Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
J Microencapsul ; 39(2): 136-144, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35313794

RESUMO

AIM: Docetaxel (DTX) loaded bio-compatible PLGA-PEG encapsulated zinc ferrite nanoparticles (ZFNP) formulation was developed and evaluated against C6 glioma cells. METHODS: The ZFNP were characterised using XRD, FE-SEM, TEM, etc. A series of drug formulations were fabricated by conjugating hydrothermally synthesised ZFNP with DTX in a PLGA-PEG matrix and optimised for drug loading. FTIR and DLS analysis of the formulation along with in vitro drug release, cytotoxicity, cellular uptake, and haemolytic effect were evaluated. RESULTS: Spherical, monodisperse, crystalline ZFNP with an average size of ∼28 nm were formed. The optimised formulation showed a hydrodynamic diameter of ∼147 nm, a surface charge of -34.8 mV, a drug loading of 6.9% (w/w) with prolonged drug release properties, and higher toxicity in C6 glioma cells compared to free DTX along with good internalisation and negligible haemolysis. CONCLUSION: The results indicate ZFNP could be effectively used as nanodrug carrier for delivery of docetaxel to glioma cells.


Assuntos
Antineoplásicos , Glioma , Nanopartículas , Antineoplásicos/química , Linhagem Celular Tumoral , Sobrevivência Celular , Docetaxel/farmacologia , Portadores de Fármacos/química , Excipientes , Compostos Férricos , Glioma/tratamento farmacológico , Humanos , Técnicas In Vitro , Nanopartículas/química , Nanopartículas/uso terapêutico , Tamanho da Partícula , Taxoides/farmacologia , Zinco/farmacologia
2.
J Biochem Mol Toxicol ; 35(9): e22857, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34338399

RESUMO

Gliomas are a type of brain cancer that occurs in the supporting glial cells of the brain. It is highly malignant and accounts for 80% of brain tumors with high mortality and morbidity. Phytomedicines are potent alternatives for allopathic drugs which cause side effects. They have been used from ancient times by traditional Chinese, Ayurveda, and Siddha medicine. Arubtin is a glycoside phytochemical extracted from plants and belongs to the family of Ericaceae. Arbutin possesses various pharmacological properties such as anti-inflammatory, antioxidant, antitumor, and so on. Hence in the present study, we analyzed the anticancer potency of arbutin against rat C6 glioma cells. Rat C6 glioma cells were procured from American Type Culture Collection and the cells were cultured in Roswell Park Memorial Institute-1640 medium. To assess the cytotoxicity effect of the arbutin against C6 glioma cells, an 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide test was performed with different doses from 10 to 60 µM. Arbutin effectively induced apoptosis in the cells and the IC50 dose was obtained at 30 µM. For further studies, we selected the 30 µM IC50 dose and a higher dose of 40 µM. Reactive oxygen species (ROS) generated were analyzed with DCFDA/H2DCFDA stain and the destruction of mitochondrial membrane permeability which is the initiator of apoptosis was analyzed with a cationic stain Rhodamine 123. Dual staining with acridine orange and ethidium bromide was performed to assess the viable and dead cells. Cell adhesion properties of glioma cells were analyzed with Matrigel assay. The apoptotic, inflammatory, and phosphoinositide 3-kinase (PI3K)/mammalian target of rapamycin (mTOR) signaling molecules were analyzed with quantitative polymerase chain reaction (qPCR) analysis to confirm the anticancer effect of arbutin. Arbutin generated excessive ROS and disrupted the mitochondrial membrane, which induced apoptosis in cells, it also inhibited the cell adhesion property of C6 glioma cells. qPCR analysis clearly indicates arbutin increases the apoptotic genes and decreased the inflammatory and PI3K/mTOR signaling molecules. Overall, our results authentically confirm that arbutin can be a potent alternative for treating glioma.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Arbutina/farmacologia , Glioma , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Animais , Linhagem Celular Tumoral , Glioma/tratamento farmacológico , Glioma/metabolismo , Glioma/patologia , Ratos
3.
Pharm Dev Technol ; 25(3): 385-395, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30601070

RESUMO

The purpose of this work was to prepare and characterize Angiopep-2 functionalized ginsenoside-Rg3 loaded nanoparticles (ANG-Rg3-NP) and evaluate the therapeutic effect on C6 glioma cells. Nanoparticles were prepared by the emulsion solvent evaporation method. Angiopep-2 was functionalized to nanoparticles via a maleimide-thiol covalent binding reaction to obtain ANG-Rg3-NP. The prepared nanoparticles were evaluated for size, zeta potential, morphology, stability, encapsulation efficiency, loading capacity, and release properties. The cytotoxicity study and targeting effect of ANG-Rg3-NP were evaluated by MTT assay. The study of cellular uptake in C6 glioma cells was performed by fluorescence microscopy and by using a microplate reader. The prepared ANG-Rg3-NP was observed to be uniformly spherical in shape with a particle size at 147.1 ± 2.7 nm. The encapsulation efficiency and loading capacity reached 80.6 ± 3.0% and 27.2 ± 1.4%, respectively. Additionally, ANG-Rg3-NP exhibited a desirable sustained release behavior. In vitro cytotoxicity study indicated that ANG-Rg3-NP could inhibit the proliferation of C6 glioma cells in a concentration-dependent manner. Also, the functionalization of Angiopep-2 made nanoparticles cross the blood-brain barrier more easily and accelerated the cellular uptake of nanoparticles. The ANG-Rg3-NP was a promising brain drug delivery carrier for the treatment of glioma.


Assuntos
Neoplasias Encefálicas/tratamento farmacológico , Ginsenosídeos/administração & dosagem , Glioma/tratamento farmacológico , Peptídeos/química , Animais , Antineoplásicos Fitogênicos/administração & dosagem , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/farmacologia , Barreira Hematoencefálica/metabolismo , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Ginsenosídeos/química , Ginsenosídeos/farmacologia , Glioma/patologia , Nanopartículas , Tamanho da Partícula , Ratos , Ratos Sprague-Dawley
4.
Cell Biochem Funct ; 37(4): 281-289, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31038222

RESUMO

2-Hexadecenal (2HD) formation in the organism occurs via irreversible enzymatic degradation of sphingosine-1-phosphate or nonenzymatic γ-, UV-, or HOCl-induced destruction of a number of sphingolipids including S1P. The current research focuses on the study of 2HD effects on C6 glioma cells growth. The results obtained show that 2HD causes a dose-dependent decrease in proliferative and mitotic indices. The change in the mitotic index is due to the redistribution of cells in the different phases of mitosis. These processes are accompanied by cytoskeleton rearrangement and changes in cell morphology, which are expressed in F-actin redistribution, change in the number and type of filopodia and fibrils, leading to cell shape changes, decrease in intercellular contacts and monolayer rarefaction. Cells treatment with 2HD leads to apoptosis induction and signalling pathways modification, including activation of JNK, p38, and ERK1/2 MAPK but not PI3K. The effects observed are not related to the cytotoxicity of 2HD. Significance of the study: 2HD-an unsaturated aldehyde, which level can rise under conditions of oxidative stress as a result of nonenzymatic sphingolipids' destruction. The mechanisms of 2HD action on various cell types have not been sufficiently studied. Therefore, the study on functional role of this aldehyde in different cell types that may be its target is relevant. This study demonstrated that 2HD inhibits growth of C6 glioma cells due to modification of intracellular processes of signal transduction, cytoskeleton rearrangement, change in the mitotic regimen and apoptosis induction.


Assuntos
Aldeídos/farmacologia , Glioma/patologia , Animais , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ratos , Relação Estrutura-Atividade , Células Tumorais Cultivadas
5.
Biochem Biophys Res Commun ; 500(2): 204-210, 2018 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-29634926

RESUMO

Recently, the modulation of cellular inflammatory responses via endogenous regulators became a major focus of medically relevant investigations. Prostaglandins (PGs) are attractive regulatory molecules, but their synthesis and mechanisms of action in brain cells are still unclear. Astrocytes are involved in manifestation of neuropathology and their proliferation is an important part of astrogliosis, a cellular neuroinflammatory response. The aims of our study were to measure synthesis of PGs by astrocytes, and evaluate their influence on proliferation in combination with addition of inflammatory pathway inhibitors. With UPLC-MS/MS analysis we detected primary PGs (1410 ±â€¯36 pg/mg PGE2, 344 ±â€¯24 PGD2) and cyclopentenone PGs (cyPGs) (87 ±â€¯17 15d-PGJ2, 308 ±â€¯23 PGA2) in the extracellular medium after 24-h lipopolysaccharide (LPS) stimulation of astrocytes. PGs reduced astrocytic proliferation with the following order of potencies (measured as inhibition at 20 µM): most potent 15d-PGJ2 (90%) and PGA2 (80%), > PGD2 (40%) > 15d-PGA2 (20%) > PGE2 (5%), the least potent. However, PGF2α and 2-cyclopenten-1-one, and ciglitazone and rosiglitazone (synthetic agonists of PPARγ) had no effect. Combinations of cyPGs with SC-560 or NS-398 (specific anti-inflammatory inhibitors of cyclooxygenase-1 and -2, respectively) were not effective; while GW9662 (PPARγ antagonist) or MK-741 (inhibitor of multidrug resistance protein-1, MRP1, and CysLT1 receptors) amplified the inhibitory effect of PGA2 and 15d-PGJ2. Although concentrations of individual PGs and cyPGs are low, all of them, as well as primary PGs suppress proliferation. Thus, the effects are potentially additive, and activated PGs synthesis suppresses proliferation in astrocytes.


Assuntos
Astrócitos/citologia , Astrócitos/metabolismo , Ciclopentanos/metabolismo , Prostaglandinas/biossíntese , Animais , Astrócitos/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cromatografia Líquida , Lipopolissacarídeos/farmacologia , PPAR gama/agonistas , PPAR gama/metabolismo , Prostaglandina D2/análogos & derivados , Prostaglandina D2/química , Prostaglandina D2/metabolismo , Prostaglandinas A/química , Prostaglandinas A/metabolismo , Ratos Wistar , Espectrometria de Massas em Tandem
6.
Arch Pharm (Weinheim) ; 351(6): e1800023, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29737542

RESUMO

The design and synthesis of dihydropyrazolo[1,5-c]quinazolines (1a-h) as human topoisomerase II (TopoII) catalytic inhibitors are reported. The compounds were investigated for their antiproliferative activity against the C6 rat glial cell line. Two compounds, 1b and 1h, were found to be potent cytotoxic agents against glioma cells and exerted selective TopoII inhibitory activity. Furthermore, the compounds induced alterations in reactive oxygen species levels as measured by DCFDA assay and were found to induce cell cycle arrest at the G1 phase at lower concentrations and profound apoptosis at higher concentrations. The interaction of selected investigational molecules with TopoII was further corroborated by molecular modeling.


Assuntos
Antineoplásicos/farmacologia , Glioma/tratamento farmacológico , Quinazolinas/farmacologia , Inibidores da Topoisomerase II/farmacologia , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , DNA Topoisomerases Tipo II/efeitos dos fármacos , DNA Topoisomerases Tipo II/metabolismo , Relação Dose-Resposta a Droga , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos dos fármacos , Glioma/enzimologia , Humanos , Modelos Moleculares , Quinazolinas/síntese química , Quinazolinas/química , Ratos , Espécies Reativas de Oxigênio/metabolismo , Inibidores da Topoisomerase II/síntese química , Inibidores da Topoisomerase II/química
7.
J Neurochem ; 141(2): 208-221, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28251649

RESUMO

Intracellular purine turnover is mainly oriented to preserving the level of triphosphate nucleotides, fundamental molecules in vital cell functions that, when released outside cells, act as receptor signals. Conversely, high levels of purine bases and uric acid are found in the extracellular milieu, even in resting conditions. These compounds could derive from nucleosides/bases that, having escaped to cell reuptake, are metabolized by extracellular enzymes similar to the cytosolic ones. Focusing on purine nucleoside phosphorylase (PNP) that catalyzes the reversible phosphorolysis of purine (deoxy)-nucleosides/bases, we found that it is constitutively released from cultured rat C6 glioma cells into the medium, and has a molecular weight and enzyme activity similar to the cytosolic enzyme. Cell exposure to 10 µM ATP or guanosine triphosphate (GTP) increased the extracellular amount of all corresponding purines without modifying the levels/activity of released PNP, whereas selective activation of ATP P2Y1 or adenosine A2A metabotropic receptors increased PNP release and purine base formation. The reduction to 1% in oxygen supply (2 h) to cells decreased the levels of released PNP, leading to an increased presence of extracellular nucleosides and to a reduced formation of xanthine and uric acid. Conversely, 2 h cell re-oxygenation enhanced the extracellular amounts of both PNP and purine bases. Thus, hypoxia and re-oxygenation modulated in opposite manner the PNP release/activity and, thereby, the extracellular formation of purine metabolism end-products. In conclusion, extracellular PNP and likely other enzymes deputed to purine base metabolism are released from cells, contributing to the purinergic system homeostasis and exhibiting an important pathophysiological role.


Assuntos
Glioma/enzimologia , Purina-Núcleosídeo Fosforilase/metabolismo , Animais , Linhagem Celular Tumoral , Ratos
8.
BMC Complement Altern Med ; 17(1): 367, 2017 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-28716085

RESUMO

BACKGROUND: Curcuma longa L. is a well-known medicinal plant that has been used for its anti-cancer, neuroprotective, and hepatoprotective effects. However, the neuroprotective effect of fermented C. longa (FCL) has not been reported. Therefore, in this study, the effectiveness of FCL for the regulation of memory dysfunction was investigated in two brain cell lines (rat glioma C6 and murine microglia BV2) and scopolamine-treated mice. METHODS: C. longa powder was fermented by 5% Lactobacillus plantarum K154 containing 2% (w/v) yeast extract at 30 °C for 72 h followed by sterilization at 121 °C for 15 min. The protective effects of fermented C. longa (FCL) on oxidative stress induced cell death were analyzed by MTT assay in C6 cells. The anti-inflammatory effects of FCL were investigated by measuring the production of nitric oxide (NO) and prostaglandin E2 (PGE2) as well as the expression levels of inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2) in LPS-stimulated BV2 cells. The step-through passive avoidance test, Morris water maze test, acetylcholinesterase (AChE) activity, and expression of cAMP response element-binding protein (CREB) and brain-derived neurotropic factor (BDNF) were employed to determine the effects of FCL on scopolamine-induced memory deficit in mice. The contents of curcuminoids were analyzed through LC/MS. RESULTS: Pretreatment with FCL effectively prevented the cell death induced by oxidative stress in C6 cells. Moreover, FCL inhibited the production NO and PGE2 via the inhibition of iNOS and COX-2 expression in BV2 cells. FCL significantly attenuated scopolamine-induced memory impairment in mice and prevented scopolamine-induced AChE activity in the hippocampus. Additionally, FCL reversed the reduction of CREB and BDNF expression. The curcuminoids content in FCL was 1.44%. CONCLUSION: FCL pretreatment could alleviate scopolamine-induced memory impairment in mice, as well as oxidative stress and inflammation in C6 and BV2 cells, respectively. Thus, FCL might be a useful material for preventing impairment of learning and memory.


Assuntos
Amnésia/tratamento farmacológico , Encéfalo/efeitos dos fármacos , Curcuma/química , Inflamação/tratamento farmacológico , Fármacos Neuroprotetores/uso terapêutico , Estresse Oxidativo/efeitos dos fármacos , Fitoterapia , Acetilcolinesterase/metabolismo , Amnésia/induzido quimicamente , Amnésia/metabolismo , Animais , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Encéfalo/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Linhagem Celular , Curcumina/análise , Curcumina/farmacologia , Curcumina/uso terapêutico , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Fermentação , Inflamação/induzido quimicamente , Inflamação/metabolismo , Mediadores da Inflamação/metabolismo , Lipopolissacarídeos , Masculino , Transtornos da Memória , Camundongos Endogâmicos ICR , Fármacos Neuroprotetores/farmacologia , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Ratos , Escopolamina
9.
J Appl Toxicol ; 36(11): 1409-17, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-26988466

RESUMO

The widespread environmental contaminant, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), is considered one of the most toxic dioxin-like compounds. Although epidemiological studies have shown that TCDD exposure is linked to some neurological and neurophysiological disorders, the underlying mechanism of TCDD-mediated neurotoxicity has remained unclear. Astrocytes are the most abundant cells in the nervous systems, and are recognized as the important mediators of normal brain functions as well as neurological, neurodevelopmental and neurodegenerative brain diseases. In this study, we investigated the role of TCDD in regulating the expression of glutamate transporter GLT-1 in astrocytes. TCDD, at concentrations of 0.1-100 nm, had no significantly harmful effect on the viability of C6 glioma cells. However, the expression of GLT-1 in C6 glioma cells was downregulated in a dose- and time-dependent manner. TCDD also caused activation of protein kinase C (PKC), as TCDD induced translocation of the PKC from the cytoplasm or perinuclear to the membrane. The translocation of PKC was inhibited by one Ca(2+) blocker, nifedipine, suggesting that the effects are triggered by the initial elevated intracellular concentration of free Ca(2+) . Finally, we showed that inhibition of the PKC activity reverses the TCDD-triggered reduction of GLT-1. In summary, our results suggested that TCDD exposure could downregulate the expression of GLT-1 in C6 via Ca(2+) /PKC pathway. The downregulation of GLT-1 might participate in TCDD-mediated neurotoxicity. Copyright © 2016 John Wiley & Sons, Ltd.


Assuntos
Astrócitos/efeitos dos fármacos , Cálcio/metabolismo , Transportador 2 de Aminoácido Excitatório/biossíntese , Dibenzodioxinas Policloradas/toxicidade , Proteína Quinase C/metabolismo , Animais , Astrócitos/metabolismo , Sinalização do Cálcio , Técnicas de Cultura de Células , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Regulação para Baixo , Ratos , Transdução de Sinais , Fatores de Tempo
10.
Bioorg Med Chem Lett ; 25(18): 3854-8, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26238321

RESUMO

In order to develop the amino acid appended acridines as potential leads for anticancer drugs, they were subjected to preliminary investigations. Screening through MTT assay as well as the phase contrast micrographs and Confocal images of immunostained C6 Glioma cells for markers such as α-tubulin, GFAP, mortalin and HSP-70 cells indicated that the compounds possess significant antiproliferative activity. The compounds also arrested cells in G0/G1 phase of the cell cycle as indicated by flow cytometry results. Moreover, the upregulation of the senescence markers such as mortalin and HSP70 in the presence of compounds 8, 9 and 12 indicate their senescence inducing potential.


Assuntos
Acridinas/química , Acridinas/farmacologia , Aminoácidos/química , Antineoplásicos/química , Antineoplásicos/farmacologia , Acridinas/síntese química , Acridinas/isolamento & purificação , Antineoplásicos/síntese química , Antineoplásicos/isolamento & purificação , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Estrutura Molecular , Relação Estrutura-Atividade
11.
World Neurosurg ; 168: e595-e606, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36280046

RESUMO

BACKGROUND: Surgical resection is a key method for glioma treatment. This inherently invasive procedure alters the tumor microenvironment of glioma cells that cannot be removed by surgery. However, few studies have focused on the impact of this microenvironment change on the growth of glioma cells. METHODS: The authors preconstructed a surgical brain injury model, and then C6 glioma cells were transplanted. HE staining was used to observe the general morphology of tumor cells, and immunohistochemistry of MMP-2, MMP-9, GFAP, and CD31 was used to evaluate the invasiveness of glioma cells and activation of astrocytes and calculate microvessel density. In vitro, primary rat astrocytes were exposed to different temperature gradients. The supernatant was made into conditioned medium for culturing C6 glioma cells. The scratch test and transwell test were used to evaluate the migration and invasion of tumor cells. RESULTS: GFAP expression was stronger in surgical brain injury rats, C6 cells implanted in these rats showed stronger expression of MMP-2 and MMP-9, and CD31 was expressed in more microvessels. Astrocytes exposed to high temperatures of 40°C and 43°C expressed stronger GFAP, and C6 cells cultured in their supernatants had stronger scratch healing ability and the ability to cross transwell chambers. CONCLUSIONS: The microenvironment changes caused by surgical brain injury will enhance the migration and invasion of glioma cells and increase the microvessel density in the tumor. This effect may be related to the activation of astrocytes caused by the thermal injury of bipolar coagulation during surgery.


Assuntos
Lesões Encefálicas , Neoplasias Encefálicas , Glioma , Ratos , Animais , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Neoplasias Encefálicas/patologia , Astrócitos/metabolismo , Glioma/patologia , Lesões Encefálicas/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Microambiente Tumoral
12.
Acta Chim Slov ; 68(4): 970-982, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34918770

RESUMO

Effective treatment of glioma still stands as a challenge in medical science. The work aims for the fabrication and evaluation of lipid based nanostructures for improved delivery of lomustine to brain tumor cells. Experimental formulations (LNLs) were developed by modified lipid layer hydration technique and evaluated for different in vitro characteristics like particle size analysis, surface charge, surface morphology, internal structure, in vitro drug loading, drug release profile etc. Anticancer potential of selected LNLs was tested in vitro on C6 glioma cell line. Electron microscopic study depicted a size of less than 50 nm for the selected LNLs along 8.8% drug loading with a sustained drug release tendency over 48 h study period. Confocal microscopy revealed extensive internalization of the selected LNL in C6 cells. LNLs were found more cytotoxic than free drug and blank nanocarriers as depicted from MTT assay. The selected LNL showed improved pharmacokinetic profile both in blood and brain in the experimental mice models along with negligible hemolysis in mice blood cells. Further studies are warranted for the future translation of LNLs at clinics.


Assuntos
Antineoplásicos/química , Lipídeos/química , Lomustina/química , Nanoestruturas/química , Animais , Antineoplásicos/farmacocinética , Antineoplásicos/farmacologia , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Liberação Controlada de Fármacos , Feminino , Glioma/metabolismo , Glioma/patologia , Meia-Vida , Hemólise/efeitos dos fármacos , Cinética , Masculino , Camundongos , Nanoestruturas/toxicidade
13.
Nat Prod Res ; 35(23): 5489-5492, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32608261

RESUMO

A HP20 resin-based unique method was adopted to get an active fraction of the hydroalcoholic extract of G. glabra roots. The fraction showed potent cytotoxicity against cancer cell line and was further subjected to detailed phytochemical investigation to obtain ten biomarkers. The isolated compounds were also tested for the cytotoxicity against the C6 glioma cell line in vitro using MTT assay. Among the isolated compounds, glycyrrhetic acid (1), glabrol (6), and glabridin (9) exhibited significant cytotoxicity. The compounds showed a dose-dependent decrease in cell viability. The active compounds were subjected to molecular docking study against topoisomerase I and topoisomerase II to support the mechanism of antitumor activity.


Assuntos
Glioma , Glycyrrhiza , Glioma/tratamento farmacológico , Humanos , Simulação de Acoplamento Molecular , Extratos Vegetais/farmacologia , Raízes de Plantas
14.
J Inorg Biochem ; 207: 111053, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32193050

RESUMO

A set of new copper(II) complexes containing the Schiff base ligand derived from pyridine-2-carboxaldehyde and 5,6-diamino-1,3-dimethyluracil (6-amino-1,3-dimethyl-5-[(pyridin-2-ylmethylidene)-amino]-pyrimidine-2,4(1H,3H)-dione) with several anions (Cl-, Br-, I-, ClO4-, NO3-) and, two of them with 1,10-phenanthroline, were synthesized and characterized by means of elemental analysis, FT-IR, and single-crystal X-ray diffraction methods. Their ability to act as antitumor agents against C6 glioma cells has been also explored. These complexes contain copper a redox active metal essential for the regulation of cellular pathways that are fundamental for brain function. The antiproliferative activity of the complexes and their effect on cell cycle, apoptosis profile, bioenergetic behavior, intracellular reactive oxygen species (ROS) production, autophagy and enzyme antioxidant defense systems (superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) activities) were analyzed in C6 glioma cells. Although the compounds show limited antiproliferative activity, they are able to modify S-phase of cell cycle and induce G2/M phase arrest. Also, copper(II) complexes promote apoptosis and, in a lesser extent, autophagy, being both processes modulated by ROS generation, due to their property to affect the enzyme antioxidant defense systems, mainly SOD and CAT but not GPx.


Assuntos
Aldeídos/química , Proliferação de Células/efeitos dos fármacos , Complexos de Coordenação/química , Cobre/química , Piridinas/química , Bases de Schiff/química , Uracila/análogos & derivados , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Antioxidantes/química , Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Complexos de Coordenação/farmacologia , Cobre/farmacologia , Cristalografia por Raios X , Glioma/metabolismo , Humanos , Oxirredução/efeitos dos fármacos , Fenantrolinas/química , Ratos , Espécies Reativas de Oxigênio , Bases de Schiff/farmacologia , Espectroscopia de Infravermelho com Transformada de Fourier , Uracila/química
15.
J Drug Target ; 28(7-8): 789-801, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32242754

RESUMO

Ligands are an important part of targeted drug delivery systems. Optimised lignads not only improve the target efficiency, but also enhance therapeutical effect of drugs. In our research, five sugar molecules (Mannose, Galactose, Glucose, Malt disaccharide, and Maltotriose) conjugated PEG600-DSPE were synthesised, of which polysaccharides were first discovered by us as sugar ligands to modify liposomes, which interacts with over expressive GLUT on cancer cells. DiO was encapsulated as fluorescent probe to evaluate their cellular uptake abilities of targeting C6 glioma cells, and the distribution in different visceral organs of rats. The results demonstrated that Malt disaccharide and Glucose-PEG600-DSPE had the strong efficiency of cellular uptake by C6 glioma cells. The distribution and accumulation of liposomes showed that different sugars modified liposomes could target different visceral organs in rats. It has provided a novel idea for ligand selectivity and optimisation of nanocarriers for tumour targeted therapy.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Hexoses/química , Lipossomos/química , Polietilenoglicóis/química , Animais , Linhagem Celular Tumoral , Sobrevivência Celular , Ligantes , Nanopartículas , Ratos , Ratos Sprague-Dawley , Propriedades de Superfície
16.
J Photochem Photobiol B ; 203: 111773, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31931385

RESUMO

Glioma is the prime cause of cancer allied mortality in adolescent people and it accounts about 80% of all malignant tumours. Eugenol is a major bioactive constituent present in the essential oils with numerous pharmacological benefits including nueroprotective activity. The major drawback of eugenol is its extreme volatile property and oxygen sensitivity therefore we increased the efficacy of drug; eugenol by encapsulating with chitosan polymer. Eugenol loaded chitosan polymer (EuCs) was characterized using FTIR, XRD, SEM, HR-TEM analysis and the encapsulation, drug release efficacy was assessed at in vitro condition. The induction of autophagy and anticancer efficacy of EuCs on glioma cells was evaluated with rat C6 glioma cells using MTT assay, acridine orange staining, immunocytochemical analysis of NFκß protein expression and FLOW cytometric analysis. The anti-metastatic property of Eu-CS was assessed by immunoblotting and RT-PCR analysis of epithelial mesenchymal transition protein expression in EuCs treated rat C6 glioma cells. Our characterization analysis proves that EuCs possess essential physical and functional properties of copolymer to be utilized as a drug. Further the MTT analysis and AO staining confirms even in the presence of oncogenic inducer and autophagic inhibitors, EuCs exhibits apoptotic potency on rat C6 glioma cells. The result of immunocytochemical studies depicts the inhibition of NFκß protein expression and flow cytometry studies confirm apoptosis induction by EuCs. The inhibition of metastasis by EuCs was proven by the decrease in epithelial mesenchymal transition protein expression in Eu-Cs treated rat C6 glioma cells. Over all our results authentically confirms eugenol loaded chitosan nanopolymer persuasively induces apoptosis and inhibits metastasis in rat C6 glioma cells.


Assuntos
Antineoplásicos/química , Apoptose/efeitos dos fármacos , Quitosana/química , Eugenol/química , Metaloproteinase 9 da Matriz/metabolismo , Nanoestruturas/química , Transdução de Sinais/efeitos dos fármacos , Animais , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Portadores de Fármacos/química , Eugenol/farmacologia , Glioma/metabolismo , Glioma/patologia , NF-kappa B/metabolismo , Ratos , Ativador de Plasminogênio Tipo Uroquinase/metabolismo
17.
J Agric Food Chem ; 68(7): 1896-1909, 2020 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-31589437

RESUMO

Cyanobacteria are photosynthetic microorganisms that are considered as an important source of bioactive metabolites, among which phycobiliproteins (PBPs) are a class of water-soluble macromolecules of cyanobacteria with a wide range of applications. Massive proliferation of cyanobacteria can lead to excessive surface water blooms, of which removal, as a management measure, should be prioritized. In this study, the utilization of wild cyanobacteria biomass (Aphanizomenon flos-aquae) for extraction of phycobiliproteins is reported. Extraction of phycobiliproteins by conventional methods, such as homogenization, freeze-thaw cycles, and solid-liquid extraction, were optimized prior to ultrasound-assisted extraction. Standardization of ultrasonication for different parameters, such as ultrasonication amplitude (38, 114, and 190 µm) and ultrasonication time (1, 5.5, and 10 min), was carried out using a central composite design and response surface methodology for each of the primary techniques. A substantial increase on the individual and total phycobiliprotein yields was observed after ultrasonic treatment. The highest total PBP yield (115.37 mg/g of dry weight) was observed with samples treated with a homogenizer (30 min, 30 °C, and 1 cycle) combined with ultrasound treatment (8.7 min at 179 µm). Moreover, in vitro antioxidant capacity was observed for the obtained extracts in the Folin-Ciocalteu and ABTS* + assays. In addition, a cytotoxic effect against C6 glioma cells was observed for A. flos-aquae PBPs. Conclusively, wild cyanobacteria could be considered as an alternative feedstock for recovery of PBPs.


Assuntos
Aphanizomenon/química , Proteínas de Bactérias/isolamento & purificação , Proteínas de Bactérias/farmacologia , Ficobiliproteínas/isolamento & purificação , Ficobiliproteínas/farmacologia , Antioxidantes/química , Antioxidantes/isolamento & purificação , Antioxidantes/farmacologia , Aphanizomenon/crescimento & desenvolvimento , Proteínas de Bactérias/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Humanos , Ficobiliproteínas/química , Ultrassom
18.
Cell Transplant ; 29: 963689720964383, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33356508

RESUMO

The optic pathway glioma (OPG) is a slow-growing brain tumor that arises along the optic nerve or its downstream connections and causing vision to gradually worsen with time. This tumor forms in children with a genetic condition called neurofibromatosis type 1 (NF1), causing tumors to grow on nerves. In normal conditions, glial cells are there to support and protect nerve cells but, in NF1-OPG, glial cells have a genetic defect and grow out of control forming a tumor called a glioma. There are no rat models of NF1-OPG that can be used to explore various treatment options, and mouse models make interventional studies difficult due to their small eye size. We have created a model in which to study the progression of tumor growth in the optic nerve and establish the anatomical and functional consequences of the model and determine its suitability to serve as a surrogate for human disease. C6 rat glioma cells were injected into the optic nerve of Long-Evans rats and allowed to proliferate for 2 weeks. The eye clearly showed proptosis and lens opacity was observed, likely due to increased intraocular pressure caused by growing tumors. Hematoxylin-eosin staining showed marked cellularity, with hyperchromatism and pleomorphism. There was prominent area of necrosis with neoplastic cells palisading around the penumbra. Immunostaining with markers such as S100, ß-tubulin III, Foxp3, CD45, Vimentin, and Ki67 confirmed low-grade tumor formation, with a mild immune response. Our results show the utility of a surgically induced rat model of OPG that may be used for exploring various treatment options for NF1 ocular tumors.


Assuntos
Glioma/metabolismo , Nervo Óptico/metabolismo , Doenças Retinianas/metabolismo , Linhagem Celular Tumoral , Citometria de Fluxo , Fatores de Transcrição Forkhead/metabolismo , Glioma/genética , Humanos , Antígeno Ki-67/genética , Antígeno Ki-67/metabolismo , Neurofibromina 1/metabolismo , Nervo Óptico/patologia , Doenças Retinianas/genética , Doenças Retinianas/patologia , Tubulina (Proteína)/metabolismo , Vimentina/metabolismo
19.
Free Radic Biol Med ; 135: 261-273, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30898665

RESUMO

Resveratrol (RSV) is a natural polyphenolic antioxidant with a proven protective role in several human diseases involving oxidative stress, although the molecular mechanism underlying this effect remains unclear. The present work tried to elucidate the molecular mechanism of RSV's role on signal transduction modulation. Our biochemical analysis, including radioligand binding, real time PCR, western blotting and adenylyl cyclase activity, and computational studies provide insights into the RSV binding pathway, kinetics and the most favored binding pose involving adenosine receptors, mainly A2A subtype. In this study, we show that RSV target adenosine receptors (AdoRs), affecting gene expression, receptor levels, and the downstream adenylyl cyclase (AC)/PKA pathway. Our data demonstrate that RSV activates AdoRs. Moreover, RSV activate A2A receptors by directly binding to the classical orthosteric binding site. Intriguingly, RSV-induced receptor activation can stimulate or inhibit AC activity depending on concentration and exposure time. Such subtle and multifaceted regulation of the AdoRs/AC/PKA pathway might contribute to the protective role of RSV. Our findings suggest that RSV molecular action is mediated, at least in part, by activation of adenosine receptors and create the opportunity to interrogate the therapeutic use of RSV in pathological conditions involving AdoRs, such as Alzheimer.


Assuntos
Antioxidantes/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Receptor A2A de Adenosina/genética , Resveratrol/farmacologia , Inibidores de Adenilil Ciclases/farmacologia , Adenilil Ciclases/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Cinética , Transdução de Sinais/efeitos dos fármacos
20.
Open Life Sci ; 14: 363-375, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33817171

RESUMO

It has been reported that endocannabinoid receptor type 2 (CB2) agonist JWH133 inhibits the growth of C6 glioma cells, but the underlying mechanism has not yet been fully elucidated. We showed that JWH133 inhibited C6 cells growth, reduced cAMP production and inhibited PKA activity through CB2 receptor. Decrease of PKA activity stimulated CaMKKß, and subsequently elevated phosphorylation of AMPKα at threonine 172 site. The activation of AMPKα induced changes of downstream proteins, including increase of P53 phosphorylation and P21 production, as well as decrease of mTOR phosphorylation, that eventually inhibited C6 cells growth.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA