Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Alzheimers Dement ; 19 Suppl 9: S64-S73, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37801072

RESUMO

INTRODUCTION: One goal of the Longitudinal Early-onset Alzheimer's Disease Study (LEADS) is to investigate the genetic etiology of early onset (40-64 years) cognitive impairment. Toward this goal, LEADS participants are screened for known pathogenic variants. METHODS: LEADS amyloid-positive early-onset Alzheimer's disease (EOAD) or negative early-onset non-AD (EOnonAD) cases were whole exome sequenced (N = 299). Pathogenic variant frequency in APP, PSEN1, PSEN2, GRN, MAPT, and C9ORF72 was assessed for EOAD and EOnonAD. Gene burden testing was performed in cases compared to similar-age cognitively normal controls in the Parkinson's Progression Markers Initiative (PPMI) study. RESULTS: Previously reported pathogenic variants in the six genes were identified in 1.35% of EOAD (3/223) and 6.58% of EOnonAD (5/76). No genes showed enrichment for carriers of rare functional variants in LEADS cases. DISCUSSION: Results suggest that LEADS is enriched for novel genetic causative variants, as previously reported variants are not observed in most cases. HIGHLIGHTS: Sequencing identified eight cognitively impaired pathogenic variant carriers. Pathogenic variants were identified in PSEN1, GRN, MAPT, and C9ORF72. Rare variants were not enriched in APP, PSEN1/2, GRN, and MAPT. The Longitudinal Early-onset Alzheimer's Disease Study (LEADS) is a key resource for early-onset Alzheimer's genetic research.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/genética , Precursor de Proteína beta-Amiloide/genética , Proteína C9orf72/genética , Testes Genéticos , Estudos Longitudinais , Mutação , Presenilina-1/genética , Presenilina-2/genética
2.
Int J Mol Sci ; 24(17)2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37686239

RESUMO

The G4C2 hexanucleotide repeat expansion in the c9orf72 gene is a major genetic cause of familial amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD), with the formation of G-quadruplexes directly linked to the development of these diseases. Cations play a crucial role in the formation and structure of G-quadruplexes. In this study, we investigated the impact of biologically relevant potassium ions on G-quadruplex structures and utilized 15N-labeled ammonium cations as a substitute for K+ ions to gain further insights into cation binding and exchange dynamics. Through nuclear magnetic resonance spectroscopy and molecular dynamics simulations, we demonstrate that the single d(G4C2) repeat, in the presence of 15NH4+ ions, adopts a tetramolecular G-quadruplex with an all-syn quartet at the 5'-end. The movement of 15NH4+ ions through the central channel of the G-quadruplex, as well as to the bulk solution, is governed by the vacant cation binding site, in addition to the all-syn quartet at the 5'-end. Furthermore, the addition of K+ ions to G-quadruplexes folded in the presence of 15NH4+ ions induces stacking of G-quadruplexes via their 5'-end G-quartets, leading to the formation of stable higher-ordered species.


Assuntos
Esclerose Lateral Amiotrófica , Demência Frontotemporal , Degeneração Lobar Frontotemporal , Quadruplex G , Humanos , Esclerose Lateral Amiotrófica/genética , Cátions , Potássio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA