Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 239
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Glob Chang Biol ; 30(9): e17493, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39239723

RESUMO

The future of tropical forests hinges on the balance between disturbance rates, which are expected to increase with climate change, and tree growth. Whereas tree growth is a slow process, disturbance events occur sporadically and tend to be short-lived. This difference challenges forest monitoring to achieve sufficient resolution to capture tree growth, while covering the necessary scale to characterize disturbance rates. Airborne LiDAR time series can address this challenge by measuring landscape scale changes in canopy height at 1 m resolution. In this study, we present a robust framework for analysing disturbance and recovery processes in LiDAR time series data. We apply this framework to 8000 ha of old-growth tropical forests over a 4-5-year time frame, comparing growth and disturbance rates between Borneo, the eastern Amazon and the Guiana shield. Our findings reveal that disturbance was balanced by growth in eastern Amazonia and the Guiana shield, resulting in a relatively stable mean canopy height. In contrast, tall Bornean forests experienced a decrease in canopy height due to numerous small-scale (<0.1 ha) disturbance events outweighing the gains due to growth. Within sites, we found that disturbance rates were weakly related to topography, but significantly increased with maximum canopy height. This could be because taller trees were particularly vulnerable to disturbance agents such as drought, wind and lightning. Consequently, we anticipate that tall forests, which contain substantial carbon stocks, will be disproportionately affected by the increasing severity of extreme weather events driven by climate change.


Assuntos
Mudança Climática , Florestas , Árvores , Árvores/crescimento & desenvolvimento , Bornéu , Clima Tropical , Brasil
2.
Biol Lett ; 20(8): 20240157, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39140204

RESUMO

Species delimitation using mitochondrial DNA (mtDNA) remains an important and accessible approach for discovering and delimiting species. However, delimiting species with a single locus (e.g. DNA barcoding) is biased towards overestimating species diversity. The highly diverse gecko genus Cyrtodactylus is one such group where delimitation using mtDNA remains the paradigm. In this study, we use genomic data to test putative species boundaries established using mtDNA within three recognized species of Cyrtodactylus on the island of Borneo. We predict that multi-locus genomic data will estimate fewer species than mtDNA, which could have important ramifications for the species diversity within the genus. We aim to (i) investigate the correspondence between species delimitations using mtDNA and genomic data, (ii) infer species trees for each target species, and (iii) quantify gene flow and identify migration patterns to assess population connectivity. We find that species diversity is overestimated and that species boundaries differ between mtDNA and nuclear data. This underscores the value of using genomic data to reassess mtDNA-based species delimitations for taxa lacking clear species boundaries. We expect the number of recognized species within Cyrtodactylus to continue increasing, but, when possible, genomic data should be included to inform more accurate species boundaries.


Assuntos
DNA Mitocondrial , Lagartos , Animais , Lagartos/genética , Lagartos/classificação , DNA Mitocondrial/genética , Bornéu , Filogenia , Fluxo Gênico , Especificidade da Espécie , Especiação Genética , Variação Genética
3.
Bull Entomol Res ; 114(2): 302-307, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38557482

RESUMO

Mosquito-borne diseases have emerged in North Borneo in Malaysia due to rapid changes in the forest landscape, and mosquito surveillance is key to understanding disease transmission. However, surveillance programmes involving sampling and taxonomic identification require well-trained personnel, are time-consuming and labour-intensive. In this study, we aim to use a deep leaning model (DL) to develop an application capable of automatically detecting mosquito vectors collected from urban and suburban areas in North Borneo, Malaysia. Specifically, a DL model called MobileNetV2 was developed using a total of 4880 images of Aedes aegypti, Aedes albopictus and Culex quinquefasciatus mosquitoes, which are widely distributed in Malaysia. More importantly, the model was deployed as an application that can be used in the field. The model was fine-tuned with hyperparameters of learning rate 0.0001, 0.0005, 0.001, 0.01 and the performance of the model was tested for accuracy, precision, recall and F1 score. Inference time was also considered during development to assess the feasibility of the model as an app in the real world. The model showed an accuracy of at least 97%, a precision of 96% and a recall of 97% on the test set. When used as an app in the field to detect mosquitoes with the elements of different background environments, the model was able to achieve an accuracy of 76% with an inference time of 47.33 ms. Our result demonstrates the practicality of computer vision and DL in the real world of vector and pest surveillance programmes. In the future, more image data and robust DL architecture can be explored to improve the prediction result.


Assuntos
Aedes , Aprendizado Profundo , Mosquitos Vetores , Animais , Malásia , Mosquitos Vetores/fisiologia , Mosquitos Vetores/classificação , Aedes/fisiologia , Aedes/classificação , Culex/classificação , Culex/fisiologia , Culicidae/classificação , Culicidae/fisiologia
4.
J Environ Manage ; 360: 121087, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38735071

RESUMO

Climate change has significantly altered the characteristics of climate zones, posing considerable challenges to ecosystems and biodiversity, particularly in Borneo, known for its high species density per unit area. This study aimed to classify the region into homogeneous climate groups based on long-term average behavior. The most effective parameters from the high-resolution daily gridded Princeton climate datasets spanning 65 years (1950-2014) were utilized, including rainfall, relative humidity (RH), temperatures (Tavg, Tmin, Tmax, and diurnal temperature range (DTR)), along with elevation data at 0.25° resolution. The FCM clustering method outperformed K-Mean and two Ward's hierarchical methods (WardD and WardD2) in classifying Borneo's climate zones based on multi-criteria assessment, exhibiting the lowest average distance (2.172-2.180) and the highest compromise programming index (CPI)-based correlation ranking among cluster averages across all climate parameters. Borneo's climate zones were categorized into four: 'Wet and cold' (WC) and 'Wet' (W) representing wetter zones, and 'Wet and hot' (WH) and 'Dry and hot' (DH) representing hotter zones, each with clearly defined boundaries. For future projection, EC-Earth3-Veg ranked first for all climate parameters across 961 grid points, emerging as the top-performing model. The linear scaling (LS) bias-corrected EC-Earth3-Veg model, as shown in the Taylor diagram, closely replicated the observed datasets, facilitating future climate zone reclassification. Improved performance across parameters was evident based on MAE (35.8-94.6%), MSE (57.0-99.5%), NRMSE (42.7-92.1%), PBIAS (100-108%), MD (23.0-85.3%), KGE (21.1-78.1%), and VE (5.1-9.1%), with closer replication of empirical probability distribution function (PDF) curves during the validation period. In the future, Borneo's climate zones will shift notably, with WC elongating southward along the mountainous spine, W forming an enclave over the north-central mountains, WH shifting northward and shrinking inland, and DH expanding northward along the western coast. Under SSP5-8.5, WC is expected to expand by 39% and 11% for the mid- and far-future periods, respectively, while W is set to shrink by 46%. WH is projected to expand by 2% and 8% for the mid- and far-future periods, respectively. Conversely, DH is expected to expand by 43% for the far-future period but shrink by 42% for the mid-future period. This study fills a gap by redefining Borneo's climate zones based on an increased number of effective parameters and projecting future shifts, utilizing advanced clustering methods (FCM) under CMIP6 scenarios. Importantly, it contributes by ranking GCMs using RIMs and CPI across multiple climate parameters, addressing a previous gap in GCM assessment. The study's findings can facilitate cross-border collaboration by providing a shared understanding of climate dynamics and informing joint environmental management and disaster response efforts.


Assuntos
Mudança Climática , Bornéu , Temperatura , Ecossistema , Clima , Chuva
5.
Environ Manage ; 73(1): 259-273, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37667018

RESUMO

The jurisdictional approach concept emerged in response to the widespread failure of sectoral forest conservation projects. Despite its increasing popularity, understanding jurisdictional approach outcomes is challenging, given that many remain in either the formation or implementation stage. Furthermore, diverse stakeholders hold different perspectives on what exactly a jurisdictional approach is intended to pursue. These different perspectives are important to unravel, as having a shared understanding of the outcomes is important to build the critical support needed for it. This study aims to add to the limited evidence with a case study in Sabah, Malaysia, which is committed to addressing a leading deforestation driver (palm oil) through sustainability certification in a jurisdiction. We used Q-methodology to explore stakeholder perceptions, revealing three distinct perspectives regarding what outcomes jurisdictional approaches should pursue. We asked about outcomes achievable within ten years (2022-2032) and considering real-world constraints. We found different perspectives regarding economic, environmental, governance, and smallholders' welfare outcomes. However, we found consensus among stakeholders about some outcomes: (i) that achieving zero-deforestation is untenable, (ii) that issuing compensation or incentives to private land owners to not convert forests into plantations is unrealistic, (iii) that the human well-being of plantation workers could improve through better welfare, and (iv) the free, prior and informed consent given by local communities being required legally. The findings offer insights into key stakeholders' perceptions of the deliverables of jurisdictional approaches and the difficulty of achieving its objectives under real-world constraints.


Assuntos
Conservação dos Recursos Naturais , Florestas , Humanos , Malásia , Óleo de Palmeira
6.
BMC Cancer ; 23(1): 563, 2023 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-37337159

RESUMO

BACKGROUND: Published epidemiological studies of haematological cancers are few. Hereby we present a 20-year epidemiological data of haematological cancers in Sarawak from a population-based cancer registry. METHODS: Haematological cancer cases with ICD-10 coded C81-C96 and ICD-O coded /3 diagnosed from 1996 to 2015 were retrieved from Sarawak Cancer Registry. Adult was defined as those 15 years and above. Incidence rate (IR) was calculated based on yearly Sarawak citizen population stratified to age, gender, and ethnic groups. Age-standardised IR (ASR) was calculated using Segi World Standard Population. RESULTS: A total of 3,947 cases were retrieved and analysed. ASR was 10 and male predominance (IR ratio 1.32, 95%CI 1.24,1.41). Haematological cancers generally had a U-shaped distribution with lowest IR at age 10-14 years and exponential increment from age 40 years onwards, except acute lymphoblastic leukaemia (ALL) with highest IR in paediatric 2.8 versus adult 0.5. There was a significant difference in ethnic and specific categories of haematological cancers, of which, in general, Bidayuh (IR ratio 1.13, 95%CI 1.00, 1.27) and Melanau (IR ratio 0.54, 95%CI 0.45, 0.65) had the highest and lowest ethnic-specific IR, respectively, in comparison to Malay. The ASR (non-Hodgkin lymphoma, acute myeloid leukaemia, ALL, chronic myeloid leukaemia, and plasma cell neoplasm) showed a decreasing trend over the 20 years, -2.09 in general, while Hodgkin lymphoma showed an increasing trend of + 2.80. There was crude rate difference between the 11 administrative divisions of Sarawak. CONCLUSIONS: This study provided the IR and ASR of haematological cancers in Sarawak for comparison to other regions of the world. Ethnic diversity in Sarawak resulted in significant differences in IR and ASR.


Assuntos
Neoplasias Hematológicas , Leucemia Mieloide Aguda , Linfoma não Hodgkin , Mieloma Múltiplo , Adulto , Humanos , Masculino , Criança , Adolescente , Feminino , Malásia/epidemiologia , Neoplasias Hematológicas/epidemiologia , Linfoma não Hodgkin/epidemiologia , Incidência , Sistema de Registros
7.
Proc Natl Acad Sci U S A ; 117(14): 7863-7870, 2020 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-32229568

RESUMO

Nearly 20% of tropical forests are within 100 m of a nonforest edge, a consequence of rapid deforestation for agriculture. Despite widespread conversion, roughly 1.2 billion ha of tropical forest remain, constituting the largest terrestrial component of the global carbon budget. Effects of deforestation on carbon dynamics in remnant forests, and spatial variation in underlying changes in structure and function at the plant scale, remain highly uncertain. Using airborne imaging spectroscopy and light detection and ranging (LiDAR) data, we mapped and quantified changes in forest structure and foliar characteristics along forest/oil palm boundaries in Malaysian Borneo to understand spatial and temporal variation in the influence of edges on aboveground carbon and associated changes in ecosystem structure and function. We uncovered declines in aboveground carbon averaging 22% along edges that extended over 100 m into the forest. Aboveground carbon losses were correlated with significant reductions in canopy height and leaf mass per area and increased foliar phosphorus, three plant traits related to light capture and growth. Carbon declines amplified with edge age. Our results indicate that carbon losses along forest edges can arise from multiple, distinct effects on canopy structure and function that vary with edge age and environmental conditions, pointing to a need for consideration of differences in ecosystem sensitivity when developing land-use and conservation strategies. Our findings reveal that, although edge effects on ecosystem structure and function vary, forests neighboring agricultural plantations are consistently vulnerable to long-lasting negative effects on fundamental ecosystem characteristics controlling primary productivity and carbon storage.


Assuntos
Carbono/metabolismo , Conservação dos Recursos Naturais , Ecossistema , Clima Tropical , Agricultura/tendências , Biomassa , Bornéu , Florestas , Fósforo/metabolismo , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Árvores
8.
J Anim Ecol ; 91(3): 604-617, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34954816

RESUMO

Conservation outcomes could be greatly enhanced if strategies addressing anthropogenic land-use change considered the impacts of these changes on entire communities as well as on individual species. Examining how species interactions change across gradients of habitat disturbance allows us to predict the cascading consequences of species extinctions and the response of ecological networks to environmental change. We conducted the first detailed study of changes in a commensalist network of mammals and dung beetles across an environmental disturbance gradient, from primary tropical forest to plantations, which varied in above-ground carbon density (ACD) and mammal communities. Mammal diversity changed only slightly across the gradient, remaining high even in oil palm plantations and fragmented forest. Dung beetle species richness, however, declined in response to lower ACD and was particularly low in plantations and the most disturbed forest sites. Three of the five network metrics (nestedness, network specialization and functionality) were significantly affected by changes in dung beetle species richness and ACD, but mammal diversity was not an important predictor of network structure. Overall, the interaction networks remained structurally and functionally similar across the gradient, only becoming simplified (i.e. with fewer dung beetle species and fewer interactions) in the most disturbed sites. We suggest that the high diversity of mammals, even in disturbed forests, combined with the generalist feeding patterns of dung beetles, confer resilience to the commensalist dung beetle-mammal networks. This study highlights the importance of protecting logged and fragmented forests to maintain interaction networks and potentially prevent extinction cascades in human-modified systems.


Assuntos
Besouros , Animais , Biodiversidade , Besouros/fisiologia , Ecossistema , Florestas , Mamíferos
9.
Am J Primatol ; 84(2): e23357, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34994986

RESUMO

Systematic and well-structured monitoring is essential for taxa with high extinction risk such as primates. Endangered proboscis monkeys Nasalis larvatus are endemic to Borneo, where they are found scattered across lowland habitats of the island, which are under strong anthropogenic pressure. A large population of proboscis monkeys in Balikpapan Bay, Indonesian Borneo, was predicted to decline due to the ongoing habitat loss and degradation, notably because of forest fires. We examined changes in the number and composition of groups of a part of this population from 2007 to 2017, which included a period of forest fires linked to the El Niño-Southern Oscillation events. We conducted a census from a boat; attempting to locate all proboscis monkey groups within the Balikpapan City administrative area in 2007, 2012, and 2017. During the most recent census, we observed a total number of 60 proboscis monkey groups in two subpopulations. The population density was 1.14 group per km2 of suitable habitat. Contrary to previously published predictions, we did not find evidence of a population decline. Contrary to predictions, the 2015 El Niño induced fires impacted mainly forests on ridges and slopes, thus affecting only a small part of the proboscis monkey habitat located close to rivers and mangrove swamps. However, the increasing population density of monkeys, coupled with ongoing habitat degradation and habitat loss in one of the subpopulations, suggests that proboscis monkey population in Balikpapan Bay may be approaching a limit of resilience to habitat changes. In case it proves infeasible to census all individuals in the whole population, we recommend using a group-level census, connected with systematic group counts to obtain a reasonably precise proboscis monkey population size estimate.


Assuntos
Presbytini , Animais , Baías , Bornéu , Florestas , Indonésia
10.
Mar Drugs ; 20(2)2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-35200631

RESUMO

Malaysia has a long coastline surrounded by various islands, including North Borneo, that provide a suitable environment for the growth of diverse species of seaweeds. Some of the important North Bornean seaweed species are Kappaphycus alvarezii, Eucheuma denticulatum, Halymenia durvillaei (Rhodophyta), Caulerpa lentillifera, Caulerpa racemosa (Chlorophyta), Dictyota dichotoma and Sargassum polycystum (Ochrophyta). This review aims to highlight the therapeutic potential of North Bornean seaweeds and their nutraceutical profiling. North Bornean seaweeds have demonstrated anti-inflammatory, antioxidant, antimicrobial, anticancer, cardiovascular protective, neuroprotective, renal protective and hepatic protective potentials. The protective roles of the seaweeds might be due to the presence of a wide variety of nutraceuticals, including phthalic anhydride, 3,4-ethylenedioxythiophene, 2-pentylthiophene, furoic acid (K. alvarezii), eicosapentaenoic acid, palmitoleic acid, fucoxanthin, ß-carotene (E. denticulatum), eucalyptol, oleic acid, dodecanal, pentadecane (H. durvillaei), canthaxanthin, oleic acid, pentadecanoic acid, eicosane (C. lentillifera), pseudoephedrine, palmitic acid, monocaprin (C. racemosa), dictyohydroperoxide, squalene, fucosterol, saringosterol (D. dichotoma), and lutein, neophytadiene, cholest-4-en-3-one and cis-vaccenic acid (S. polycystum). Extensive studies on the seaweed isolates are highly recommended to understand their bioactivity and mechanisms of action, while highlighting their commercialization potential.


Assuntos
Produtos Biológicos/farmacologia , Suplementos Nutricionais , Alga Marinha/química , Animais , Produtos Biológicos/isolamento & purificação , Bornéu , Humanos
11.
Molecules ; 27(13)2022 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-35807409

RESUMO

Green honey is exclusively available on the island of Banggi in Sabah, and its uniqueness sees the commodity being sold at a high market price. Therefore, green honey is prone to adulteration by unscrupulous individuals, possibly compromising the health of those consuming this food commodity for its curative properties. Moreover, an established standard for reducing sugar in green honey is unavailable. Ipso facto, the study aimed to profile green honey's physical and chemical properties, such as its pH, moisture content, free acidity, ash content, electroconductivity, hydroxymethylfurfural (HMF), total phenolic content, total flavonoid content, DPPH, colour, total sugar content, total protein content, and heavy metals as well as volatile organic compounds, the data of which are profoundly valuable in safeguarding consumers' safety while providing information for its quality certification for local consumption and export. The results revealed that the honey's physicochemical profile is comparable to other reported kinds of honey. The honey's naturally green colour is because of the chlorophyll from the nectar from various flowers on the island. The raw honey showed free acidity between 28 and 33 Meq/100 g, lower than the standard's 50 Meq/100 g. The hydroxymethylfurfural content is the lowest compared to other reported honey samples, with the total phenolic content between 16 and 19 mg GAE/100 g. The honey's reducing sugar content is lower (~37.9%) than processed ones (56.3%) because of water removal. The protein content ranged from 1 to 2 gm/kg, 4- to 6-fold and 2-fold higher than local and manuka honey, respectively. The exceptionally high content of trans-4-hydroxyproline in raw honey is its source of collagen and other healing agents. Interestingly, low levels of arsenic, lead, nickel, cadmium, copper, and cobalt were detected in the honey samples, presumably due to their subterranean hives. Nevertheless, the honey is fit for general consumption as the concentrations were below the maxima in the Codex Alimentarius Commission of 2001.


Assuntos
Mel , Ácidos , Carboidratos , Flavonoides , Mel/análise , Humanos , Malásia , Fenóis/análise , Açúcares
12.
Mol Ecol ; 30(22): 5844-5857, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34437745

RESUMO

Habitat degradation is pervasive across the tropics and is particularly acute in Southeast Asia, with major implications for biodiversity. Much research has addressed the impact of degradation on species diversity; however, little is known about how ecological interactions are altered, including those that constitute important ecosystem functions such as consumption of herbivores. To examine how rainforest degradation alters trophic interaction networks, we applied DNA metabarcoding to construct interaction networks linking forest-dwelling insectivorous bat species and their prey, comparing old-growth forest and forest degraded by logging in Sabah, Borneo. Individual bats in logged rainforest consumed a lower richness of prey than those in old-growth forest. As a result, interaction networks in logged forests had a less nested structure. These network structures were associated with reduced network redundancy and thus increased vulnerability to perturbations in logged forests. Our results show how ecological interactions change between old-growth and logged forests, with potentially negative implications for ecosystem function and network stability.


Assuntos
Quirópteros , Agricultura Florestal , Animais , Biodiversidade , Quirópteros/genética , Conservação dos Recursos Naturais , Ecossistema , Florestas , Árvores , Clima Tropical
13.
Mol Ecol ; 30(13): 3299-3312, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33171014

RESUMO

The application of metabarcoding to environmental and invertebrate-derived DNA (eDNA and iDNA) is a new and increasingly applied method for monitoring biodiversity across a diverse range of habitats. This approach is particularly promising for sampling in the biodiverse humid tropics, where rapid land-use change for agriculture means there is a growing need to understand the conservation value of the remaining mosaic and degraded landscapes. Here we use iDNA from blood-feeding leeches (Haemadipsa picta) to assess differences in mammalian diversity across a gradient of forest degradation in Sabah, Malaysian Borneo. We screened 557 individual leeches for mammal DNA by targeting fragments of the 16S rRNA gene and detected 14 mammalian genera. We recorded lower mammal diversity in the most heavily degraded forest compared to higher quality twice logged forest. Although the accumulation curves of diversity estimates were comparable across these habitat types, diversity was higher in twice logged forest, with more taxa of conservation concern. In addition, our analysis revealed differences between the community recorded in the heavily logged forest and that of the twice logged forest. By revealing differences in mammal diversity across a human-modified tropical landscape, our study demonstrates the value of iDNA as a noninvasive biomonitoring approach in conservation assessments.


Assuntos
Ecossistema , Sanguessugas , Animais , Biodiversidade , Bornéu , Conservação dos Recursos Naturais , DNA/genética , Florestas , Humanos , Malásia , Mamíferos/genética , RNA Ribossômico 16S
14.
Oecologia ; 195(3): 705-717, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33559003

RESUMO

Tropical rainforest disturbance and conversion are critical drivers of biodiversity loss. A key knowledge gap is understanding the impacts of habitat modification on mechanisms of community assembly, which are predicted to respond differently between taxa and across spatial scales. We use a null model approach to detect trait assembly of species at local- and landscape-scales, and then subdivide communities with different habitat associations and foraging guilds to investigate whether the detection of assembly mechanisms varies between groups. We focus on two indicator taxa, dung beetles and birds, across a disturbance gradient of primary rainforest, selectively logged rainforest, and oil palm plantations in Borneo, Southeast Asia. Random community assembly was predominant for dung beetles across habitats, whereas trait convergence, indicative of environmental filtering, occurred across the disturbance gradient for birds. Assembly patterns at the two spatial scales were similar. Subdividing for habitat association and foraging guild revealed patterns hidden when focusing on the overall community. Dung beetle forest specialists and habitat generalists showed opposing assembly mechanisms in primary forest, community assembly of habitat generalists for both taxa differed with disturbance intensity, and insectivorous birds strongly influenced overall community assembly relative to other guilds. Our study reveals the sensitivity of community assembly mechanisms to anthropogenic disturbance via a shift in the relative contribution of stochastic and deterministic processes. This highlights the need for greater understanding of how habitat modification alters species interactions and the importance of incorporating species' traits within assessments.


Assuntos
Besouros , Animais , Biodiversidade , Aves , Bornéu , Ecossistema , Florestas
15.
Emerg Infect Dis ; 26(8): 1801-1809, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32687020

RESUMO

To monitor the incidence of Plasmodium knowlesi infections and determine whether other simian malaria parasites are being transmitted to humans, we examined 1,047 blood samples from patients with malaria at Kapit Hospital in Kapit, Malaysia, during June 24, 2013-December 31, 2017. Using nested PCR assays, we found 845 (80.6%) patients had either P. knowlesi monoinfection (n = 815) or co-infection with other Plasmodium species (n = 30). We noted the annual number of these zoonotic infections increased greatly in 2017 (n = 284). We identified 6 patients, 17-65 years of age, with P. cynomolgi and P. knowlesi co-infections, confirmed by phylogenetic analyses of the Plasmodium cytochrome c oxidase subunit 1 gene sequences. P. knowlesi continues to be a public health concern in the Kapit Division of Sarawak, Malaysian Borneo. In addition, another simian malaria parasite, P. cynomolgi, also is an emerging cause of malaria in humans.


Assuntos
Plasmodium cynomolgi , Plasmodium knowlesi , Bornéu , Humanos , Malásia/epidemiologia , Filogenia , Plasmodium knowlesi/genética
16.
Emerg Infect Dis ; 26(7): 1392-1398, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32568035

RESUMO

Population genetic analysis revealed that Plasmodium knowlesi infections in Malaysian Borneo are caused by 2 divergent parasites associated with long-tailed (cluster 1) and pig-tailed (cluster 2) macaques. Because the transmission ecology is likely to differ for each macaque species, we developed a simple genotyping PCR to efficiently distinguish between and survey the 2 parasite subpopulations. This assay confirmed differences in the relative proportions in areas of Kapit division of Sarawak state, consistent with multilocus microsatellite analyses. Analyses of 1,204 human infections at Kapit Hospital showed that cluster 1 caused approximately two thirds of cases with no significant temporal changes from 2000 to 2018. We observed an apparent increase in overall numbers in the most recent 2 years studied, driven mainly by increased cluster 1 parasite infections. Continued monitoring of the frequency of different parasite subpopulations and correlation with environmental alterations are necessary to determine whether the epidemiology will change substantially.


Assuntos
Plasmodium knowlesi , Bornéu , DNA de Protozoário , Genética Populacional , Malásia/epidemiologia , Plasmodium knowlesi/genética
17.
Emerg Infect Dis ; 26(8): 1749-1758, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32687018

RESUMO

Most malaria in Malaysia is caused by Plasmodium knowlesi parasites through zoonotic infection from macaque reservoir hosts. We obtained genome sequences from 28 clinical infections in Peninsular Malaysia to clarify the emerging parasite population structure and test for evidence of recent adaptation. The parasites all belonged to a major genetic population of P. knowlesi (cluster 3) with high genomewide divergence from populations occurring in Borneo (clusters 1 and 2). We also observed unexpected local genetic subdivision; most parasites belonged to 2 subpopulations sharing a high level of diversity except at particular genomic regions, the largest being a region of chromosome 12, which showed evidence of recent directional selection. Surprisingly, we observed a third subpopulation comprising P. knowlesi infections that were almost identical to each other throughout much of the genome, indicating separately maintained transmission and recent genetic isolation. Each subpopulation could evolve and present a broader health challenge in Asia.


Assuntos
Plasmodium knowlesi , Animais , Ásia , Bornéu , Variação Genética , Malásia/epidemiologia , Metagenômica , Plasmodium knowlesi/genética
18.
Glob Chang Biol ; 26(12): 6931-6944, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32881141

RESUMO

Tropical peat forests are a globally important reservoir of carbon, but little is known about CO2 exchange on an annual basis. We measured CO2 exchange between the atmosphere and tropical peat swamp forest in Sarawak, Malaysia using the eddy covariance technique over 4 years from 2011 to 2014. The CO2 fluxes varied between seasons and years. A small carbon uptake took place during the rainy season at the beginning of 2011, while a substantial net efflux of >600 g C/m2 occurred over a 2 month period in the middle of the dry season. Conversely, the peat ecosystem was a source of carbon during both the dry and rainy seasons in subsequent years and more carbon was lost during the rainy season relative to the dry season. Our results demonstrate that the forest was a net source of CO2 to the atmosphere during every year of measurement with annual efflux ranging from 183 to 632 g C m-2  year-1 , noting that annual flux values were sensitive to gap filling methodology. This is in contrast to the typical view of tropical peat forests which must have acted as net C sinks over time scales of centuries to millennia to create the peat deposits. Path analyses revealed that the gross primary productivity (GPP) and ecosystem respiration (RE) were primarily affected by vapour pressure deficit (VPD). Results suggest that future increases in VPD could further reduce the C sink strength and result in additional net CO2 losses from this tropical peat swamp forest in the absence of plant acclimation to such changes in atmospheric dryness.


Assuntos
Dióxido de Carbono , Solo , Atmosfera , Dióxido de Carbono/análise , Ecossistema , Florestas , Estações do Ano , Áreas Alagadas
19.
BMC Genet ; 21(1): 43, 2020 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-32303177

RESUMO

BACKGROUND: Constraints in migratory capabilities, such as the disruption of gene flow and genetic connectivity caused by habitat fragmentation, are known to affect genetic diversity and the long-term persistence of populations. Although negative population trends due to ongoing forest loss are widespread, the consequence of habitat fragmentation on genetic diversity, gene flow and genetic structure has rarely been investigated in Bornean small mammals. To fill this gap in knowledge, we used nuclear and mitochondrial DNA markers to assess genetic diversity, gene flow and the genetic structure in the Bornean tree shrew, Tupaia longipes, that inhabits forest fragments of the Lower Kinabatangan Wildlife Sanctuary, Sabah. Furthermore, we used these markers to assess dispersal regimes in male and female T. longipes. RESULTS: In addition to the Kinabatangan River, a known barrier for dispersal in tree shrews, the heterogeneous landscape along the riverbanks affected the genetic structure in this species. Specifically, while in larger connected forest fragments along the northern riverbank genetic connectivity was relatively undisturbed, patterns of genetic differentiation and the distribution of mitochondrial haplotypes in a local scale indicated reduced migration on the strongly fragmented southern riverside. Especially, oil palm plantations seem to negatively affect dispersal in T. longipes. Clear sex-biased dispersal was not detected based on relatedness, assignment tests, and haplotype diversity. CONCLUSION: This study revealed the importance of landscape connectivity to maintain migration and gene flow between fragmented populations, and to ensure the long-term persistence of species in anthropogenically disturbed landscapes.


Assuntos
Estruturas Genéticas , Variação Genética , Tupaia/genética , Animais , Ecossistema , Feminino , Fluxo Gênico/genética , Marcadores Genéticos/genética , Haplótipos/genética , Malásia , Masculino , Mamíferos , Rios
20.
Malar J ; 19(1): 377, 2020 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-33092594

RESUMO

BACKGROUND: Understanding the genetic diversity of candidate genes for malaria vaccines such as circumsporozoite protein (csp) may enhance the development of vaccines for treating Plasmodium knowlesi. Hence, the aim of this study is to investigate the genetic diversity of non-repeat regions of csp in P. knowlesi from Malaysian Borneo and Peninsular Malaysia. METHODS: A total of 46 csp genes were subjected to polymerase chain reaction amplification. The genes were obtained from P. knowlesi isolates collected from different divisions of Sabah, Malaysian Borneo, and Peninsular Malaysia. The targeted gene fragments were cloned into a commercial vector and sequenced, and a phylogenetic tree was constructed while incorporating 168 csp sequences retrieved from the GenBank database. The genetic diversity and natural evolution of the csp sequences were analysed using MEGA6 and DnaSP ver. 5.10.01. A genealogical network of the csp haplotypes was generated using NETWORK ver. 4.6.1.3. RESULTS: The phylogenetic analysis revealed indistinguishable clusters of P. knowlesi isolates across different geographic regions, including Malaysian Borneo and Peninsular Malaysia. Nucleotide analysis showed that the csp non-repeat regions of zoonotic P. knowlesi isolates obtained in this study underwent purifying selection with population expansion, which was supported by extensive haplotype sharing observed between humans and macaques. Novel variations were observed in the C-terminal non-repeat region of csp. CONCLUSIONS: The csp non-repeat regions are relatively conserved and there is no distinct cluster of P. knowlesi isolates from Malaysian Borneo and Peninsular Malaysia. Distinctive variation data obtained in the C-terminal non-repeat region of csp could be beneficial for the design and development of vaccines to treat P. knowlesi.


Assuntos
Variação Genética , Plasmodium knowlesi/genética , Proteínas de Protozoários/genética , Bornéu , Malásia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA