Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Immunity ; 55(11): 2118-2134.e6, 2022 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-36137543

RESUMO

While blood antibodies mediate protective immunity in most organs, whether they protect nasal surfaces in the upper airway is unclear. Using multiple viral infection models in mice, we found that blood-borne antibodies could not defend the olfactory epithelium. Despite high serum antibody titers, pathogens infected nasal turbinates, and neurotropic microbes invaded the brain. Using passive antibody transfers and parabiosis, we identified a restrictive blood-endothelial barrier that excluded circulating antibodies from the olfactory mucosa. Plasma cell depletions demonstrated that plasma cells must reside within olfactory tissue to achieve sterilizing immunity. Antibody blockade and genetically deficient models revealed that this local immunity required CD4+ T cells and CXCR3. Many vaccine adjuvants failed to generate olfactory plasma cells, but mucosal immunizations established humoral protection of the olfactory surface. Our identification of a blood-olfactory barrier and the requirement for tissue-derived antibody has implications for vaccinology, respiratory and CNS pathogen transmission, and B cell fate decisions.


Assuntos
Linfócitos B , Plasmócitos , Animais , Camundongos , Linfócitos T , Imunoglobulinas , Encéfalo , Imunidade nas Mucosas , Anticorpos Antivirais
2.
Eur J Immunol ; 52(6): 869-881, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35476319

RESUMO

MS is the most common autoimmune demyelinating disease of the CNS. For the past decades, several immunomodulatory disease-modifying treatments with multiple presumed mechanisms of action have been developed, but MS remains an incurable disease. Whereas high efficacy, at least in early disease, corroborates underlying immunopathophysiology, there is profound heterogeneity in clinical presentation as well as immunophenotypes that may also vary over time. In addition, functional plasticity in the immune system as well as in the inflamed CNS further contributes to disease heterogeneity. In this review, we will highlight immune-pathophysiological and associated clinical heterogeneity that may have an implication for more precise immunomodulatory therapeutic strategies in MS.


Assuntos
Esclerose Múltipla , Humanos , Sistema Imunitário , Imunomodulação
3.
Small ; 19(46): e2303073, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37460404

RESUMO

Glioblastoma (GBM), the most aggressive and lethal form of malignant brain tumor, is a therapeutic challenge due to the drug filtration capabilities of the blood-brain barrier (BBB). Interestingly, glioblastoma tends to resist apoptosis during chemotherapy, but is susceptible to ferroptosis. Developing therapies that can effectively target glioblastoma by crossing the BBB and evoke ferroptosis are, therefore, crucial for improving treatment outcomes. Herein, a versatile biomimetic nanoplatform, L-D-I/NPs, is designed that self-assembled by loading the antimalarial drug dihydroartemisinin (DHA) and the photosensitizer indocyanine green (ICG) onto lactoferrin (LF). This nanoplatform can selectively target glioblastoma by binding to low-density lipoprotein receptor-related protein-1 (LRP1) and crossing the BBB, thus inducing glioblastoma cell ferroptosis by boosting intracellular reactive oxygen species (ROS) accumulation and iron overload. In addition, L-D-I/NPs have demonstrated the ability to effectively suppress the progression of orthotopic glioblastoma and significantly prolong survival in a mouse glioblastoma model. This nanoplatform has facilitated the application of non-chemotherapeutic drugs in tumor treatment with minimal adverse effects, paving the way for highly efficient ferroptosis-based therapies for glioblastoma.


Assuntos
Neoplasias Encefálicas , Ferroptose , Glioblastoma , Glioma , Camundongos , Animais , Glioblastoma/patologia , Reposicionamento de Medicamentos , Barreira Hematoencefálica/metabolismo , Glioma/metabolismo , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral
4.
Small ; 19(1): e2205474, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36372550

RESUMO

Ultrasmall nanoparticles (NPs) are a promising platform for the diagnosis and therapy of cancer, but the particles in sizes as small as several nanometers have an ability to translocate across biological barriers, which may bring unpredictable health risks. Therefore, it is essential to develop workable cell-based tools that can deliver ultrasmall NPs to the tumor in a safer manner. Here, this work uses macrophages as a shuttle to deliver sub-5 nm PEGylated gold (Au) NPs to tumors actively or passively, while reducing the accumulation of Au NPs in the brain. This work demonstrates that sub-5 nm Au NPs can be rapidly exocytosed from live macrophages, reaching 45.6% within 24 h, resulting in a labile Au NP-macrophage system that may release free Au NPs into the blood circulation in vivo. To overcome this shortcoming, two straightforward methods are used to engineer macrophages to obtain "half-dead" and "dead" macrophages. Although the efficiency of engineered macrophages for delivering sub-5 nm Au NPs to tumors is 2.2-3.8% lower than that of free Au NPs via the passive enhanced permeability and retention effect, this safe-by-design approach can dramatically reduce the accumulation of Au NPs in the brain by more than one order of magnitude. These promising approaches offer an opportunity to expand the immune cell- or stem cell-mediated delivery of ultrasmall NPs for the diagnosis and therapy of diseases in a safer way in the future.


Assuntos
Nanopartículas Metálicas , Neoplasias , Humanos , Ouro , Macrófagos , Neoplasias/terapia
5.
Small ; 19(19): e2300203, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36775955

RESUMO

Extensive efforts have been devoted to the design of organic photothermal agents (PTAs) that absorb in the second near-infrared (NIR-II) bio-window, which can provide deeper tissue penetration that is significant for phototheranostics of lethal brain tumors. Herein, the first example of NIR-II-absorbing small organic molecule (N1) derived from perylene monoamide (PMI) and its bio-application after nano-encapsulation of N1 to function as a nano-agent for phototheranostics of deep orthotopic glioblastoma (GBM) is reported. By adopting a dual modification strategy of introducing a donor-acceptor unit and extending π-conjugation, the obtained N1 can absorb in 1000-1400 nm region and exhibit high photothermal conversation due to the apparent intramolecular charge transfer (ICT). A choline analogue, 2-methacryloyloxyethyl phosphorylcholine, capable of interacting specifically with receptors on the surface of the blood-brain barrier (BBB), is used to fabricate the amphiphilic copolymer for the nano-encapsulation of N1. The obtained nanoparticles demonstrate efficient BBB-crossing due to the receptor-mediated transcytosis as well as the small nanoparticle size of approximately 26 nm. The prepared nanoparticles exhibit excellent photoacoustic imaging and significant growth inhibition of deep orthotopic GBM. The current study demonstrates the enormous potential of PMI-based NIR-II PTAs and provides an efficient phototheranostic paradigm for deep orthotopic GBM.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Nanopartículas , Perileno , Humanos , Glioblastoma/diagnóstico por imagem , Glioblastoma/terapia , Glioblastoma/patologia , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/terapia , Barreira Hematoencefálica/patologia , Fototerapia/métodos , Nanomedicina Teranóstica/métodos
6.
Small ; 19(35): e2300403, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37104822

RESUMO

Receptor-mediated vesicular transport has been extensively developed to penetrate the blood-brain barrier (BBB) and has emerged as a class of powerful brain-targeting delivery technologies. However, commonly used BBB receptors such as transferrin receptor and low-density lipoprotein receptor-related protein 1, are also expressed in normal brain parenchymal cells and can cause drug distribution in normal brain tissues and subsequent neuroinflammation and cognitive impairment. Here, the endoplasmic reticulum residing protein GRP94 is found upregulated and relocated to the cell membrane of both BBB endothelial cells and brain metastatic breast cancer cells (BMBCCs) by preclinical and clinical investigations. Inspired by that Escherichia coli penetrates the BBB via the binding of its outer membrane proteins with GRP94, avirulent DH5α outer membrane protein-coated nanocapsules (Omp@NCs) are developed to cross the BBB, avert normal brain cells, and target BMBCCs via recognizing GRP94. Embelin (EMB)-loaded Omp@EMB specifically reduce neuroserpin in BMBCCs, which inhibits vascular cooption growth and induces apoptosis of BMBCCs by restoring plasmin. Omp@EMB plus anti-angiogenic therapy prolongs the survival of mice with brain metastases. This platform holds the translational potential to maximize therapeutic effects on GRP94-positive brain diseases.


Assuntos
Neoplasias Encefálicas , Nanocápsulas , Camundongos , Animais , Células Endoteliais/metabolismo , Biomimética , Encéfalo/metabolismo , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/metabolismo , Proteínas de Membrana/metabolismo , Barreira Hematoencefálica/metabolismo
7.
Small ; 18(39): e2201401, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35978444

RESUMO

The human brain and central nervous system (CNS) present unique challenges in drug development for neurological diseases. One major obstacle is the blood-brain barrier (BBB), which hampers the effective delivery of therapeutic molecules into the brain while protecting it from blood-born neurotoxic substances and maintaining CNS homeostasis. For BBB research, traditional in vitro models rely upon Petri dishes or Transwell systems. However, these static models lack essential microenvironmental factors such as shear stress and proper cell-cell interactions. To this end, organ-on-a-chip (OoC) technology has emerged as a new in vitro modeling approach to better recapitulate the highly dynamic in vivo human brain microenvironment so-called the neural vascular unit (NVU). Such BBB-on-a-chip models have made substantial progress over the last decade, and concurrently there has been increasing interest in modeling various neurological diseases such as Alzheimer's disease and Parkinson's disease using OoC technology. In addition, with recent advances in other scientific technologies, several new opportunities to improve the BBB-on-a-chip platform via multidisciplinary approaches are available. In this review, an overview of the NVU and OoC technology is provided, recent progress and applications of BBB-on-a-chip for personalized medicine and drug discovery are discussed, and current challenges and future directions are delineated.


Assuntos
Doença de Alzheimer , Barreira Hematoencefálica , Transporte Biológico , Encéfalo , Humanos , Dispositivos Lab-On-A-Chip
8.
Handb Exp Pharmacol ; 273: 223-244, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33387067

RESUMO

Drug delivery to the brain is challenging to study due to the complexity of the barriers of the central nervous system (CNS). The present chapter describes and compares experimental methods such as microdialysis, two-photon laser scanning fluorescence microscopy and positron emission tomography (PET) that can be used for in vivo studies of drug transport across the blood-brain barrier (BBB). The selection of appropriate method is based on the research question, and the different methods will in most cases provide complementary information. Attention is also given to the fact that the BBB might undergo changes in integrity, protein expression and other morphological alterations as a result of disease. The use of animal models of human disease is therefore also discussed. Special emphasis is given to translational aspects of the different methods and readouts.


Assuntos
Barreira Hematoencefálica , Encéfalo , Animais , Transporte Biológico , Barreira Hematoencefálica/metabolismo , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Sistemas de Liberação de Medicamentos , Humanos , Neuroimagem , Tomografia por Emissão de Pósitrons
9.
Handb Exp Pharmacol ; 273: 97-120, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33474672

RESUMO

Neuropharmacokinetics considers cerebral drug distribution as a critical process for central nervous system drug action as well as for drug penetration through the CNS barriers. Brain distribution of small molecules obeys classical rules of drug partition, permeability, binding to fluid proteins or tissue components, and tissue perfusion. The biodistribution of all drugs, including both small molecules and biologics, may also be influenced by specific brain properties related to brain anatomy and physiological barriers, fluid dynamics, and cellular and biochemical composition, each of which can exhibit significant interspecies differences. All of these properties contribute to select optimal dosing paradigms and routes of drug delivery to reach brain targets for classical small molecule drugs as well as for biologics. The importance of these properties for brain delivery and exposure also highlights the need for efficient new analytical technologies to more comprehensively investigate drug distribution in the CNS, a complex multi-compartmentalized organ system.


Assuntos
Produtos Biológicos , Encéfalo , Produtos Biológicos/farmacocinética , Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Sistemas de Liberação de Medicamentos , Humanos , Preparações Farmacêuticas/metabolismo , Especificidade da Espécie , Distribuição Tecidual
10.
Handb Exp Pharmacol ; 273: 121-150, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33258066

RESUMO

It is crucial to understand the basic principles of drug transport, from the site of delivery to the site of action within the CNS, in order to evaluate the possible utility of a new drug candidate for CNS action, or possible CNS side effects of non-CNS targeting drugs. This includes pharmacokinetic aspects of drug concentration-time profiles in plasma and brain, blood-brain barrier transport and drug distribution within the brain parenchyma as well as elimination processes from the brain. Knowledge of anatomical and physiological aspects connected with drug delivery is crucial in this context. The chapter is intended for professionals working in the field of CNS drug development and summarizes key pharmacokinetic principles and state-of-the-art experimental methodologies to assess brain drug disposition. Key parameters, describing the extent of unbound (free) drug across brain barriers, in particular blood-brain and blood-cerebrospinal fluid barriers, are presented along with their application in drug development. Special emphasis is given to brain intracellular pharmacokinetics and its role in evaluating target engagement. Fundamental neuropharmacokinetic differences between small molecular drugs and biologicals are discussed and critical knowledge gaps are outlined.


Assuntos
Barreira Hematoencefálica , Encéfalo , Transporte Biológico/fisiologia , Fármacos do Sistema Nervoso Central/farmacocinética , Humanos , Preparações Farmacêuticas
11.
Molecules ; 25(9)2020 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-32365941

RESUMO

Magnetic Oxygen-Loaded Nanobubbles (MOLNBs), manufactured by adding Superparamagnetic Iron Oxide Nanoparticles (SPIONs) on the surface of polymeric nanobubbles, are investigated as theranostic carriers for delivering oxygen and chemotherapy to brain tumors. Physicochemical and cyto-toxicological properties and in vitro internalization by human brain microvascular endothelial cells as well as the motion of MOLNBs in a static magnetic field were investigated. MOLNBs are safe oxygen-loaded vectors able to overcome the brain membranes and drivable through the Central Nervous System (CNS) to deliver their cargoes to specific sites of interest. In addition, MOLNBs are monitorable either via Magnetic Resonance Imaging (MRI) or Ultrasound (US) sonography. MOLNBs can find application in targeting brain tumors since they can enhance conventional radiotherapy and deliver chemotherapy being driven by ad hoc tailored magnetic fields under MRI and/or US monitoring.


Assuntos
Sistema Nervoso Central , Portadores de Fármacos/química , Hipertermia Induzida , Nanopartículas de Magnetita/química , Nanomedicina Teranóstica/métodos , Animais , Neoplasias Encefálicas/terapia , Sobrevivência Celular/efeitos dos fármacos , Sistema Nervoso Central/efeitos dos fármacos , Sistema Nervoso Central/metabolismo , Fenômenos Químicos , Sistemas de Liberação de Medicamentos , Células Endoteliais/metabolismo , Hemólise , Humanos , Hipertermia Induzida/métodos , Campos Magnéticos
12.
J Neurosci ; 38(14): 3466-3479, 2018 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-29507144

RESUMO

Exposure of the developing brain to toxins, drugs, or deleterious endogenous compounds during the perinatal period can trigger alterations in cell division, migration, differentiation, and synaptogenesis, leading to lifelong neurological impairment. The brain is protected by cellular barriers acting through multiple mechanisms, some of which are still poorly explored. We used a combination of enzymatic assays, live tissue fluorescence microscopy, and an in vitro cellular model of the blood-CSF barrier to investigate an enzymatic detoxification pathway in the developing male and female rat brain. We show that during the early postnatal period the choroid plexus epithelium forming the blood-CSF barrier and the ependymal cell layer bordering the ventricles harbor a high detoxifying capacity that involves glutathione S-transferases. Using a functional knock-down rat model for choroidal glutathione conjugation, we demonstrate that already in neonates, this metabolic pathway efficiently prevents the penetration of blood-borne reactive compounds into CSF. The versatility of the protective mechanism results from the multiplicity of the glutathione S-transferase isoenzymes, which are differently expressed between the choroidal epithelium and the ependyma. The various isoenzymes display differential substrate specificities, which greatly widen the spectrum of molecules that can be inactivated by this pathway. In conclusion, the blood-CSF barrier and the ependyma are identified as key cellular structures in the CNS to protect the brain fluid environment from different chemical classes of potentially toxic compounds during the postnatal period. This metabolic neuroprotective function of brain interfaces ought to compensate for the liver postnatal immaturity.SIGNIFICANCE STATEMENT Brain homeostasis requires a stable and controlled internal environment. Defective brain protection during the perinatal period can lead to lifelong neurological impairment. We demonstrate that the choroid plexus forming the blood-CSF barrier is a key player in the protection of the developing brain. Glutathione-dependent enzymatic metabolism in the choroidal epithelium inactivates a broad spectrum of noxious compounds, efficiently preventing their penetration into the CSF. A second line of detoxification is located in the ependyma separating the CSF from brain tissue. Our study reveals a novel facet of the mechanisms by which the brain is protected at a period of high vulnerability, at a time when the astrocytic network is still immature and liver xenobiotic metabolism is limited.


Assuntos
Barreira Hematoencefálica/metabolismo , Glutationa Transferase/metabolismo , Glutationa/metabolismo , Animais , Barreira Hematoencefálica/crescimento & desenvolvimento , Plexo Corióideo/crescimento & desenvolvimento , Plexo Corióideo/metabolismo , Epêndima/crescimento & desenvolvimento , Epêndima/metabolismo , Feminino , Radicais Livres/sangue , Radicais Livres/líquido cefalorraquidiano , Glutationa/sangue , Glutationa/líquido cefalorraquidiano , Masculino , Ratos , Ratos Sprague-Dawley
13.
Eur J Neurol ; 26(5): 711-721, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30734989

RESUMO

BACKGROUND AND PURPOSE: Multiple sclerosis (MS) is a demyelinating and neurodegenerative disease of the central nervous system (CNS) that can be tracked through biomarkers of disease status. We investigated the effects of exercise on MS biomarkers associated with CNS status including imaging, blood-brain barrier (BBB) function and neurotrophic factors. METHODS: We conducted open-dated searches of Scopus, Medline, EMBASE and the Cochrane Library. We included studies written in English describing interventions of exercise that measured one or more of the biomarkers associated with MS published up to October 2018. RESULTS: We located a total of 3012 citations through searches in electronic databases. Of these, 16 studies were eligible for review; six studies focused on magnetic resonance imaging (MRI) markers, nine studies focused on neurotrophic factors and three studies focused on BBB function markers. It is of note that two studies included both neurotrophic factor and BBB function markers and are therefore included across categories of biomarkers in this review. The existing evidence from MRI studies confirmed that exercise training can improve CNS integrity and function. There is evidence of a positive effect of exercise training on modulation of BBB permeability markers and brain-derived neurotrophic factor. CONCLUSIONS: Exercise successfully improves MRI outcomes and peripheral biomarkers (i.e. brain-derived neurotrophic factor) in people with MS. This suggests that exercise can be recommended as an adjuvant therapy for MS treatment. This conclusion is tempered by some methodological limitations including small sample sizes and high drop-out rates in the reviewed studies.


Assuntos
Sistema Nervoso Central/fisiopatologia , Terapia por Exercício/métodos , Esclerose Múltipla/fisiopatologia , Esclerose Múltipla/terapia , Biomarcadores/análise , Barreira Hematoencefálica/fisiopatologia , Exercício Físico/fisiologia , Humanos , Fatores de Crescimento Neural
14.
Int J Mol Sci ; 20(21)2019 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-31671721

RESUMO

The homeostasis of the central nervous system (CNS) is ensured by the endothelial, epithelial, mesothelial and glial brain barriers, which strictly control the passage of molecules, solutes and immune cells. While the endothelial blood-brain barrier (BBB) and the epithelial blood-cerebrospinal fluid barrier (BCSFB) have been extensively investigated, less is known about the epithelial and mesothelial arachnoid barrier and the glia limitans. Here, we summarize current knowledge of the cellular composition of the brain barriers with a specific focus on describing the molecular constituents of their junctional complexes. We propose that the brain barriers maintain CNS immune privilege by dividing the CNS into compartments that differ with regard to their role in immune surveillance of the CNS. We close by providing a brief overview on experimental tools allowing for reliable in vivo visualization of the brain barriers and their junctional complexes and thus the respective CNS compartments.


Assuntos
Junções Aderentes/fisiologia , Encéfalo/fisiologia , Células Endoteliais/fisiologia , Células Epiteliais/fisiologia , Epitélio/fisiologia , Neuroglia/fisiologia , Junções Íntimas/fisiologia , Astrócitos , Membrana Basal , Transporte Biológico/fisiologia , Barreira Hematoencefálica , Sistema Nervoso Central/imunologia , Plexo Corióideo , Homeostase , Miócitos de Músculo Liso , Pericitos
15.
J Cell Mol Med ; 22(10): 5151-5154, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30054982

RESUMO

Given sex-related differences in brain disorders, it is of interest to study if there is a sex difference in the permeability of the blood-cerebrospinal fluid barrier (BCSFB) and the blood-brain barrier (BBB). The CSF/serum albumin ratio (QAlb ) is a standardized biomarker that evaluates the function of these barriers. In previous studies, contradictory results have been reported with respect to sex difference using this quotient, possibly because of small population sizes and heterogeneity with respect to ages. QAlb measurements in more than 20 000 patients between 1 and 90 years visiting our hospitals revealed a significant sex difference in all age groups also when excluding patients with pathologically high CSF albumin > 400 mg/L. Similar pattern was found in 335 healthy volunteers in similar age intervals. Although also other factors are likely important, our observation is consistent with lower integrity of the brain barriers in males. If the difference in QAlb is caused mainly by a difference in barrier function, this may require different drug doses and strategies for efficient central nervous system (CNS) delivery in males and females, as well as it may indicate differences in brain metabolism. Moreover, our study emphasizes that different reference values should be used both for different ages and sexes.


Assuntos
Albuminas/líquido cefalorraquidiano , Encefalopatias/sangue , Encefalopatias/líquido cefalorraquidiano , Albumina Sérica , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Barreira Hematoencefálica , Encéfalo/metabolismo , Encéfalo/patologia , Encefalopatias/epidemiologia , Encefalopatias/patologia , Sistema Nervoso Central/metabolismo , Sistema Nervoso Central/patologia , Criança , Pré-Escolar , Feminino , Voluntários Saudáveis , Humanos , Masculino , Pessoa de Meia-Idade , Caracteres Sexuais , Adulto Jovem
16.
Front Neuroendocrinol ; 44: 103-121, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27998697

RESUMO

The choroid plexuses (CPs) are highly vascularized branched structures that protrude into the ventricles of the brain, and form a unique interface between the blood and the cerebrospinal fluid (CSF). In recent years, novel functions have been attributed to this tissue such as in immune and chemical surveillance of the central nervous system, brain development, adult neurogenesis and circadian rhythm regulation. Sex hormones (SH) are widely recognized as modulators in several neurodegenerative diseases, and there is evidence that estrogens and androgens regulate several fundamental biological functions in the CPs. Therefore, SH are likely to affect the composition of the CSF impacting on brain homeostasis. This review will look at implications of the CPs' sex-related specificities.


Assuntos
Plexo Corióideo/fisiologia , Hormônios Esteroides Gonadais/fisiologia , Animais , Feminino , Humanos , Masculino
17.
Trends Neurosci ; 47(6): 461-474, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38729785

RESUMO

Aging may lead to low-level chronic inflammation that increases the susceptibility to age-related conditions, including memory impairment and progressive loss of brain volume. As brain health is essential to promoting healthspan and lifespan, it is vital to understand age-related changes in the immune system and central nervous system (CNS) that drive normal brain aging. However, the relative importance, mechanistic interrelationships, and hierarchical order of such changes and their impact on normal brain aging remain to be clarified. Here, we synthesize accumulating evidence that age-related DNA damage and cellular senescence in the immune system and CNS contribute to the escalation of neuroinflammation and cognitive decline during normal brain aging. Targeting cellular senescence and immune modulation may provide a logical rationale for developing new treatment options to restore immune homeostasis and counteract age-related brain dysfunction and diseases.


Assuntos
Envelhecimento , Encéfalo , Senescência Celular , Dano ao DNA , Doenças Neuroinflamatórias , Humanos , Animais , Envelhecimento/fisiologia , Dano ao DNA/fisiologia , Encéfalo/patologia , Senescência Celular/fisiologia , Doenças Neuroinflamatórias/imunologia , Inflamação
18.
Small Methods ; : e2400096, 2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38461538

RESUMO

Although there are various advancements in biomedical in the past few decades, there are still challenges in the treatment of brain diseases. The main difficulties are the inability to deliver a therapeutic dose of the drug to the brain through the blood-brain barrier (BBB) and the serious side effects of the drug. Thus, it is essential to select biocompatible drug carriers and novel therapeutic tools to better enhance the effect of brain disease treatment. In recent years, biomimetic nanoparticles (BNPs) based on natural cell membranes, which have excellent biocompatibility and low immunogenicity, are widely used in the treatment of brain diseases to enable the drug to successfully cross the BBB and target brain lesions. BNPs can prolong the circulation time in vivo, are more conducive to drug aggregation in brain lesions. Cell membranes (CMs) from cancer cells (CCs), red blood cells (RBCs), white blood cells (WBCs), and so on are used as biomimetic coatings for nanoparticles (NPs) to achieve the ability to target, evade clearance, or stimulate the immune system. This review summarizes the application of different cell sources as BNPs coatings in the treatment of brain diseases and discusses the possibilities and challenges of clinical translation.

19.
Gen Comp Endocrinol ; 190: 96-104, 2013 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-23707378

RESUMO

Thyroid hormones (THs) are crucial elements in vertebrate brain development. They exert their action mainly through binding of 3,5,3'-triiodothyronine (T3) to nuclear receptors that directly influence the expression of TH-regulated genes. Intracellular TH action is therefore dependent on both the availability of T3 and its receptors. TH uptake in cells is regulated by specific TH transporters and local activation and inactivation is regulated by deiodinases. This review provides an overview of the general expression pattern of TH transporters, deiodinases and receptors during embryonic chicken brain development and compares it to the situation in mammals. It is clear that THs and their regulators are present in the embryonic brain from the early stages of development, long before the onset of embryonic thyroid gland functioning. The mechanism of TH uptake across the brain barriers during development is only partly understood. At the developing blood-brain-barrier expression of the TH-activating type 2 deiodinase is closely associated with the blood vessels, but contrary to the situation in (adult) mammals no expression of MCT8 or OATP1C1 TH transporters is found at that level in the developing chicken. At the blood-cerebrospinal fluid-barrier co-expression of the TH-inactivating type 3 deiodinase and MCT8 and OATP1C1 is found in birds and mammals. These comparative data show overlapping patterns, pointing to general mechanisms, but also indicate specific interspecies differences that may help to understand species-specific responses to regulator gene knockout/mutation.


Assuntos
Encéfalo/embriologia , Hormônios Tireóideos/metabolismo , Animais , Embrião de Galinha , Galinhas
20.
Curr Pharm Des ; 29(20): 1602-1616, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37424342

RESUMO

Despite significant advancements in CNS research, CNS illnesses are the most important and serious cause of mental disability worldwide. These facts show a tremendous unmet demand for effective CNS medications and pharmacotherapy since it accounts for more hospitalizations and extended care than practically all other disorders combined. The site-targeted kinetics of the brain and, pharmacodynamics of CNS effects are determined/regulated by various mechanisms after the dose, including blood-brain barrier (BBB) transport and many other processes. These processes are condition-dependent in terms of their rate and extent because they are dynamically controlled. For effective therapy, drugs should access the CNS "at the right place, time, and concentration". Details on inter-species and inter-condition variances are required to translate target site pharmacokinetics and associated CNS effects between species and illness states, improving CNS therapeutics and drug development. The present review encircles a short discussion about the barriers that affect effective CNS treatment and precisely focuses on the pharmacokinetics aspects of efficient CNS therapeutics.


Assuntos
Barreira Hematoencefálica , Encéfalo , Humanos , Barreira Hematoencefálica/metabolismo , Descoberta de Drogas , Fármacos do Sistema Nervoso Central/farmacologia , Transporte Biológico , Sistemas de Liberação de Medicamentos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA