol was developed to identify reduction-oxidation (redox) transition zones in an effort to exploit natural source zone depletion processes. A sediment core with a total length of 18-m was collected from a site with historical contamination that includes chlorinated benzenes where the redox condition was preserved. In the four redox transition zones investigated, reactive iron coatings are characterized with a suite of analyses under anaerobic conditions. To distinguish surface coating mineralogy, X-ray diffraction, X-ray fluorescence, and field-emission scanning electron microscopy with an energy dispersive X-ray analyzer were applied along with a six-step sequential extraction process. The cycling of Fe and S, as an important contribution and indicator of ongoing natural attenuation processes for constituents of concern (COC), was delineated by using data from multiple and complementary analyses for isolating and identifying iron phases. Along with groundwater chemistry, contaminant concentrations, and microbial genera, attenuation of COCs is expected to be active and sustainable in redox transition zones, where there is an abundance of reactive iron mineral coatings cycling through biogeochemical reactions. Reactions in other redox transition zones may be limited where iron mineral coatings are not dominant.


Assuntos
Água Subterrânea , Ferro , Minerais , Oxirredução , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA