Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Anal Bioanal Chem ; 409(18): 4425-4435, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28516281

RESUMO

Lipids have numerous important functions in the human body, as they form the cells' plasma membranes and play a key role in many disease states, presumably also in osteoporosis. Here, the fatty acid composition of the outer plasma membranes of cells differentiated into the osteogenic and adipogenic direction is studied with surface-sensitive time-of-flight secondary ion mass spectrometry (ToF-SIMS). For data evaluation, principal component analysis (PCA) is applied. Human (bone-derived) mesenchymal stromal cells (hMSCs) from an osteoporotic donor and a control donor are compared to reveal differences in the fatty acid composition of the membranes. The chemical information is correlated to staining and real-time quantitative polymerase chain reaction (rt-qPCR) results to provide insight into the gene expression of several differentiation markers on the RNA level. Adipogenic differentiation of hMSCs from a non-osteoporotic donor correlates with increased relative intensities of all fatty acids under investigation. After osteogenic differentiation of non-osteoporotic cells, the relative mass signal intensities of unsaturated fatty acids such as oleic and linoleic acids are increased. However, the osteoporotic cells show increased levels of palmitic acid in the plasma membrane after exposure to osteogenic differentiation conditions, which correlates to an immature differentiation state relative to non-osteoporotic osteogenic cells. This immature differentiation state is confirmed by increased early osteogenic differentiation factor Runx2 on RNA level and by less calcium mineralization spots seen in von Kossa staining and ToF-SIMS images. Graphical abstract Time-of-flight secondary ion mass spectrometry is applied to analyze the fatty acid composition of the outer plasma membranes of cells differentiated into the adipogenic and osteogenic direction. Cells from an osteoporotic and a control donor are compared to reveal differences due to differentiation and disease stage of the cells.


Assuntos
Osso e Ossos/citologia , Espectrometria de Massas/métodos , Células-Tronco Mesenquimais/fisiologia , Osteogênese/fisiologia , Osteoporose/patologia , Adipogenia , Diferenciação Celular , Humanos , Análise de Componente Principal , Reação em Cadeia da Polimerase em Tempo Real/métodos
2.
Med Oncol ; 39(5): 54, 2022 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-35150338

RESUMO

Metformin is used to treat patients with type 2 diabetes mellitus and was found to lower the incidence of cancer. Bone metastasis is a common impairment associated with advanced breast cancer. The present study investigated the effects of metformin on human bone-derived mesenchymal stromal cells (BM-MSC)-breast cancer cell line interactions. BM-MSCs grown from box chisels were tested for growth-stimulating and migration-controlling activity on four breast cancer cell lines either untreated or after pretreatment with metformin. Growth stimulation was tested in MTT tests and migration in scratch assays. Furthermore, the expression of adipokines of BM-MSCs in response to metformin was assessed using Western blot arrays. Compared to breast cancer cell lines (3.6 ± 1.4% reduction of proliferation), 500 µM metformin significantly inhibited the proliferation of BM-MSC lines (mean 12.3 ± 2.2 reduction). Pretreatment of BM-MSCs with metformin showed variable effects of the resulting conditioned media (CM) on breast cancer cell lines depending on the specific BM-MSC-cancer line combination. Metformin significantly reduced the migration of breast cancer cell lines MDA-MB-231 and MDA-MB-436 in response to CM of drug-pretreated BM-MSCs. Assessment of metformin-induced alterations in the expression of adipokines by BM-MSC CM indicated increased osteogenic signaling and possibly impairment of metastasis. In conclusion, the anticancer activities of metformin are the result of a range of direct and indirect mechanisms that lower tumor proliferation and progression. A lower metformin-induced protumor activity of BM-MSCs in the bone microenvironment seem to contribute to the positive effects of the drug in selected breast cancer patients.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Proliferação de Células/efeitos dos fármacos , Células-Tronco Mesenquimais/efeitos dos fármacos , Metformina/farmacologia , Adipocinas/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral/efeitos dos fármacos , Ensaios de Migração Celular , Meios de Cultivo Condicionados , Humanos , Células-Tronco Mesenquimais/citologia , Metástase Neoplásica , Transdução de Sinais
3.
Tissue Eng Regen Med ; 19(2): 377-387, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35119647

RESUMO

BACKGROUND: Although tooth transplantation is a desirable treatment option for congenital defects of permanent teeth in children, transplantation to a narrow alveolar ridge is not feasible. In this study, we investigated the possibility of bone tissue engineering simultaneously with tooth transplantation to enhance the width of the alveolar bone. METHODS: Bone marrow mononuclear cells or cortical bone-derived mesenchymal stromal cell spheroids were seeded onto atelocollagen sponge and transplanted with freshly extracted molars from mice of the same strain. New bone formation around the tooth root was evaluated using micro-computed tomography and histological analysis. Tooth alone, or tooth with scaffold but without cells, was also transplanted and served as controls. RESULTS: Micro-computed tomography showed new bone formation in the furcation area in all four groups. Remarkable bone formation outside the root was also observed in the cortical bone-derived mesenchymal stromal cell group, but was scarce in the other three groups. Histological analysis revealed that the space between the new bone and the root was filled with collagen fibers in all four groups, indicating that the periodontal ligament was maintained. CONCLUSION: This study demonstrates the potential of simultaneous alveolar bone expansion employing bone tissue engineering approach using cortical bone-derived mesenchymal stromal cell spheroids for tooth transplantation. The use of an orthotopic transplantation model may further clarify the feasibility and functional recovery of the transplanted tooth over a longer period.


Assuntos
Osteogênese , Engenharia Tecidual , Animais , Osso Cortical , Camundongos , Ligamento Periodontal/patologia , Microtomografia por Raio-X
4.
Tissue Eng Part C Methods ; 27(4): 253-263, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33798009

RESUMO

Spontaneously formed spheroids from mouse compact bone-derived mesenchymal stromal cells (CB-MSCs) possess enhanced stemness and superior plasticity. In this study, the effect of cryopreservation on viability, stemness, and osteogenic differentiation capability of spontaneous CB-MSC spheroids were investigated. CB-MSCs were isolated from mouse femur and tibia. Spheroids were cryopreserved with various concentrations of dimethyl sulfoxide (DMSO). After thawing, the number of living and dead cells was measured. The expression levels of stem cell markers and osteogenic marker genes were analyzed. The cryopreserved and noncryopreserved spheroids were transplanted in mice with a beta-tricalcium phosphate as a scaffold to evaluate the in vivo bone-forming capability. The percentage of living cells was highest when 5% DMSO was used as a cryoprotectant, confirmed by the number of dead cells. The expression of stem cell marker genes and osteogenic differentiation capability were maintained after cryopreservation with 5% DMSO. The cryopreserved spontaneous CB-MSC spheroids showed remarkable new bone formation in vivo, identical to that of the noncryopreserved spheroids even without osteogenic induction. The cryopreserved spontaneous CB-MSC spheroids retained stemness and osteogenic differentiation capability and highlight the utility of spontaneous CB-MSC spheroids as ready-to-use tissue-engineered products for bone tissue engineering.


Assuntos
Células-Tronco Mesenquimais , Animais , Diferenciação Celular , Células Cultivadas , Osso Cortical , Criopreservação , Camundongos , Osteogênese , Engenharia Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA